

August 2009

FAN3988 USB/Charger and Over-Voltage Detection Device

Features

- Charger/USB Detection Device
- Charger/USB Device Detection Flag
- Over-/Under-Voltage Detection Flag
- V_{BUS} Supply: 2.7V to 20V
- C_{ON} of 1.5pF
- 6 MLP Package

Applications

- Mobile Phones
- Handheld Devices

Description

The FAN3988 is a USB-connection-monitoring device used to determine if a standard USB device or a battery-changing device is connected.

The FAN3988 sets the FLAG1 pin to logic HIGH or LOW as an indicator to the system controller that a standard USB device or a charger is connected to the USB port. The FAN3988 also monitors the V_{BUS} for over- or under-voltage conditions. The FLAG2 pin is set LOW if V_{BUS} is less than 3.3V or greater than 6.0V.

The FAN3988 is packaged in a very small 6-lead MLP package suitable for small board space applications, such as mobile phones.

Ordering Information

Part Number Cperating Temperature Range		© Eco Status	Package	Packing Method	Quantity
FAN3988IL6X_F113		6-Lead Molded Leadless Package (MLP)	Reel	3000	

For Fairchild's definition of Eco Status, please visit: http://www.fairchildsemi.com/company/green/rohs_green.html.

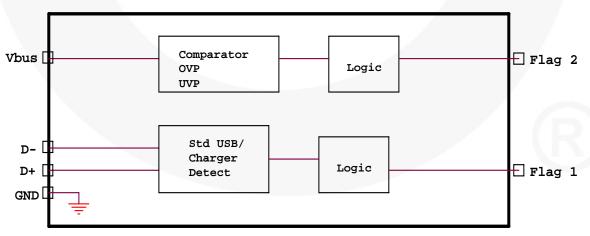


Figure 1. Block Diagram

Pin Configuration

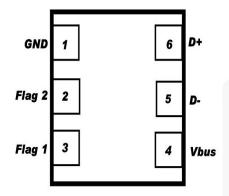


Figure 3. Pin Configuration (Bottom View)

Pin Definitions

Pin#	Name	Туре	Description
1	GND	Input	Device ground
2	Flag2	Output	Over/under-voltage flag output
3	Flag1	Output	Charger/standard USB device detect flag
4	V_{BUS}	Input	Power input from charger, USB device, or handheld battery
5	D-	Input	USB data input
6	D+	Input	USB data input

Truth Table

Connection State	V _{BUS}	D-	D+	FLAG1	FLAG2
STD USB Device	0V	R to GND	R to GND	LOW	LOW
USB Charger	5V	Short to D+	Short to D-	HIGH	HIGH
V _{BUS} GT 6V	GT 6V	Short to D+	Short to D-	HIGH	LOW
V _{BUS} LT 3.3V	LT 3.3V	Short to D+	Short to D-	HIGH	LOW
PC Data/Charger	5V	Open	Open	LOW	HIGH

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Min.	Max.	Unit
Vs	DC Supply Voltage	-0.3	20.0	V
V _{IO}	Analog and Digital I/O	-0.3	V _{CC} +0.3	V

Reliability Information

Symbol	Parameter	Min.	Тур.	Max.	Unit
TJ	Junction Temperature			+150	°C
T _{STG}	Storage Temperature Range	-65		+150	°C
ΘJA	Thermal Resistance, JEDEC Standard, Multilayer Test Boards, Still Air		41		°C/W

ESD Information

Symbol	Parameter	Max.	Unit
ESD Human Body Model, JESD22-A114		5	kV
E9D	Charged Device Model, JESD22-C101	2	kV

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Тур.	Max.	Unit
T _A	Operating Temperature Range	-40		+85	°C
V _{CC}	Supply Voltage Range	2.7	5.0	20.0	V

