## Features

- Excellent Linearity
- Superior Return Loss Performance
- Extremely Low Distortion
- Optimal Reliability
- Low Noise

- Unconditionally Stable Under All Terminations
- 22.5 dB Min. Gain at 1200 MHz
- 240 mA Max. at $24 \mathrm{~V}_{\mathrm{DC}}$


## Applications

- 45 MHz to 1200 MHz CATV Amplifier Systems


## Product Description

The RFPP2590 is a Hybrid Push Pull amplifier module. The part employs GaAs die and operates from 45 MHz to 1200 MHz . It provides excellent linearity and superior return loss performance with low noise and optimal reliability.

## Ordering Information

RFPP2590 45MHz to 1200MHz GaAs Push Pull Hybrid

Optimum Technology Matching ${ }^{\circledR}$ Applied

| $\square$ GaAs HBT | $\square$ SiGe BiCMOS | $\square$ GaAs pHEMT | $\square$ GaN HEMT |
| :--- | :--- | :--- | :--- |
| $\square$ GaAs MESFET | $\square$ Si BiCMOS | $\square$ Si CMOS | $\square$ BiFET HBT |
| $\square$ InGaP HBT | $\square$ SiGe HBT | $\square$ Si BJT | $\square$ LDMOS |

## Absolute Maximum Ratings

| Parameter | Rating | Unit |
| :--- | :---: | :---: |
| RF Input Voltage (single tone) | 75 | dBmV |
| DC Supply Over-Voltage (5 minutes) | 30 | V |
| Storage Temperature | -40 to +100 | ${ }^{\circ} \mathrm{C}$ |
| Operating Mounting Base Tempera- <br> ture | -30 to +100 | ${ }^{\circ} \mathrm{C}$ |

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical perfor mance or functional operation of the device under Absolute Maximum Rating condiions is not implied.

RoHS status based on EUDirective 2002/95/EC (at time of this document revision).
The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any esponsibility is assumed by RF Micro Devices, Inc. (RFMD) for its use, nor for any license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

| Parameter | Specification |  |  | Unit | Condition |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Min. | Typ. | Max. |  |  |
| Overall |  |  |  |  | $\mathrm{V}_{\mathrm{B}}=24 \mathrm{~V}, \mathrm{~T}_{\mathrm{MB}}=30^{\circ} \mathrm{C}, \mathrm{Z}_{\mathrm{S}}=\mathrm{Z}_{\mathrm{L}}=75 \Omega$ |
| Power Gain | 21.5 | 22 | 22.5 | dB | $\mathrm{f}=45 \mathrm{MHz}$ |
|  | 22.5 | 23.5 | 24.0 | dB | $\mathrm{f}=1200 \mathrm{MHz}$ |
| Slope ${ }^{[1]}$ | 1.0 | 1.5 | 2.0 | dB | $\mathrm{f}=45 \mathrm{MHz}$ to 1200 MHz |
| Flatness of Frequency Response |  |  | 0.8 | dB | $\mathrm{f}=45 \mathrm{MHz}$ to 1200 MHz |
| Input Return Loss | -20 |  |  | dB | $\mathrm{f}=45 \mathrm{MHz}$ to 320 MHz |
|  | -19 |  |  | dB | $\mathrm{f}=320 \mathrm{MHz}$ to 640 MHz |
|  | -18 |  |  | dB | $\mathrm{f}=640 \mathrm{MHz}$ to 870 MHz |
|  | -18 |  |  | dB | $\mathrm{f}=870 \mathrm{MHz}$ to 1000 MHz |
|  | -17 |  |  | dB | $\mathrm{f}=1000 \mathrm{MHz}$ to 1200 MHz |
| Output Return Loss | -20 |  |  | dB | $\mathrm{f}=45 \mathrm{MHz}$ to 320 MHz |
|  | -19 |  |  | dB | $\mathrm{f}=320 \mathrm{MHz}$ to 640 MHz |
|  | -18 |  |  | dB | $\mathrm{f}=640 \mathrm{MHz}$ to 870 MHz |
|  | -17 |  |  | dB | $\mathrm{f}=870 \mathrm{MHz}$ to 1000 MHz |
|  | -16 |  |  | dB | $\mathrm{f}=1000 \mathrm{MHz}$ to 1200 MHz |
| Noise Figure |  | 5.5 | 6.5 | dB | $\mathrm{f}=50 \mathrm{MHz}$ to 1200 MHz |
| Total Current Consumption (DC) |  | 230.0 | 240.0 | mA |  |
| Distortion Data 40 MHz to 550 MHz |  |  |  |  | $\mathrm{V}_{\mathrm{B}}=24 \mathrm{~V}, \mathrm{~T}_{\mathrm{MB}}=30^{\circ} \mathrm{C}, \mathrm{Z}_{\mathrm{S}}=\mathrm{Z}_{\mathrm{L}}=75 \Omega$, 79 ch . flat, Vo $=44 \mathrm{dBmV}$ at 550 MHz , plus 75 digital channels $(-6 \mathrm{~dB} \text { offset })^{[2]}$ |
| СТВ |  | -64 | -60 | dBc |  |
| XMOD |  | -60 | -56 | dBc |  |
| CSO |  | -70 | -65 | dBc |  |
| CIN | 62 | 66 |  | dB |  |

