2 PHASE DC MOTOR DRIVE IC

GENERAL DESCRIPTION

The FS212, a 1-chip composed of hall sensor and output coil drivers, applied to 2-phase DC motor. The high sensitivity of Hall effect sensor is suitable for motors from mini-type CPU coolers to blowers and DC fans. Typical operation current is 0.4 A and operating voltage range is wide. Lock shutdown, to connect with a capacitor, provides a programmable time of lock shutdown and re-start during the motor is locked.

Using few external components, FS212, a high performance integrated IC, is designed for a 2-phase DC motor circuit. The circuit diagram of the typical application example is as below.

FEATURES

- 1 chip hall sensor/drivers
- Wide operating voltage range: 4.0V~20V
- Output sink current up to 0.55A
- Low quiescent supply current under 5mA
- Built-in Lock Shutdown and Re-start function

Package : TO-92SP-4

TYPICAL APPLICATION CIRCUIT

FUNCTIONAL BLOCK DIAGRAM

MARK VI EW

PI N DESCRI PTI ON

NAME	NO.	STATUS	DESCRIPTION
SC	1	I	Shutdown Control input A capacitior is connected to this pin to decide the lock shutdown and re-start timing.
NO	2	O/P	Coil driver output lt it low state during the N magnetic field. /Power input
SO	3	O/P	Coil driver output lt it low state during the S magnetic field. /Power input
GND	4	P	IC Ground

EELIMG
Technology/////h FS212
ABSOLUTE MAXIMUM RATINGS
Zener Breakdown Voltage (Vz) 35 V
NO/SO Pin Voltage (V V_{CP} (Note 1)) 30 V
Peak Sink Current (lo)
Hold Current 550mA
Continuous Current 400mA
Peak Reverse Current (I_{R}) 100 mA
SC pin OFF Voltage (VSc) Vcc-0.7V
Power Dissipation
$\mathrm{Ta}=25^{\circ} \mathrm{C}$ 600 mW
$\mathrm{Ta}=70^{\circ} \mathrm{C}$ 450 mW
Operating Temperature Range $-20^{\circ} \mathrm{C} \sim 85^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C} \sim 150^{\circ} \mathrm{C}$
Junction Temperature $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $+230^{\circ} \mathrm{C}$
Note1 V_{CP} mean Coil Power

DC ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Minimum Operating Voltage	$\mathrm{V}_{\text {CP }}$	No use pin is open (Fig1)		4.0		V
Maximum Operating Voltage	$\mathrm{V}_{\text {CP }}$	$\mathrm{I}_{\mathrm{CP}}<10 \mathrm{~mA}$ No use pin is open (Fig1)		20.0		V
Quiescent Supply current	$\mathrm{I}_{\text {CP }}$	$\begin{gathered} \text { No use pin is open } \mathrm{V}_{\mathrm{CP}}: \\ 4.0 \mathrm{~V} \sim 20 \mathrm{~V} \text { (Fig1) } \end{gathered}$	2.0		6.0	mA
NO/SO Saturation Voltage	$\mathrm{V}_{\text {SAT }}$	$10=300 \mathrm{~mA}$ (Fig1)			1.5	V
Output Reset Voltage	$V_{\text {SCRST }}$	SC capacitor is $1 \mu \mathrm{~F}$ (Fig2)		0.3		V
Output Off Voltage	$\mathrm{V}_{\text {Scoff }}$			0.7		V
Output Re-start Voltage	$\mathrm{V}_{\text {SCRS }}$		1.5	1.7	1.9	V
SC charged current	$I_{\text {chG }}$	(Fig3)		0.8		$\mu \mathrm{A}$

Note: Fig1 The IC output state is under N magnetic field.

AC ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Rise time	$\left(\mathrm{t}_{\mathrm{r}}\right)$	$R L=1 \mathrm{~K}$ CL=10pF (F ig3)			500	nS
Fall time	$\left(\mathrm{t}_{f}\right)$	$R L=1 \mathrm{~K} C L=10 \mathrm{pF}(F i g 3)$			500	nS

FS212
MAGNETIC CHARACTERISTICS

Test Circuit : Fig1 Test Circuit (R1=R2=500, V1=V2=15V)

FS212-A	$\mathrm{Ta}=-20^{\circ} \mathrm{C} \sim 85^{\circ} \mathrm{C}$			
PARAMETER	MIN	TYP	MAX	UNIT
Bop		+60		G
Brp		-60		G
Bhys			120	

FS212-B	Ta $=-20^{\circ} \mathrm{C} \sim 85^{\circ} \mathrm{C}$			
PARAMETER	MIN	TYP	MAX	UNIT
Bop		+90		G
Brp	-90	180	G	
Bhys		$V_{\text {SO }}$		

NO PIN

SO PIN

TYPICAL CHARACTERISTICS

Figure 1

Figure 3

Figure 5

Figure 2

Figure 4

Figure 6

TEST CIRCUITS:

Fig 1 Test Circuit

Fig 2 Test Circuit

Fig 3 Test Circuit

EELIMG
 Technology

Hall Sensor Location

The Fig 4 is the hall sensor location, where marks the IC number. The best sensitivity, which can be intensified as much as possible, depends on the vertical distance and position between magnetic pole and the hall sensor (Fig 5). For the 2 -phase motor, this design is very important.