DC Electrical Characteristics

 $T_A = 25$ °C, $V_{CC} = 5.0$ V, unless otherwise noted.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
Supply		1		l	l	l
Vs	Supply Voltage Range	V _S Range	2.7	5.0	20.0	V
Icc	Quiescent Supply Current	V _S = +5.0V, D+ D- Shorted		1.2	2.0	mA
t _{SUPPLY}	Power-Up Stabilization Time	$V_S = +5.0V$, D+ D- Shorted		10		ms
Input Chara	cteristics					
C _{D+}	Input Capacitance			1.5	2.0	pF
C _D -	Input Capacitance			1.5	2.0	pF
I _{off} D+	Off Leakage Current	$V_{BUS} = 0V$ or 5V V_{IN} on D+ = 5V		1		μΑ
I _{off} D-	Off Leakage Current	$V_{BUS} = 0V$ or $5V$ V_{IN} on D - = $5V$		1		μΑ
Output Char	acteristics					
OV _{DETECT}	Over-Voltage Threshold Detect	V _S = +5.0V, Flag2 = LOW	5.8	6.0	6.5	V
OV _{HYST}	Over-Voltage Hysteresis	Voltage Sweep through Upper and Lower Trip Points		100		mV
UV _{DETECT}	Under-Voltage Threshold Detect	V _S = +5.0V, Flag2 = LOW	3.0	3.3	3.6	V
UV _{HYST}	Under-Voltage Hysteresis	Voltage Sweep through Upper and Lower Trip Points		100		mV
V _{OH} FLAG1/ FLAG2	Minimum HIGH Output Voltage	V _S = +5.0V, I _{OH} = -20μA	2.4			V
V _{OL} FLAG1/ FLAG2	Maximum LOW Output Voltage	$V_S = +5.0V$, $I_{OL} = 20\mu A$			0.3	V
t _{Off}	Flag2 HIGH to LOW	100pF Load		10		ns
t _{on}	Flag2 LOW to HIGH	100pF Load		44		ns

Typical Performance Characteristics

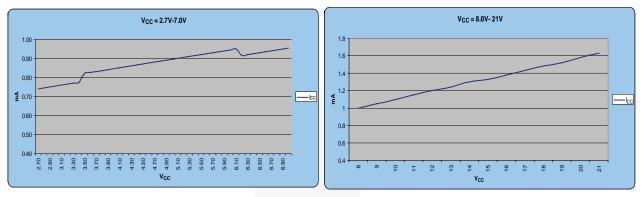


Figure 4. I_{CC} vs. V_{CC} (2.7V-7.0V) No Load

Figure 5. I_{CC} vs. V_{CC} (8.0V-21V) No Load

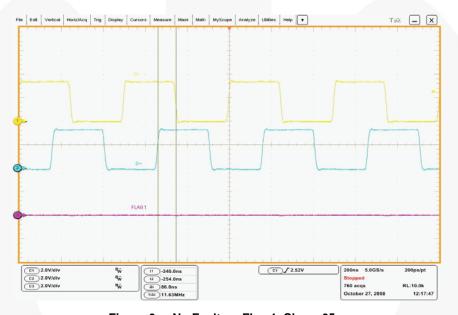


Figure 6. No Fault on Flag 1, Skew=65ns

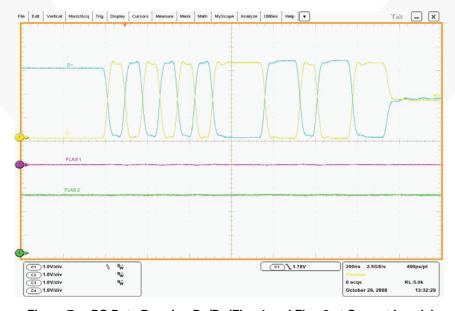


Figure 7. PC Data Running D+/D- (Flag 1 and Flag 2 at Correct Levels)

Typical Applications Circuit

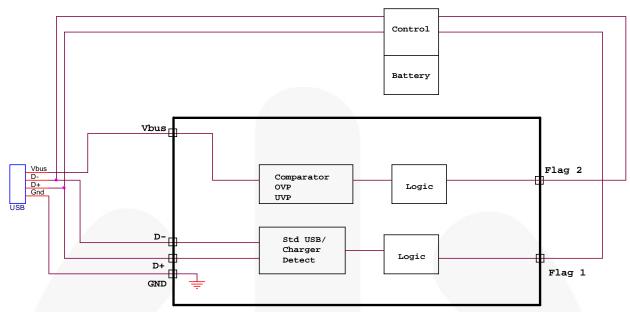


Figure 8. Mobile Phone System Example

Application Information

The FAN3988 has three purposes: (1) to monitor V_{BUS} and set a flag if $6.4V > V_{BUS} < 3.0V$; (2) to set a flag when a charging device is connected to D+/D-; and (3) to set a flag if a standard USB device is connected to D+/D-.