1. The slope is defined as the difference between the gain at the start frequency and the gain at the stop frequency.
2. 79 analog channels, NTSC frequency raster: 55.25 MHz to $547.25 \mathrm{MHz},+44 \mathrm{dBmV}$ flat output level, plus 75 digital channels, -6 dB offset relative to the equivalent analog carrier. Composite Second Order (CSO) - The CSO parameter (both sum and difference products) is defined by the NCTA.
Composite Triple Beat (CTB) - The CTB parameter is defined by the NCTA. Cross Modulation (XMOD) - Cross modulation (XMOD) is measured at baseband (selective voltmeter method), referenced to $100 \%$ modulation of the carrier being tested. Carrier to Intermodulation Noise (CIN) - The CIN parameter is defined by ANSI/SCTE 17 (Test procedure for carrier to noise).
Package Drawing

All Dimensions in mm:

|  | nominal | min | max |
| :---: | :---: | :---: | :---: |
| A | $44,6^{ \pm 0,2}$ | 44,4 | 44,8 |
| B | $13,6^{ \pm 0,2}$ | 13,4 | 13,8 |
| C | $20,4^{ \pm 0,5}$ | 19,9 | 20,9 |
| D | $8^{ \pm 0,15}$ | 7,85 | 8,15 |
| E | $12,6^{ \pm 0,15}$ | 12,45 | 12,75 |
| F | $38,1^{ \pm 0,2}$ | 37,9 | 38,3 |
| G | $4^{+0,2 l-0,05}$ | 3,95 | 4,2 |
| H | $4^{ \pm 0,2}$ | 3,8 | 4,2 |
| I | $25,4^{ \pm 0,2}$ | 25,2 | 25,6 |
| J | UNC $6-32$ | - | - |
| K | $4,2^{ \pm 0,2}$ | 4,0 | 4,4 |
| L | $27,2^{ \pm 0,2}$ | 27,0 | 27,4 |
| M | $11,6^{ \pm 0,5}$ | 11,1 | 12,1 |
| N | $5,8^{ \pm 0,4}$ | 5,4 | 6,2 |
| O | $0,25^{ \pm 0,02}$ | 0,23 | 0,27 |
| P | $0,45^{ \pm 0,03}$ | 0,42 | 0,48 |
| Q | $2,54^{ \pm 0,3}$ | 2,24 | 2,84 |
| R | $2,54^{ \pm 0,5}$ | 2,04 | 3,04 |
| S | $2,54^{ \pm 0,25}$ | 2,29 | 2,79 |
| T | $5,08^{ \pm 0,25}$ | 4,83 | 5,33 |
| U | $5,08^{ \pm 0,25}$ | 4,83 | 5,33 |

