
 

Part I 
Overview

 

The primary objective of this document is to provide information to programmers to write
optimal code for the MPC750, MPC7400, and MPC7450 microprocessors that implement the
PowerPC architecture, with particular emphasis on the MPC7450, which is significantly
different from previous designs. The target audience includes performance-oriented writers of
both compilers and hand-coded assembly. This document may be regarded as a companion to
the 

 

PowerPC Compiler Writer’s Guide

 

 (CWG) with major updates for new implementations
not covered by that work.

This document is not intended as a guide for making a basic PowerPC compiler work. For
basic compiler guidelines, see the CWG. However, many of the code sequences suggested in
the CWG are no longer optimal, especially for the MPC7450.

The following documentation provides useful information about the three different
microprocessors and compiler guidelines in detail:

 

• MPC750 RISC Microprocessor Family User’s Manual

 

•

 

MPC7410 & MPC7400 RISC Microprocessor User’s Manual

 

•

 

MPC7450 RISC Microprocessor Family User’s Manual

 

• The 

 

PowerPC Compiler Writer’s Guide 

 

(available on the IBM website) for compiler 
information

Table 1-1 lists the three main processors referenced in this document and their derivatives. The
derivative list is not necessarily complete and will change.

 

Table 1-1. Microarchitecture List

 

First Implementation Derivatives (Similar Devices)

 

MPC750 MPC740, MPC745, MPC755

MPC7400 MPC7410

MPC7450 MPC7441, MPC7451
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1.1 Terminology and Conventions

 

This section provides an alphabetical glossary of terms used in this chapter. These definitions review these
commonly used terms and point out specific ways these terms are used in this document.

 

NOTE

 

Because of the differences in the MPC7450, many of these definitions
differ slightly from those used to describe previous processors that
implement the PowerPC architecture, in particular with respect to
dispatch, issue, finishing, retirement, and write back, so reading this
glossary carefully is important. 

• Branch prediction—The process of guessing the direction or target of a branch. Branch direction 
prediction involves guessing whether a branch will be taken. Target prediction involves guessing 
the target address of a 

 

bclr

 

 branch. The PowerPC architecture defines a means for static branch 
prediction as part of the instruction encoding. 

• Branch resolution—The determination of whether a branch prediction was correct or not. If the 
prediction is correct, the instructions following the predicted branch that may have been 
speculatively executed can complete (see completion). If the prediction is incorrect, instructions 
on the mispredicted path and any results of speculative execution are purged from the pipeline and 
fetching continues from the correct path. 

• Complete—An instruction is in the complete stage after it executes and makes its results available 
for the next instruction (see finish). At the end of the complete stage, the instruction is retired from 
the completion queue (CQ). When an instruction completes, it is guaranteed that this instruction 
and all previous instructions can cause no exceptions. 

• Dispatch—The dispatch stage decodes instructions supplied by the instruction queue, renames any 
source/target operands, determines to which issue queue each non-branch instruction is 
dispatched, and determines whether the required space is available in both that issue queue and the 
completion queue.

• Fall-through folding (branch fall-through)—Removal of a not-taken branch. On the MPC7450, 
not-taken branch instructions that do not update LR or CTR can be removed from the instruction 
stream if the branch instruction is in IQ3–IQ7.

• Fetch—The process of bringing instructions from memory (such as a cache or system memory) 
into the instruction queue. 

• Finish—An executed instruction finishes by signaling the completion queue that execution is 
complete and results have been made available to subsequent instructions. For most execution 
units, finishing occurs at the end of the last cycle of execution; however, FPU, IU2, and VIU2 
instructions finish at the end of a single-cycle finish stage after the last cycle of execution. 

• Folding (branch folding)—The replacement of a branch instruction and any instructions along the 
not-taken path with target instructions when a branch is either taken or predicted as taken. 

• Issue—The pipeline stage responsible for reading source operands from rename registers and 
register files. This stage also assigns and routes instructions to the proper execution unit.

• Latency— The number of clock cycles necessary to execute an instruction and make the results of 
that execution available to subsequent instructions.

    

  

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.

For More Information On This Product,
  Go to: www.freescale.com

n
c

..
.



 

MOTOROLA

 

MPC7450 RISC Microprocessor Family Software Optimization Guide

 

  3

 
Terminology and Conventions

 

• Pipeline—In the context of instruction timing, the term ‘pipeline’ refers to the interconnection of 
the stages. The events necessary to process an instruction are broken into several cycle-length tasks 
to allow work to be performed on several instructions simultaneously—analogous to an assembly 
line. As an instruction is processed, it passes from one stage to the next. When it does, the stage 
becomes available for the next instruction. 

• Although an individual instruction can take many cycles to make results available (see latency), 
pipelining makes it possible to overlap processing so that the throughput (number of instructions 
processed per cycle) is greater than if pipelining were not implemented.

• Program order—The order of instructions in an executing program. More specifically, this term is 
used to refer to the original order in which program instructions are fetched into the instruction 
queue from the cache. 

• Rename registers—Temporary buffers for holding results of instructions that have finished 
execution but have not completed. 

• Reservation station—A buffer between the issue and execute stages that allows instructions to be 
issued even though the results of other instructions on which the issued instruction may depend are 
not available. 

• Retirement—Removal of a completed instruction from the CQ.

• Speculative instruction—Any instruction that is currently behind an unresolved older branch.

• Stage—A stage is an element in the pipeline where specific actions are performed, such as 
decoding the instruction, performing an arithmetic operation, or writing back the results. Typically, 
the latency of a stage is one processor clock cycle. Some events, such as dispatch, writeback, and 
completion, happen instantaneously and may be thought to occur at the end of a stage. 

• An instruction can spend multiple cycles in one stage. An integer multiply, for example, takes 
multiple cycles in the execute stage. When this occurs, subsequent instructions may stall. 

• An instruction can also occupy more than one stage simultaneously, especially in the sense that a 
stage can be viewed as a physical resource—for example, when instructions are dispatched they 
are assigned a place in the CQ at the same time they are passed to the issue queues. 

• Stall—An occurrence when an instruction cannot proceed to the next stage. 

• Superscalar—A superscalar processor is one that can issue multiple instructions concurrently from 
a conventional linear instruction stream. In a superscalar implementation, multiple instructions can 
be in the execute stage at the same time. 

• Throughput—The number of instructions that are processed per cycle. For example, a series of 

 

mulli

 

 instructions have a throughput of one instruction per clock cycle. 

• Write-back—Write-back (in the context of instruction handling) occurs when a result is written 
into the architecture-defined registers (typically the GPRs, FPRs, and VRs). On the MPC7450, 
write-back occurs in the clock cycle after the completion stage. Results in the write-back buffer 
cannot be flushed. If an exception occurs, results from previous instructions must write back 
before the exception is taken.

    

  

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.

For More Information On This Product,
  Go to: www.freescale.com

n
c

..
.



 

4

 

MPC7450 RISC Microprocessor Family Software Optimization Guide

 

  MOTOROLA

 
High-Level Differences  

 

Part II 
Processor Overview

 

This section describes the high-level differences between the MPC750, MPC7400, and MPC7450. Also, it
describes the pipeline differences for these three processors.

 

2.1 High-Level Differences 

 

To achieve a higher frequency, the MPC7450 design reduces the number of logic levels per cycle, which
extends the pipeline. More resources were added to reduce the effect of the pipeline length on performance.
These pipeline length and resource changes can make an important difference in code scheduling. Table 2-1
describes high-level differences between MPC750, MPC7400, and MPC7450 processors. 