The FAN3988 with no USB charging device connected does not have power on V_{BUS} . The only way to power V_{BUS} is from an external charging source. When using an external charger, the FAN3988 powers up through an on-board LDO and supplies power to the complete device. After a 160ms delay, Flag 1 and Flag 2 go to a logic level determined by the conditions on the V_{BUS} and D+/D- inputs. The default state on the D+/D- switch (after power-up) is closed. If the D+/D- lines are shorted, Flag 1 is set HIGH, indicating a valid charging device is present. Flag 2 also goes HIGH, indicating that the voltage on V_{BUS} is correct (6.4V> V_{BUS} <3.0V).

When a standard USB device is connected (like a headset), the baseband chip detects a standard USB device through D+/D- lines and Flag 2 stays LOW, indicating a non-valid V_{BUS} voltage. Since there is no power to the FAN3988, Flag 1 stays LOW, indicating a standard USB device is present.

If Flag 2 were to go LOW during normal operation, this would indicate an invalid voltage on the V_{BUS} line and the baseband chip would prevent an improper voltage being sent directly to the battery.

PCB Layout Guidelines

Pad1

This exposed DAP is connected to an internal die substrate at ground potential. The pad should be left floating or can be connected to the ground plane. This pad should never be connected to the power plane.

Figure 9. PCB Layout

Note:

 Please reference Fairchild Semiconductor application note AN-5067 - PCB Land Pattern Design and Surface Mount Guidelines for MLP Packages, available at: http://www.fairchildsemi.com/an/AN/AN-5067.pdf

Physical Dimensions 2X В 1.45 2X (1) 0.05 C 1 1 ¦ + -(0.49)1.00 5X (0.75)1 (0.52)**TOP VIEW** Α 1X ↓ 0.55MAX (0.30)6X PIN 1 0.05 C 0.05 RECOMMENED 0.00 LAND PATTERN \bigcirc 0.05 \bigcirc С 0.45 0.10 0.00 6X 0.35 0.25 0.15 6X 1.0 DETAIL A 0.10(M) C B A 0.40 0.05(M) C 0.30 0.35 0.25 5X 0.40 5X **DETAIL A** 0.30 $0.075 \times 45^{\circ}$ PIN 1 TERMINAL **CHAMFER** 0.5 (0.05)(0.13)6X 4X **BOTTOM VIEW**

Notes:

- 1. CONFORMS TO JEDEC STANDARD M0-252 VARIATION UAAD
- 2. DIMENSIONS ARE IN MILLIMETERS
- 3. DRAWING CONFORMS TO ASME Y14.5M-1994

MAC06AREVC

Figure 10. 6-Lead Molded Leadless Package (MLP)

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/.

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

FPSTM Auto-SPM™ F-PFS™ Build it Now™ CorePLUS™

Global Power ResourceSM Green FPS™ CorePOWER** CROSSVOLT™ Green FPS™ e-Series™ G*m*ах™ CTL™

Current Transfer Logic™ GTO™ EcoSPARK® IntelliMAX™ EfficientMa×™ EZSWITCH™

Fairchild® Fairchild Semiconductor® FACT Quiet Series™ FACT

FAST[®] Fast∨Core™ EETBench™

FlashWriter®*

FRFET®

ISOPLANAR™ MegaBuck™ MICROCQUELER™ MicroFET™ MicroPak™ MillerDrive™ MotionMa×™ Motion-SPM™ OPTOLOGIC® OPTOPLANAR®

PDP SPM™ Power-SPM™ PowerTrench® PowerXS™

Programmable Active Droop™ QFET®

OSTM Quiet Series™ RapidConfigure™

Отм Saving our world, 1mWWW/kW at a time™ SignalVVise™

SmartMax™ SMART START™ SPM® STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™6 SuperSOT™8 SupreMOS™ SyncFET™

Sync-Lock™ SYSTEM ® The Power Franchise®

TinvBoost** TinýBuck™ TinýCalc™ TinyLogic® TINYOPTO** TinvPower™ TinyPWM™ TinyVVire™ TriFault Detect™ TRUECURRENT*** μSerDes™

UHC Ultra EREET™ UniFET™ VCX™ VisualMax™ XS™

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

- 1. Life support devices or systems are devices or systems which, (a) are 2. A critical component in any component of a life support, device, or intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
 - system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages oustomers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Definition of Tellis				
Datasheet Identification Product Status		Definition		
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		

Rev. 142

Trademarks of System General Corporation, used under license by Fairchild Semiconductor.