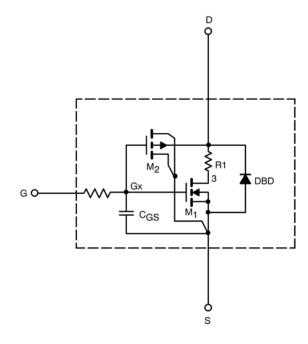


SPICE Device Model SiE810DF Vishay Siliconix

N-Channel 20-V (D-S) MOSFET

CHARACTERISTICS

- N-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- · Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125° C temperature ranges under the pulsed 0-V to 4.5-V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched $C_{\rm gd}$ model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

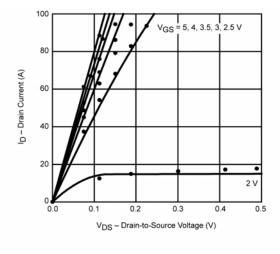
SUBCIRCUIT MODEL SCHEMATIC

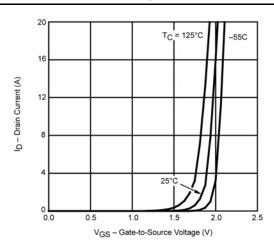
This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

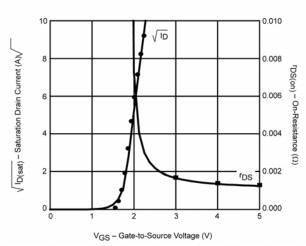
Document Number: 74188 S-60992—Rev. A, 12-Jun-06

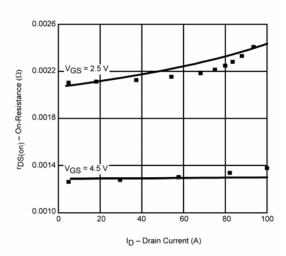
SPICE Device Model SiE810DF

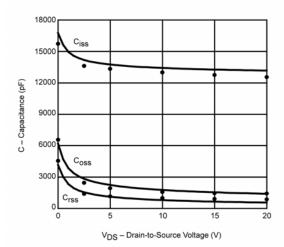
Vishay Siliconix

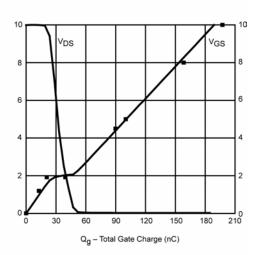

SPECIFICATIONS (T _J = 25°C UI	NLESS OTHERV	VISE NOTED)			
Parameter	Symbol	Test Condition	Simulated Data	Measured Data	Unit
Static					-
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}$, $I_{D} = 250 \mu A$	1.1		V
On-State Drain Current ^a	I _{D(on)}	$V_{DS} \le 5 \text{ V}, V_{GS} = 4.5 \text{ V}$	1490		Α
Drain-Source On-State Resistance ^a	「DS(on)	V _{GS} = 4.5 V, I _D = 25 A	0.0013	0.0013	Ω
		$V_{GS} = 2.5 \text{ V}, I_D = 25 \text{ A}$	0.0021	0.0022	
Forward Transconductance ^a	g _{fs}	V _{DS} = 10 V, I _D = 25 A	202	163	S
Forward Voltage ^a	V _{SD}	I _S = 10 A	0.84	0.90	V
Dynamic ^b					
Input Capacitance	C _{iss}	V _{DS} = 10 V, V _{GS} = 0 V, f = 1 MHz	13430	13000	pF
Output Capacitance	Coss		1774	1600	
Reverse Transfer Capacitance	C _{rss}		803	1000	
Total Gate Charge	Q_g	V_{DS} = 10V, V_{GS} = 10 V, I_{D} = 20 A	190	200	- nC
		V _{DS} = 10 V, V _{GS} = 4.5 V, I _D = 20 A	91	90	
Gate-Source Charge	Q_{gs}		21	21	
Gate-Drain Charge	Q_{gd}		19	19	


a. Pulse test; pulse width $\leq 300~\mu s,$ duty cycle $\leq 2\%.$ b. Guaranteed by design, not subject to production testing.




SPICE Device Model SiE810DF Vishay Siliconix


COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)



Note: Dots and squares represent measured data.