 

Table 2-1. High-Level Differences 

 

Microprocessor Feature MPC750 MPC7400 MPC7450

Basic Pipeline Functions

 

Logic inversions per cycle 28 28 18

Pipeline stages up to first execute 3 3 5

Minimum total pipeline length 4 4 7

Pipeline maximum instruction throughput 2 + 1 branch 2 + 1 branch 3 + 1 branch

 

Pipeline Resources

 

Instruction queue size 6 6 12

Completion queue size 6 8 16

Rename register (integer, vector, FP) 6, N/A, 6 6, 6, 6 16, 16, 16

 

Branch Prediction Resources/Features

 

Branch prediction structures BTIC, BHT BTIC, BHT BTIC, BHT, LinkStack

BTIC size, associativity 64-entry, 4-way 64-entry, 4-way 128-entry, 4-way

BTIC instructions/entry 2 2 4

BHT size 512-entry 512-entry 2048-entry

Link stack depth N/A N/A 8

Unresolved branches supported 2 2 3

Branch taken penalty (BTIC hit) 0 0 1

Minimum branch mispredict penalty (cycles) 4 4 6

 

Available Execution Units

 

Integer execution units 1 IU1, 1 IU1/IU2, 
1 SRU, 
1 LSU

1 IU1, 1 IU1/IU2,
1 SRU,
1 LSU

3 IU1, 
1 IU2/SRU, 

1 LSU

Floating-point execution units 1 double-precision 
FPU

1 double-precision 
FPU

1 double-precision 
FPU

Vector execution units N/A 2-issue to VPU and 
VALU (VALU has 

VSIU, VCIU, VFPU 
subunits)

2-issue to any 
2 vector units (VSIU, 
VPU, VCIU, VFPU)
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High-Level Differences

 

Typical Execution Unit Latencies

 

Data cache load hit (integer, vector, float) 2,N/A,2 2,2,2 3,3,4

IU1 (add, shift, rotate, logical) 1 1 1

IU2: multiply (32-bit) 6 6 4

IU2: divide 19 19 23

FPU: single (add, mul, madd) 3 3 5

FPU: single (divide) 17 17 21

FPU: double (add) 3 3 5

FPU: double (mul, madd) 4 3 5

FPU: double (divide) 31 31 35

VSIU N/A 1 1

VCIU N/A 3 4

VFPU N/A 4 4

VPU N/A 1 2

 

L1 Instruction Cache/Data Cache Features

 

L1 cache size (instruction, data) 32-Kbyte, 32-Kbyte

L1 cache associativity (instruction, data) 8-way, 8-way

L1 cache line size 32 bytes

L1 cache replacement algorithm Pseudo-LRU

Number of outstanding data cache misses 
(load/store)

1 (load or store) 8 (any combination 
load/store)

5 load/1 store

 

Additional On-Chip Cache Features

 

Additional on-chip cache level None None L2

Additional on-chip cache size N/A N/A 256-Kbyte

Additional on-chip cache associativity N/A N/A 8-way

Additional on-chip cache line size N/A N/A 64 bytes 
(2 sectors per line)

Additional on-chip cache replacement 
algorithm

N/A N/A Pseudo-random

 

Off-Chip Cache Support

 

Off-chip cache level L2 L3

Off-chip cache size 256-Kbyte, 
512-Kbyte, 1-Mbyte

512-Kbyte, 1-Mbyte, 
2-Mbyte

1-Mbyte, 2-Mbyte

Off-chip cache associativity 2-way 2-way 8-way

Off-chip cache line size/sectors per line 64B/2, 64B/2, 128B/4 32B/1, 64B/2, 128B/4 64B/2, 128B/4

Off-chip cache replacement algorithm FIFO FIFO Pseudo-random

 

Table 2-1. High-Level Differences (continued)

 

Microprocessor Feature MPC750 MPC7400 MPC7450
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2.2 Pipeline Differences

 

The MPC7450 instruction pipeline differs significantly from the MPC750 and MPC7400 pipelines.
Figure 2-1 shows the basic pipeline of the MPC750/MPC7400 processors. 

 

Figure 2-1. MPC750 and MPC7400 Pipeline Diagram

 

Table 2-2 briefly explains the pipeline stages.

Figure 2-2 shows the basic pipeline of the MPC7450 processor, and Table 2-3 briefly explains the stages.

 

Figure 2-2. MPC7450 Pipeline Diagram

Table 2-2. MPC750/MPC7400 Pipeline Stages

 

Pipeline Stage Abbreviation Comment

 

Fetch F Read from instruction cache

Branch execution BE Execute branch and redirect fetch if needed

Dispatch D Decode, dispatch to execution units, assigned to rename register, 
register file read

Execute E, E0, E1, ... Instruction execution and completion

Write back WB Architectural update

F 

E0

BE

Branch IU1 LSU

WB

E1WB

E

 D

F F 

 D

Branch IU1 LSU

BE

F1

 F2

I

 E

F1

F2

D

I

E1

E2

F2

F1

D

 C

C

 E0

WB

WB
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Overview of Target Microprocessors

 

Table 2-3 briefly explains the MPC7450 pipeline stages.

The MPC7450 pipeline is longer than the MPC750/MPC7400 pipeline, particularly in the primary load
execution part of the pipeline (3 cycles vs. 2 cycles). Better processor performance often requires designs
to operate at higher clock speeds. Clock speed is inversely related to the work performance of the processor.
Therefore, higher clock speeds imply less work to be performed per cycle, which necessitates longer
pipelines. Also, increased density of the transistors on the chip has enabled the addition of sophisticated
branch-prediction hardware, additional processor resources, and out-of-order execution capability. This
industry trend should continue for at least one more microprocessor generation.

The longer pipelines yield a processor more sensitive to code selection and ordering. As hardware can add
additional resources and out-of-order processing ability to reduce this sensitivity, the hardware and the
software must work together to achieve optimal performance.

 

2.3 Overview of Target Microprocessors

 

This section provides a high level overview of the three target microprocessors, with first-order details that
are useful in developing a compiler model of the microprocessor.

 

2.3.1 MPC750 Microprocessor 

 

Figure 2-3 shows a functional block diagram of the MPC750.

 

Table 2-3. MPC7450 Pipeline Stages

 

Pipeline Stage Abbreviation Comment

 

Fetch1 F1 First stage of reading from instruction cache

Fetch2 F2 Second stage of reading from instruction cache

Branch execute BE Execute branch and redirect fetch if needed

Dispatch D Decode, dispatch to IQs, assigned to rename register

Issue I Issue to execution units, register file read

Execute E, E0, E1, ... Instruction execution

Completion C Instruction completion

Write back WB Architectural update
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Figure 2-3. MPC750 Microprocessor Block Diagram
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Overview of Target Microprocessors

 

Instructions are fetched from the instruction cache and placed into a six-entry IQ. When the fetch pipeline
is fully utilized, as many as four instructions can be fetched to the IQ during each

 

 

 

clock cycle, subject to
cache block wrap restrictions.

 

2.3.1.1 Dispatch

 

The bottom two IQ entries are available for dispatch, which involves the following operations:

• Renaming—Six rename registers are available for integer operation and six more are available for 
floating-point operations.

• Dispatching—A reservation station must be available for the correct execution unit.

• CQ check—An entry must be available in the six-entry CQ.

• Branch check—A branch instruction must have executed before being dispatched. Section 2.3.1.4, 
“Branches,” provides additional information.

 

2.3.1.2 Execution

 

An instruction in the bottom of a reservation station is available for execution. Execution involves the
following operations:

• Busy check—The unit must be available. For example, some units are not fully pipelined.

• Operand check—All source operands must be available before any execution can start.

• Serialization check—If the instruction is execution serialized, it must wait to become the oldest 
instruction in the machine (bottom of the CQ entry) before it can start execution.

 

2.3.1.3 Completion

 

The bottom two CQ entries are available for completion, which involves the following operations:

• Finish check—Only instructions that have finished or are in the last stage of execution are eligible 
for finishing.

• Rename check—The MPC750 can write back only two rename registers per cycle. Some 
instructions, such as a load-with-update, have multiple renamed targets. If a load-with-update and 
an 

 

add

 

 instruction are in the bottom two CQ entries, the 

 

add

 

 cannot complete because the 
load-with-update already requires two rename-register-writeback slots for the subsequent cycle.