		UNIT
X	1.75	mm
Y	1.35	mm

Fig 4 FS212 Hall Sensor Location

Fig 5 Magnetic Distribution and Z-axis position

Darlington-pair Transistor Output

The Fig 6 is the circuit diagram of Darlington-pair transistor. Under the heavy current loading, the power loss of the high saturation voltage can be calculated into the following formula:

$$
\mathrm{PC}=\left(\mathrm{V}_{\mathrm{BEQ} 1}+\mathrm{V}_{\mathrm{CE}(\mathrm{SAT}) \mathrm{Q} 2}\right) * \mathrm{I}_{\mathrm{O}}
$$

According to the IC package and the curve of the power loss, the Pc should be applied to and within the safety value.

30 V is the voltage of Zener breakdown diode. However, if the voltage, excluding that of the power supply, is more than 30 V under the long-time operation, the diode will be destroyed.

Fig 6 Darlington-pair Transistor Output

Lock Shutdown and Re-start Circuits and Timing Diagram

Fig 7 the shutdown control (SC) pin input connected with the capacitor to decide the shutdown to re-start time with internal charge current and reset circuit. The capacitor is charged to " A " point and shutdown (Figure 8, typical value is 0.7 V) by an internal constant current source as a situation of the motor is locked for a long-time condition cause DC motor malfunction.

And the capacitor is discharged to "C" point (Figure 8,typical value is 0.3 V) until internal circuits detect a re-start threshold voltage ("B" point, typical value is 1.7 V), and then FS212 would let the motor have a torque for rotation. The calculated formula of shutdown timing is :
$t=C \frac{\Delta v}{i} \quad i=0.8 u A, \Delta v=(1.7-0.7) \mathrm{V}$
Fig 8 illustrates the relation of FS212 output stages and SC pin timing waveform.

Fig 7 SC Block Diagram

Fig 8 Timing Diagram

APPLICATION NOTE

The Example of Typical Application Circuit

Fig 9 is the example of typical application circuit. The red, yellow, and black wires are the input points of the motor system: red, the input of power supply; yellow, the output of FG ; black, the ground signal. R_{C} is an external pull-up resistance for the use of measuring FG signal. In view of the design, the value of R_{C} could be decided by the transistor saturation voltage (V_{ON}), sink current (I_{C}), and off-level voltage (V_{C}).

The formula is:

$$
\mathrm{R}_{\mathrm{C}}=\frac{V_{C}-V_{O N}}{I_{C}}
$$

For example:
$\mathrm{V}_{\mathrm{C}}=+5 \mathrm{~V}$ for TTL level.
$\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}$ at 0.2 V saturation voltage
The safety value of $R_{C}=470 \Omega$

D1 is the reverse protection diode. As if the red and black wires reversely connect with the power source, the current will flow through the ground via IC and coils L1 and L2 to power supply. Under such kind of circumstances, the IC and coils are easy to be burned out. Therefore, D1, the reverse protection diode, is necessary for the design. However, D1 will also cause an extra voltage drop on the supply voltage.
C 1 is a capacitor to reduce the ripple noise caused during the transient of the output stages.
The volume of the ripple noise depends on the coil impedance and characteristics.

Fig 9 Application Circuit

PACKAGE OUTLINE

$\overline{\boldsymbol{r}}$ EELIMG Technology/////h

PACKING SPECIFICATIONS
BAG \& BOX DIMENSION

PACKING QUANTITY SPECIFICATIONS
1000 EA/1 BAG
25 BAGS/1 INSIDE BOX
4 INSIDE BOXES/1 CARTON

LABEL SPECIFICATIONS

INSIDE BOX \& CARTON LABEL

ORDER INFORMATION

Part Number	Operating Temperature	Package	Description
FS212-A	$-20^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$	TO-92SP-4	$\pm 60 \mathrm{G}(\mathrm{B})$
FS212-B	$-20^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$	TO-92SP-4	$\pm 90 \mathrm{G}(\mathrm{B})$