 

NOTE

 

In the MPC750, execution and completion can occur simultaneously for
single-cycle execution instructions.

 

2.3.1.4 Branches

 

Branches are handled differently from other instructions. Branch instructions must be executed by the
branch unit before they can be dispatched. The BPU searches the six-entry IQ for the oldest unexecuted
branch, and executes it. If the branch instruction does not update the architectural state by setting the link
or count register, it is eligible for folding. In branch execution, the instruction is folded immediately if the
branch is taken. In this case, folding removes the branch instruction from the IQ, so the branch instruction
does not reach the dispatcher. If the branch is not taken, the dispatcher must dispatch the branch. However,
the branch is not allocated in the CQ, so no completion is required either.
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If the branch is either 

 

b

 

 or 

 

bc,

 

 a taken branch can get instructions from the BTIC. The BTIC lookup is
automatically performed based on the instruction address of the executing branch, and produces instructions
starting at the branch target address. The BTIC supplies two instructions for that cycle, as opposed to the
normal four from the instruction cache. Indirect branches, such as 

 

bcctr

 

 or 

 

bclr

 

, do not get instructions from
the BTIC. Thus, a taken branch incurs a one-cycle fetch bubble when it executes.

 

2.3.1.5 MPC750 Compiler Model

 

A good compiler scheduling model for the MPC750 includes the two-instruction-per-clock-cycle dispatch
limitation, a base model of the CQ with maximum of six instructions with two-instruction-per-clock-cycle
completion limitation, and execution units—SRU, IU1, IU2, FPU, and LSU with typical unit execution
latencies as given in Table 2-1. 

A full model incorporates full table-driven latency/throughput/serialization specifications given instruction
by instruction in Appendix A, “MPC7450 Execution Latencies.” The notion of reservation stations
(particularly, the second LSU reservation station) should be added. Rename registers limitations for the
GPRs are also needed to allow more accurate modeling of the load/store-with-update instructions. 

 

2.3.2 MPC7400 Microprocessor 

 

The MPC7400 microprocessor is similar to the MPC750 microprocessor. The primary differences include
the following attributes:

• Eight-entry CQ (although rename registers are still limited to six)

• Vector units (and instructions), which implement the Altivec extensions to the PowerPC 
architecture

• Better latency and pipelining on double-precision floating-point operations

• Increased pipelining of load/store misses in the LSU

Figure 2-4 shows a functional block diagram of the MPC7400.

 

2.3.2.1 Vector Unit

 

The MPC7400 can dispatch two vector instructions per cycle: one to the VPU and one to the VALU. The
VPU is a single-cycle execution unit unlike the VALU which has three independent subunits, each with
different latencies, as follows:

• The VSIU subunit handles simple integer and logical operations with single-cycle latency per 
instruction. 

• The VCIU handles complex integer instructions (mostly multiplies) with a latency of three clocks 
and a throughput of one instruction per cycle. 

• The VFPU subunit handles vector floating-point instructions with a latency of four clocks and a 
throughput of one instruction per cycle. 

The VALU can initiate one instruction per cycle to any of these three subunits. After execution begins, these
subunits are fully independent.
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Figure 2-4. MPC7400 Microprocessor Block Diagram
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2.3.2.2 MPC7400 Compiler Model
A good compiler scheduling model for the MPC7400 includes the dispatch limitations of two instructions
per clock, a base model of the CQ with maximum of eight instructions, the completion limitation of two
instructions per clock, and the execution units—SRU, IU1, IU2, FPU, VPU, VALU (VSIU, VCIU, VFPU),
and LSU with typical execution unit latencies as given in Appendix A, “MPC7450 Execution Latencies.”

A full model incorporates full table-driven latency/throughput/serialization specifications given instruction
by instruction in Appendix A, “MPC7450 Execution Latencies.” The concept of reservation stations
(especially the second LSU reservation station) should be added. The rename registers limitations are much
more important than in the MPC750, as the number of rename registers (6) do not match the number of
completion entries (8).

2.3.3 MPC7450 Microprocessor 
This section provides an overview of the MPC7450. More details are available in Part III, “MPC7450
Microprocessor Details.”

Different resource sizes, the issue queues, and the splitting of completion and execution stages are the main
differences between the MPC7450 and the MPC750/MPC7400 models. Also, the MPC7450 can dispatch
up to three instructions per cycle (compared to two on the MPC7400) and can complete a maximum of three
instructions per cycle (compared to two on the MPC7400).

With the addition of extra integer units, the MPC7450 has more integer computing capacity available for
scheduling. The MPC7450 has three single-cycle IUs (IU1a, IU1b, IU1c) that execute all integer
(fixed-point) instructions (addition, subtraction, logical operations—AND, OR, shift, and rotate) except
multiply, divide, and move to/from special-purpose register instructions. Note that all IU1 instructions
execute in one cycle, except for some instructions like tw[i] and sraw[i][.], which take two. In addition, it
has one multiple-cycle IU (IU2) that executes miscellaneous instructions including the CR logical
operations, integer multiplication and division instructions, and move to/from special-purpose register
instructions. The issue requirements for the vector subunits are also improved which is described in detail
in Section 3.3.2, “Vector Issue Queue (VIQ).”

The longer pipeline of the MPC7450 is more sensitive to branch mispredictions. Taken branches of
MPC7450 cause a single-cycle fetch bubble, whereas most taken branches on the MPC750/MPC7400 were
nearly free. The MPC7450 also changes the load-use latency, which is critical to adjust to achieve best
performance on many applications. Also, serialized instructions are more costly in terms of performance on
this microprocessor.

Figure 2-5 is a functional block diagram of the MPC7450.
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Figure 2-5. MPC7450 Microprocessor Block Diagram
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2.3.3.1 Dispatch

 

The bottom three IQ entries are available for dispatch, which involves the following:

• Renaming—16 rename registers are available for each of the integer, floating-point, and vector 
operations.

• Dispatching—Available issue queue entries must be available for each dispatched instruction.

• CQ check—An entry must be available in the 16-entry CQ.

• Branch check—A branch instruction must have executed before being dispatched. Section 2.3.3.8, 
“Branches,” provides more information on branching.

 

2.3.3.2 Issue Queues

 

Each issue queue handles issuing slightly differently and they are described separately as follows.

 

2.3.3.3 General-Purpose Issue Queue

 

The six-entry general-purpose issue queue (GIQ in Figure 2-5) handles integer instructions, including all
load/store instructions. The GIQ accepts as many as three instructions from the dispatch unit each cycle. All
IU1s, IU2, and LSU instructions (including floating-point and AltiVec loads and stores) are dispatched to
the GIQ. Instructions can be issued out-of-order from the bottom three GIQ entries (GIQ2–GIQ0). An
instruction in GIQ1 destined to one of the IU1s does not have to wait for an instruction stalled in GIQ0 that
is behind a long-latency integer divide instruction in the IU2. The primary check is that a reservation station
must be available.

 
2.3.3.4 Floating-Point Issue Queue

 The two-entry floating-point issue queue (FIQ) can accept one dispatched instruction per cycle for the FPU,
and if an FPU reservation station is available, it can also issue one instruction from the bottom FIQ entry.

 

2.3.3.5 Vector Issue Queue

 

The four-entry vector issue queue (VIQ) accepts as many as two vector instructions from the dispatch unit
each cycle. All AltiVec instructions (other than load, store, and vector touch instructions) are dispatched to
the VIQ. The bottom two entries are allowed to issue as many as two instructions to the four AltiVec
execution unit’s reservation stations, but unlike the GIQ, instructions in the VIQ cannot be issued out of
order. The primary check determines if a reservation station is available. 

 

NOTE

 

The VIQ can issue to any two vector units, unlike the MPC7400. For
example, the MPC7450 can issue to the VSIU and VCIU simultaneously,
whereas the MPC7400 allows pairing between the VPU and one of the
other three VALU subunits. 

 

2.3.3.6 Execution

 

The instruction in the bottom of the reservation station is available for execution. Execution involves the
following:

• Busy check—The unit must not be busy. For example, some units are not fully pipelined and so 
cannot accept a new instruction on every clock.
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• Operand check—All source operands must be available before any execution can start.

• Serialization check—If the instruction is execution serialized, it must wait to become the oldest 
instruction in the machine (bottom of the CQ entry) before it can start execution.

The MPC7450 has two more IUs than the MPC750/MPC7400. However, the integer unit capabilities have
changed slightly from the MPC750/MPC7400 to the MPC7450, as shown in Table 2-4. Appendix A,
“MPC7450 Execution Latencies,” compares latencies between MPC750, MPC7400, and MPC7450 for
various instructions. 

 

2.3.3.7 Completion

 

The bottom three CQ entries are available for retiring instructions. Completion involves the following
operations:

• Finish check—Only instructions that have finished can complete (except store instructions, which 
finish and complete simultaneously to allow pipelining).

• Rename check—An MPC7450 can write back only three rename registers per cycle. Some 
instructions, such as a load-with-update, have multiple renamed targets. If a load-with-update is 
followed by two adds, only the load-with-update and the first add can complete at the same time 
(although all three instructions are finished executing), as the load-with-update requires two of the 
three rename-register-writeback resources. Due to this resource constraint, the second add waits 
until the second cycle is completed.

 

2.3.3.8 Branches

 

Branches are handled differently from other instructions. Branch instructions must be executed by the
branch unit before they can be dispatched. The BPU searches the bottom eight entries of the IQ for the oldest
unexecuted branch, and executes it. A branch instruction is eligible for folding if it does not update the
architectural state by setting the link or count register. In branch execution, the instruction is folded
immediately if the branch is taken. In this case, folding removes the branch instruction from the IQ, so the
branch instruction does not reach the dispatcher. If the branch is not taken, the dispatcher must dispatch the
branch and the branch is placed in the CQ.

 

NOTE

 

Note that in the MPC750, the dispatched (fall-through) foldable branches
are not allocated in the CQ.

If the branch is either 

 

b

 

 or 

 

bc

 

, a taken branch can get instructions from the BTIC. The BTIC lookup is
automatically performed based on the instruction address of the executing branch, and produces instructions
starting at the branch target address. Taken branches have a minimum one-cycle fetch bubble, as the BTIC
supplies four instructions on the following cycle. Indirect branches such as 

 

bcctr

 

 or 

 

bclr

 

 do not get
instructions from the BTIC. Thus, taken branches incur a two-cycle fetch bubble when they execute. From

 

Table 2-4. MPC750/MPC7400 vs. MPC7450 Integer Unit Breakdown

 

Instruction Class MPC750/MPC7400 MPC7450

 

add, subtract, logical, shift/rotate IU1 or IU2 IU1 (any of 3)

 

mul

 

, 

 

div

 

IU2 IU2

 

mtspr

 

, 

 

mfspr

 

, CR logical, and other miscellaneous instructions SRU IU2
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a code performance point of view, the need for biasing the branch to be fall-through has increased to avoid
the 1- or 2-cycle fetch bubble of a taken branch.

The longer pipeline makes the MPC7450 more sensitive to branch misprediction than earlier designs.

 

2.3.3.9 MPC7450 Compiler Model

 

A good scheduling model for the MPC7450 should take into account the dispatch limitations of the three
instructions per cycle, the 16-entry CQ has completion limitation of three instructions per cycle, and the
various execution units with the latencies discussed earlier.

A full model would also incorporate the full table-driven latency/throughput/serialization specifications for
each instruction listed in Appendix A, “MPC7450 Execution Latencies.” The usage and availability of
reservation stations and rename registers should also be incorporated. Finally, attention should be given to
the issue limitations of the various issue queues—for example, it is important to note that AltiVec
instructions must be issued in-order out of the vector issue queue. This means that a few poorly scheduled
instructions can potentially stall the entire vector unit for many cycles.
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Fetch/Branch Considerations

Part III 
MPC7450 Microprocessor Details
This section describes many architectural details of the MPC7450 and gives examples of the pipeline
behavior. These attributes are also described in the MPC7450 RISC Microprocessor Family User’s Manual.

3.1 Fetch/Branch Considerations
The following is a list of branch instructions and the resources required to avoid stalling the fetch unit in the
course of branch resolution:

• The bclr instruction requires LR availability for resolution. However, it uses the link stack to 
predict the target address in order to avoid stalling fetch.

• The bcctr instruction requires CTR availability.

• The branch conditional on counter decrement and the CR condition requires CTR availability or 
the CR condition must be false. 

• A fourth conditional branch instruction cannot be executed following three unresolved predicted 
branch instructions.

3.1.1 Fetching
Branches that target an instruction at or near the end of a cache block can cause instruction supply problems.
Consider a tight loop branch where the loop entry point is the last word of the cache block, and the loop
contains a total of four instructions (including the branch). For this code, any MPC750/MPC7400 class
machine needs at least two cycles to fetch the four instructions, because the cache block boundary breaks
the fetch group into two groups of accesses. For the MPC750/MPC7400, realigning this loop to not cross
the cache block boundary significantly increases the instruction supply.

Additionally, on the MPC7450 this tight loop encounters the branch-taken bubble problem. That is, the
BTIC supplies instructions one cycle after the branch executes. For the instructions in the cache block
crossing case, four instructions are fetched every three cycles. Aligning instructions to be within a cache
block increases the number of instructions fetched to four every two cycles. For loops with more
instructions, this branch-taken bubble overhead can be better amortized or in some cases can disappear
(because the branch is executed early and the bubble disappears by the time the instructions reach the
dispatch point). One way to increase the number of instructions per branch is software loop unrolling.

NOTE
The BTIC on all MPC750/MPC7400/MPC7450 microprocessors contain
targets for only b and bc branches. Indirect branches (bcctr and bclr) must
go to the instruction cache for instructions, which incurs an additional
cycle of fetch latency (another branch-taken bubble).

In future generations of these high performance microprocessors, expect a further bias: instruction fetch
groupings that do not cross quad-word boundaries are preferable. In particular, this means that branch
targets should be biased to be the first instruction in a quad word (instruction address = 0xxxxx_xxx0) when
optimizing for performance (as opposed to code footprint).
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3.1.1.1 Fetch Alignment Example
The following code loop is a simple array accumulation operation. 

xxxxxx18 loop: lwzu r10,0x4(R9)
xxxxxx1C add r11,r11,r10
xxxxxx20 bdnz loop

The lwzu and add are the last two instructions in one cache block, and the bdnz is the first instruction in
the next. In this example, the fetch supply is the primary restriction. Table 3-1 assumes instruction cache
and BTIC hits. The lwzu/add of the second iteration are available for dispatch in cycle 3, as a result of a
BTIC hit for the bdnz executed in cycle 1. The bdnz of the second iteration is available in the IQ one cycle
later (cycle 4) because the cache block break forced a fetch from the instruction cache. Overall, the loop is
limited to one iteration for every three cycles.

Performance can be increased if the loop is aligned so that all three instructions are in the same cache block,
as in the following example.

xxxxxx00 loop: lwzu r10,0x4(r9)
xxxxxx04 add r11,r11,r10
xxxxxx08 bdnz loop

The fact that the loop fits in the same cache block allows the BTIC entry to provide all three instructions.
Table 3-2 shows pipelined execution results (again assuming BTIC and instruction cache hits). While fetch
supply is still a bottleneck, it is improved by proper alignment. The loop is now limited to one iteration every
two cycles, increasing performance by 50 percent.

Table 3-1. MPC7450 Fetch Alignment Example

Instruction 0 1 2 3 4 5 6 7 8 9 10 11

lwzu (1) D I E0 E1 E2 C

add (1) D I — — — E C

bdnz (1) F2 BE D — — — C

lwzu (2) D I E0 E1 E2 C

add (2) D I — — — E C

bdnz (2) F1 F2 BE D — — — C

lwzu (3) D I E0 E1 E2 C

add (3) D I — — — E

bdnz (3) F1 F2 BE D — — —

Table 3-2. MPC7450 Loop Example—Three Iterations 

Instruction 0 1 2 3 4 5 6 7 8 9

lwzu (1) D I E0 E1 E2 C

add (1) D I — — — E C

bdnz (1) BE D — — — — C

lwzu (2) D I E0 E1 E2 C

add (2) D I — — — E C

bdnz (2) BE D — — — — C

lwzu (3) D I E0 E1 E2 C
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Loop unrolling and vectorization can further increase performance. These are described in Section 4.4.3,
“Loop Unrolling for Long Pipelines,” and Section 4.4.4, “Vectorization.”

3.1.1.2 Branch-Taken Bubble Example
The following code shows how favoring taken branches affects fetch supply.

xxxxxx00 lwz r10,0x4(r9)
xxxxxx04 cmpi 4,r10,0x0
xxxxxx08 bne 4, targ
xxxxxx0C stw r11,0x4(r9)
xxxxxx10 targ add (next basic block)

This example assumes the bne is usually taken (that is, most of the data in the array is non-zero). Table 3-3
assumes correct prediction of the bne, and cache and BTIC hits. 

Rearranging the code as follows improves the fetch supply.

xxxxxx00 lwz r10,0x4(r9)
xxxxxx04 cmpi 4,r10,0x0
xxxxxx08 beq 4,targ
xxxxxx0C targ2 add (next basic block)
...
yyyyyy00 targ stw r11,0x4(r9)
yyyyyy04 b targ2

Using the same assumptions as before, Table 3-4 shows the performance improvement. Note that the first
instruction of the next basic block (add) completes in the same cycle as before. However, by avoiding the
branch-taken bubble (because the branch is usually not taken), it also dispatches one cycle earlier, so that
the next basic block begins executing one cycle sooner.

add (3) D I — — — E

bdnz (3) BE D — — — —

Table 3-3. Branch-Taken Bubble Example

Instruction 0 1 2 3 4 5 6

lwz D I E0 E1 E2 C

cmpi D I — — — E C

bne BE

add D I E — C

Table 3-2. MPC7450 Loop Example—Three Iterations (continued)

Instruction 0 1 2 3 4 5 6 7 8 9
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3.1.2 Branch Conditionals
The cost of mispredictions increases with pipeline length. The following section shows common problems
and suggests how to minimize them.

3.1.2.1 Branch Mispredict Example
Table 3-5 uses the same code as the two previous examples but assumes the bne mispredicts. The compare
executes in cycle 5, which means the branch mispredicts in cycle 6 and the fetch pipeline restarts at that
correct target for the add in cycle 7. This particular mispredict effectively costs seven cycles (add dispatches
in cycle 2 in Table 3-3 and in cycle 9 in Table 3-5).

3.1.2.2 Branch Loop Example
CTR should be used whenever possible for branch loops, especially for tight inner loops. After the CTR is
loaded (using mtctr), a branch dependent on the CTR requires no directional prediction in any of the
MPC750/MPC7400 devices. Additionally, loop termination conditions are always predicted correctly,
which is not so with the normal branch predictor. 

xxxxxx18 outer_loop: addi. r6,r6,#FFFF
xxxxxx1C cmpi 1,r6,#0
xxxxxx20 inner_loop: addic. r7,r7,#FFFF
xxxxxx24 lwzu r10,0x4(r9)
xxxxxx28 add r11,r11,r10
xxxxxx2C bne inner_loop
xxxxxx30 stwu r11,0x4(r8)
xxxxxx34 xor r11,r11,r11
xxxxxx38 ori r7,r0,#4
xxxxxx3C bne cr1,outer_loop

For the example, assume the inner loop executes four times per outer iteration. On a MPC7450 and also on
MPC750/MPC7400 microprocessors, inner loop termination is always mispredicted because the branch
predictor learns to predict the inner bne as taken, which is wrong every fourth time. Table 3-6 shows that

Table 3-4. Eliminating the Branch-Taken Bubble 

Instruction 0 1 2 3 4 5 6

lwz D I E0 E1 E2 C

cmpi D I — — — E C

beq BE D — — — — C

add D I E — — C

Table 3-5. Misprediction Example

Instruction 0 1 2 3 4 5 6 7 8 9 10 11 12

lwz D I E0 E1 E2 C

cmpi D I — — — E C

bne BE M

add F1 F2 D I E C
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the misprediction causes the outer loop code to be dispatched in cycle 13. If the branch had been correctly
predicted as not taken, these instructions would have dispatched five cycles earlier in cycle 8. 

Table 3-6 shows this example transformed when using CTR for the inner loop.

The following code uses the CTR, which shortens the loop because the compare test (done by the addic. at
xxxxxx20 in the previous code example) is combined into the bdnz branch. Note that in the previous
example, the outer loop required an addi/cmpi sequence to save the compare results into CRF1, rather than
an addic., since the inner loop used CRF0. In the example below, as the inner loop no longer uses CRF0,
the outer loop compare code can be simplified to just an addic. instruction.

xxxxxx1C outer_loop: addic. r6,r6,#FFFF
xxxxxx20 inner_loop: lwzu r10,0x4(r9)
xxxxxx24 add r11,r11,r10
xxxxxx28 bdnz inner_loop
xxxxxx2C mtctr r7
xxxxxx30 stwu r11,0x4(r8)
xxxxxx34 xor r11,r11,r11
xxxxxx38 bne 0,outer_loop

Table 3-6. Three Iterations of Code Loop 

Instruction 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

addi D I E C

cmp D I — E C

addic (1) F2 D I E C

lwzu (1) F2 D I E0 E1 E2 C

add (1) F2 D I — — — E C

bne (1) F2 BE

addic. (2) D I E — C

lwzu (2) D I E0 E1 E2 C

add (2) D I — — — E C

bne (2) BE

addic. (3) D I E — C

lwzu (3) D I E0 E1 E2 C

add (3) D I — — — E C

bne (3) BE

addic. (4) D I E — C

lwzu (4) D I E0 E1 E2 C

add (4) D I — — — E C

bne (4) BE M

stwu F1 F2 D I

xor F1 F2 D I

ori F1 F2 D I

bne F1 F2 BE

    

  

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.

For More Information On This Product,
  Go to: www.freescale.com

n
c

..
.



22 MPC7450 RISC Microprocessor Family Software Optimization Guide  MOTOROLA

Fetch/Branch Considerations  

As Table 3-7 shows, the inner loop termination branch does not need to be predicted and is executed as a
fall-through branch. Instructions in the outer loop start dispatching in cycle 8, saving five cycles over the
code in Table 3-6. Note that because mtctr is execution serialized, it does not complete until cycle 16;
nevertheless, the CTR value is forwarded to the BPU by cycle 11. This early forwarding starts for a
mtctr/mtlr when the instruction reaches reservation station 0 of the IU2 and the source register for the
mtctr/mtlr is available.

3.1.3 Static Versus Dynamic Prediction Trade-Offs
On the MPC750/MPC7400/MPC7450 microprocessors, using static branch prediction (clearing
HID0[BHT]) means that the hint bit in the branch opcode predicts the branch and the dynamic predictor (the
BHT) is ignored. 

In general, dynamic branch prediction is likely to outperform static branch prediction for several reasons.
With static branch prediction, the compiler may have guessed wrongly about a particular branch. With
dynamic branch prediction, the hardware can detect the branch’s dominant behavior after a few executions
and predict it properly in the future. Dynamic branch prediction can also adapt its prediction for a branch
whose behavior changes over time from mostly taken to mostly not taken.

Sometimes static prediction is superior, either through informed guessing or through available
profile-directed feedback. Run-time for code using static prediction is more nearly deterministic, which can
be useful in an embedded system.

Table 3-7. Code Loop Example Using CTR  

Instruction 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

addic D I E C

lwzu (1) F2 D I E0 E1 E2 C

add (1) F2 D I — — — E C

bdnz (1) F2 BE D — — — — C

lwzu (2) D I E0 E1 E2 C

add (2) D I — — — E C

bdnz (2) BE D — — — — C

lwzu (3) D I E0 E1 E2 C

add (3) D I — — — E C

bdnz (3) BE D — — — — C

lwzu (4) D I E0 E1 E2 C

add (4) D I — — — E C

bdnz (4) BE D — — — — C

mtctr D I E C

stwu D I E0 — — — — — — C

xor — D I E — — — — — C

bne BE
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3.1.4 Using the Link Register (LR) Versus the Count Register 
(CTR) for Branch Indirect Instructions

On the MPC7450, a bclr uses the link stack to predict the target. To use the link stack correctly, each
branch-and-link (bl) instruction must be paired with a branch-to-link-register (blr) instruction. Using the
architected LR for computed targets corrupts the link stack. A number of compilers are currently generating
code in this format. 

In general, the CTR should be used for computed target addresses and the LR should be used only for
call/return addresses. If using the CTR for a loop conflicts with a computed goto, the computed goto should
be used and the loop should be converted to a GPR form. 

Note that the PowerPC Compiler Writer’s Guide (Section 3.1.3.3) suggests using either CTR or LR for a
computed branch, and suggests that using the LR is acceptable when the CTR is used for a loop. This
suggestion is inappropriate for the MPC7450. For the MPC7450, the rules given in the preceding paragraphs
should be followed.

When generating position-independent code, many compilers use an instruction sequence such as the
following to obtain the current instruction address (CIA). 

bcl 20,31,$+4
mflr r3

Note that this is not a true call and is not paired with a return. The MPC7450 is optimized so the link stack
ignores position-independent code when the bcl 20,31,$+4 form is used. This conditional call, which is used
only for putting the instruction address in a program-visible register, does not force a push on the link stack
and is treated as a non-taken branch.

3.1.4.1 Link Stack Example
The following code sequence is a common code sequence for a subroutine call/return sequence, where
main calls foo, foo calls ack, and ack possibly calls additional functions (not shown).

main: ...
mflr  r5
stwu  r5,-4(r1)
bl    foo

5 add   r3,r3,r20
....

foo:  stwu  r31,-4(r1)
stwu  r30,-4(r1)
....
mflr  r4
stwu  r4,-4(r1)
bl    ack
add   r3,r3,r6
....

0 lwzu  r30,4(r1)
1 lwzu  r31,4(r1)
2 lwzu  r5,4(r1)
3 mtlr  r5
4 bclr
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ack:  ....
(possible calls to other functions)
....
lwzu  r4,4(r1)
mtlr  r4
bclr

The bl in main pushes a value onto the hardware managed link stack (in addition to the
architecturally-defined link register). Then the bl in foo pushes a second value onto the stack. 

When ack later returns through the bclr, the hardware link stack is used to predict the value of the LR, if
the actual value of the LR is not available when the branch is executed (typically because the lwzu/mtlr pair
has not finished executing). It also pops a value off of the stack, leaving only the first value on the stack.
This occurs again with the bclr in foo which returns to main, and this pop leaves the stack empty.

Table 3-8 shows the performance implications of the link stack. The following code starts executing from
instruction 0 in procedure foo.

With the link stack prediction, the BPU can successfully predict the target of the bclr (instruction 4), which
allows the instruction at the return address (instruction 5) to be executed in cycle 8. The IU2 forwarded the
LR value to the BPU in cycle 9 (which implies that the branch resolution occurs in cycle 10), even though
it is not able to execute from an execution serialization viewpoint until cycle 11.

Without the link stack prediction, the branch would stall on the link register dependency and not execute
until after the LR is forwarded (that is, branch execution would occur in cycle 10), which allows
instruction 5 not to execute until cycle 15 (seven cycles later than it executes with link stack prediction).

3.1.4.2 Position-Independent Code Example
Position-independent code is used when not all addresses are known at compile time or link time. Because
performance is typically not good, position-independent code should be avoided when possible. The
following example expands on the code sequence, which is described in Section 4.2.4.2, “Conditional
Branch Control” in the Programming Environments for 32-Bit Implementations of the PowerPC
Architecture.

Table 3-8. Link Stack Example 

Instr.
No.

Instruction 0 1 2 3 4 5 6 7 8 9 10 11 12

0 lwzu r30, 4(r1) F1 F2 D I E0 E1 E2 C

1 lwzu r31, 4(r1) F1 F2 — D I E0 E1 E2 C

2 lwzu r5, 4(r1) F1 F2 — — D I E0 E1 E2 C

3 mtlr F1 F2 — D I — — — — — E C

4 bclr F1 F2 BE D

...

5 add r3,r3,r20 F1 F2 D I E — — — C
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Because a return (bclr) is never paired with this bcl (instruction 0), the MPC7450 takes two special actions
when it recognizes this special form (“bcl 20,31,$+4”):

• Although the bcl does update the link register as architecturally required, it does not push the value 
onto the link stack. Not pairing a return with this bcl prevents the link stack from being corrupted, 
which would likely require a later branch mispredict for some later bclr.

• Because the branch has the same next instruction address whether it is taken or fall-through, the 
branch is forced as a fall-through branch. This avoids a potential branch-taken bubble and saves a 
cycle.

The instruction address is available for executing a subsequent operation (instruction 2, addi) in cycle 10,
primarily due to the long latency of the execution serialized mflr. However, the data has to be transferred
back to the BPU through the CTR register, which prevents the bcctr to execute until cycle 12, so it’s target
instruction (5) cannot start execution until cycle 17.

Note that it is important that instructions 3 and 4 be a mtctr/bcctr pair rather than a mtlr/bclr pair. A bclr
would try to use the link stack to predict the target address, which would almost certainly be an address
mispredict, which would be even more costly than the 7-cycle branch execution stall for instruction 4 shown
in this example. In addition, an address mispredict would require that the link stack be flushed, which would
mean that bclr instructions that occur later in the program would have to stall rather than use the link stack
address prediction. This would further degrade performance.

3.1.4.3 Computed Branch and Function Pointer Examples
Computed branches are used in switch statements with enough different entries to warrant a table-lookup
approach (instead of creating a series of if-else tests). The following example shows a typical
implementation of such a switch statement using the CTR register.

Source code in C:

switch(x){
case 0: /* code for case 0. */

break;
case 1: /* code for case 1. */

break;
case 2: /* code for case 2. */

break;
...
default: /* code for default case. */

Table 3-9. Position-Independent Code Example

Instr.
No.

Instruction 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 bcl 20, 31, $+4 F1 F2 BE D C

1 mflr r2 F1 F2 — D I — E0 E1 E2 E3 F C

2 addi r2, r2,#constant F1 F2 — D I — — — — — E C

3 mtctr r2 F1 F2 — — D I — — — — — — — E C

4 bcctr F1 F2 — — — — — — — — — BE

...

5 add r3, r3, r20 F1 F2 D I E
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break;
}

Assume r6 holds the address of SWITCH_TABLE for the following assembly code:

lwz r4,x
slwi r4, r4, 2 # Multiply by 4 to create word index.
lwzx r5, r4, r6 # r5 = SWITCH_TABLE[r4].
mtctr r5 # Move r5 to CTR.
bctr # Perform indirect branch.

Function pointers and virtual function calls should also use the CTR for their indirection, to avoid corrupting
the hardware link stack. The following example shows a typical indirect function call. Note that the CTR is
used to hold the target address, and the link form of the branch (bctrl) is used to save the return address.

Source code in C:

extern int (*funcptr)();
...
a = funcptr();

Assume r9 holds the address of funcptr for the following assembly code:

lwz r0, 0(r9) # Load the value at funcptr.
mtctr r0 # Move it to the CTR.
bctrl # Perform indir. branch, save return address.

3.1.5 Branch Folding
Branches that do not set the LR or update the CTR are eligible for folding. In all three architectures, taken
branches are folded immediately. For MPC750 or MPC7400, non-taken branches are folded at dispatch. In
the MPC7450, not-taken branches cannot be fall-through folded if they are in IQ0–IQ2; however, branches
are removed in the cycle after execution if they are in IQ3–IQ7.

3.2 Dispatch Considerations
The following is a list of resources required for MPC7450 to avoid stalls in the dispatch unit (IQ0–IQ2 are
the three dispatch entries in the instruction queue):

• The appropriate issue queue is available.

• The CQ is not full.

• Previous instructions in the IQ must dispatch. For example, IQ0 must dispatch for IQ1 to be able to 
dispatch.

• Needed rename registers are available.

The following sections describe how to optimize code for dispatch. 

3.2.1 Dispatch Groupings
MPC7450 can dispatch a maximum throughput of three instructions per cycle. The dispatch process
includes a CQ available check, an issue queue available check, a branch ready check, and a rename check.
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The dispatcher can send three instructions to the various issues queues, with a maximum of three to the GIQ,
two to the VIQ, and one to the FIQ. Thus only two instructions can be dispatched per cycle to the AltiVec
units (VIU1, VIU2, VPU, and VFPU). Only one FPU instruction can be dispatched per cycle, so three fadds
take three cycles to dispatch.

The dispatcher also enforces a rule that only one load/store instruction can dispatch in any given cycle.

The dispatcher can rename as many as four GPRs, three VRs, and two FPRs per cycle, so a three-instruction
dispatch window composed of vaddfp, vaddfp, and lvewx could be dispatched in one cycle.

Note that a load/store update form instruction (for example, lwzu), requires a GPR rename for the update.
This means that an lwzu needs two GPR rename registers and an lfdu needs one FPU rename and one GPR
rename. The possibility that one instruction may need two GPR rename registers means that even though
the MPC7450 has a 16-entry CQ and 16 GPR rename registers, GPR rename registers could run out even
though there is space in the CQ, as when eight lwzu instructions are in the CQ. Eight CQ entries are
available, but because all 16 GPR rename registers are in use, no instruction needing a GPR target can be
dispatched.

The restriction of four GPR rename registers in a dispatch group means that the sequence lwzu, add, add
can be dispatched in one cycle. The instruction pair lwzu, lwzu also uses four GPR rename registers and
passes this rule but is disallowed by the rule that enforces a dispatch of only one load/store per cycle.

3.2.1.1 Dispatch Stall Due to Rename Availability
Table 3-10 contains a code example that shows a dispatch stall due to rename availability.

Instruction 8 stalls in cycle 9 because it needs two rename registers, and 15 rename registers are in use (one
for the divw, and two each for instructions 1 through 7). As only 16 GPR rename registers are allowed,
instruction 8 cannot be dispatched until at least one rename is released.

When the div later completes (cycle 27 in example above), rename registers are released during the
write-back stage and instruction 8 can thus dispatch in cycle 29.

Note that this code uses lwzu instructions, which require two rename registers, only to shorten the contrived
code example. In general, sequences of lwzu instructions should be avoided for performance reasons as they
throttle dispatch to one lwzu instruction per cycle and completion to two lwzu instructions per cycle.

Table 3-10. Dispatch Stall Due to Rename Availability

Instr.
No.

Instruction 0 1 2 3 4 5 6 7 8 9 ... 25 26 27 28 29 30

0 divw  r4,r3,r2 F1 F2 D I E0 E1 E2 E3 E4 E5 ... E21 E22 C WB

1 lwzu r22,0x04(r1) F1 F2 D I E0 E1 E2 — — — ... — — C WB

2 lwzu r23,0x04(r1) F1 F2 — D I E0 E1 E2 — — ... — — — C WB

3 lwzu r24,0x04(r1) F1 F2 — — D I E0 E1 E2 — ... — — — — C WB

4 lwzu r25,0x04(r1) F1 F2 — — D I E0 E1 E2 ... — — — — — C

5 lwzu r26,0x04(r1) F1 F2 — — — D I E0 E1 ... — — — — —

6 lwzu r27,0x04(r1) F1 F2 — — — — D I E0 ... — — — — —

7 lwzu r28,0x04(r1) F1 F2 — — — — — D I ... — — — — —

8 lwzu r29,0x04(r1) F1 F2 — — — — — — ... — — — — D I
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3.2.2 Dispatching Load/Store Strings and Multiples 
The MPC7450 splits load/store multiple instructions (lmw and stmw) and strings (lsw and stsw) into
micro-operations at the dispatch point. The processor can dispatch only one micro-operation per cycle,
which does not use the dispatcher to its full advantage.

Using load/store multiple instructions is best restricted to cases where minimizing code size is critical or
where there are no other available instructions to be scheduled, such that the under-utilization of the
dispatcher is not a consideration.

3.2.2.1 Example of Load/Store Multiple Micro-Operation Generation
Consider the following assembly instruction sequence:

0  lmw  r25,0x00(r1)
1  addi r25,r25,0x01
2  addi r26,r26,0x01
3  addi r27,r27,0x01
4  addi r28,r28,0x01
5  addi r29,r29,0x01
6  addi r30,r30,0x01
7  addi r31,r31,0x01   

The load multiple instruction specified with register 25 loads registers 25–31. The MPC7450 splits this
instruction into seven micro-operations at dispatch, after which the lmw executes as multiple operations, as
Table 3-11 shows. 

Table 3-11. Load/Store Multiple Micro-Operation Generation Example 

Instr.
No.

Instruction 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0–0 lmw r25,0x00(r1) F1 F2 D I E0 E1 E2 C

0–1 lmw r26,0x04(r1) F1 F2 — D I E0 E1 E2 C

0–2 lmw r27,0x08(r1) F1 F2 — — D I E0 E1 E2 C

0–3 lmw r28,0x0C(r1) F1 F2 — — — D I E0 E1 E2 C

0–4 lmw r29,0x10(r1) F1 F2 — — — — D I E0 E1 E2 C

0–5 lmw r30,0x14(r1) F1 F2 — — — — — D I E0 E1 E2 C

0–6 lmw r31,0x1C(r1) F1 F2 — — — — — — D I E0 E1 E2 C

1 addi r25,r25,0x01 F1 F2 — — — — — — D I E — — C

2 addi r26,r26,0x01 F1 F2 — — — — — — D I E — — C

3 addi r27,r27,0x01 F1 F2 — — — — — — — D I E — — C

4 addi r28,r28,0x01 F1 F2 — — — — — — D I E — — C

5 addi r29,r29,0x01 F1 F2 — — — — — — D I E — — C

6 addi r30,r30,0x01 F1 F2 — — — — — — — D I E — — C

7 addi r31,r31,0x01 F1 F2 — — — — — — — D I — E — C
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Because the MPC7450 can dispatch only one LSU operation per cycle, the lmw is micro-oped at a rate of
one per cycle and so in this example takes seven cycles to dispatch all the operations. However, when the
last operation in the multiple is dispatched (cycle 8), instructions 1 and 2 can dispatch along with it.

The use of load/store string instructions is strongly discouraged.

3.3 Issue Queue Considerations
Instructions cannot be issued unless the specified execution unit is available. The following sections
describe how to optimize use of the three issue queues.

3.3.1 General Purpose Issue Queue (GIQ)
As many as three instructions can be dispatched to the six-entry GPR issue queue (GIQ) per cycle. As many
as three instructions can be issued in any order to the LSU, IU2, and IU1 reservation stations from the
bottom three GIQ entries.

Issuing instructions out-of-order can help in a number of situations. For example, if the IU2 is busy and a
multiply is stalled at the bottom GIQ entry (unable to issue because both IU2 reservation stations are being
used), instructions in the next two GIQ entries can be issued to LSU or IU1s, bypassing that multiply. 

The following sequence is not well scheduled, but effectively, the MPC7450 micro-architecture
dynamically reschedules around the potential multiply bottleneck.

0 xxxxxx00 mulhw r10,r20,r21
1 xxxxxx04 mulhw r11,r22,r23
2 xxxxxx08 mulhw r12,r24,r25
3 xxxxxx0C lwzu r13,0x4(r9)
4 xxxxxx10 add r10,r10,r11
5 xxxxxx14 add r13,r13,r25
6 xxxxxx18 add r14,r5,r4
7 xxxxxx20 subf r15,r6,r4

Table 3-12 shows the timing for the instruction in GIQ entries. Instruction 3 issues out-of-order in cycle 2;
instructions 4 and 5 issue out-of-order in cycle 3.

Note that instruction 7 (subf) does not issue in cycle 4 because all three IU1 reservation stations have an
instruction (4, 5, and 6). Instructions 4 and 5 are waiting in the reservation station for their source registers
to be forwarded from the IU2 and LSU, respectively. Because instruction 6 executes immediately after issue
(in cycle 5), instruction 7 can issue in that cycle.

Table 3-12. GIQ Timing Example 

Instr.
No.

Instruction 0 1 2 3 4 5 6 7 8 9 10 11

0 mulhw D I E0 E0 E1 F C

1 mulhw D — I — E0 E0 E1 F C

2 mulhw D — — — I — E0 E0 E1 F C

3 lwzu — D I E0 E1 E2 — — — — C

4 add F2 D — I — — — E — — C

5 add F2 D — — — — E — — — — C

6 add F2 — D — I E — — — — — C
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Similar examples could also be given for loads bypassing adds, and multiplies bypassing loads. However,
the ability to use out-of-order instructions is mostly across functional units, and has been extended
somewhat for integer instructions beyond the functionality provided by MPC750 and MPC7400 processors. 

3.3.2 Vector Issue Queue (VIQ)
The four-entry vector issue queue (VIQ) handles all AltiVec computational instructions. Two instructions
can dispatch to it per cycle, and it can issue two instructions in-order per cycle from its bottom two entries
if reservation stations are available. The primary check is that a reservation station must be available. 

NOTE
On the MPC7450, the VIQ can issue to any two vector units, as opposed to
the MPC7400 which only allows pairing between VPU and one other unit.

Table 3-13 shows two cases where a vector add and a vector multiply-add (vmsummbm) start execution
simultaneously (cycles 2 and 3). Note that the load-vector instructions go to the GIQ because its address
source operands (rA and rB) are GPRs. This example also shows the MPC7450 ability to dispatch three
instructions with vector targets in a cycle (cycles 0 and 1) as well as to retire three instructions with vector
targets (cycle 7).

3.3.3 Floating-Point Issue Queue (FIQ)
The two-entry floating-point issue queue (FIQ) can accept one dispatched instruction per cycle, and if an
FPU reservation station is available, it can also issue one instruction from the bottom FIQ entry.

7 subf F2 — — D — I E — — — — C

GIQ5

GIQ4 5

GIQ3 4 6

GIQ2 2 3 5 7

GIQ1 1 2 4 6

GIQ0 0 1 2 2 7

Table 3-13. VIQ Timing Example 

Instruction 0 1 2 3 4 5 6 7

vaddshs v20,v24,v25 D I E F C

vmsummbm v10,v11,v12,v13 D I E0 E1 E2 E3 C

lvewx v5,r5,r9 D I E0 E1 E2 — C

vmsummbm v11,v11,v14,v15 — D I E0 E1 E2 E3 C

vaddshs v21,v26,v27 D I E F — — C

lvewx v5,r6,r9 D I E0 E1 E2 — C

Table 3-12. GIQ Timing Example (continued)

Instr.
No.

Instruction 0 1 2 3 4 5 6 7 8 9 10 11
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3.4 Completion Queue
The following sections describe the conditions for the completion queue such as the re-order sizing, how
the instruction sequence is grouped, and the effects of serialization.

3.4.1 Reorder Size
The completion queue size on the MPC7450 is 16 entries. This means that up to 16 instructions can be in
the execution window, not counting branches, which execute from the instruction buffer.

3.4.2 Completion Groupings
The MPC7450 can retire up to three instructions per cycle. Only three rename registers of a given type can
be retired per cycle. For example, an lwzu, add, subf sequence has four GPR rename targets and all cannot
retire in the same cycle. The lwzu and add retire first and subf retires one cycle later. 

3.4.3 Serialization Effects
The MPC7450 supports refetch, execution, and store serialization. Store serialization is described in
Section 3.7.2, “Store Hit Pipeline.” 

Refetch serialized instructions include isync, rfi, sc, mtspr[XER], and any instruction that toggles
XER[SO]. Refetch serialization forces a pipeline flush when the instruction is the oldest in the machine.
These instructions should be avoided in performance-critical code.

Note that XER[SO] is a sticky bit for XER[OV] updates, so avoiding toggling XER[SO] often means
avoiding these instructions (overflow-record, O form).

Execution-serialized instructions wait until the instruction is the oldest in the machine to begin executing.
Tables in Appendix A, “MPC7450 Execution Latencies,” list execution-serialized instructions, which
include mtspr, mfspr, CR logical instructions, and carry consuming instructions (such as adde).

Table 3-14 shows the execution of a carry chain. The addc executes normally and generates a carry. As an
execution-serialized instruction, adde must become the oldest instruction (cycle 4) before it can execute
(cycle 5). A long chain of carry generation/carry consumption can execute at a rate of one instruction every
three cycles.

3.5 Numeric Execution Units
The following sections describes how to optimize the use of the execution units. 

3.5.1 IU1 Considerations
Each of the three IU1s has one reservation station in which instructions are held until operands are available.
The IU1s allow a potentially large window for out-of-order execution. IU1 instructions can progress until

Table 3-14. Serialization Example 

Instruction 0 1 2 3 4 5 6

addc r11,r21,r23 D I E C

adde r10,r20,r22 D I — — — E C
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three IU1 instructions are stuck in the three reservation stations, requiring operands (or until the GIQ or
dispatcher stalls for other reasons).

Table 3-12 shows a case where although two IU1s are blocked, the third makes progress.

Also note that some IU1 instructions take more than one cycle and that some are not fully pipelined. The
most common 2-cycle instructions are sraw and srawi. 

The following instructions are not fully pipelined when their record bit is set: extsb, extsh, rlwimi, rlwinm,
rlwnm, slw, and srw. These instructions return GPR data after the first cycle but continue executing into a
second cycle to generate the CR result.

Table 3-15 shows sraw, extsh, and extsh. latency effects. The two sraw instructions both take 2 cycles of
execution, blocking the extsh/extsh. pair from issuing until cycle 3 but allowing the dependent add to
execute in cycle 3 (see Table A-5, footnote 3). Note that extsh. takes two cycles to execute, but that the
dependent subf can pick up the forwarded GPR value after the first cycle of execution (cycle 4) and execute
in cycle 5.

3.5.2 IU2 Considerations
The IU2 has two reservation station entries. Instruction execution is allowed only from the bottom station.
Although mtctr/mtlr instructions are execution serialized, if data is available, their values are forwarded to
the BPU as soon as they are in the bottom reservation station.

Divides, mulhwu, mulhw, and mull are not fully pipelined; they iterate in execution stage 0 and block other
instructions from entering reservation station 0. For example, in Table 3-12, the second multiply issues to
IU2 in cycle 2. Because the first multiply still occupies reservation station 0, the second is issued to
reservation station 1. When the first multiply enters E1, the second moves down to reservation station 0 and
begins execution.

Note that the IU2 takes an extra cycle beyond the latencies listed in Table A-5 to return CR data and finish.
This implies that, as the example in Section 3.3.1, “General Purpose Issue Queue (GIQ),” shows, a 3-cycle
instruction such as mulhw requires a separate finish stage, even though GPR data is still forwarded and used
after three execution cycles. In the previous example, instruction 4 executes in cycle 7, the cycle after the
dependent instruction 2 progressed through its third execution stage.

3.6 FPU Considerations
The FPU has two reservation station entries. Instruction execution is allowed only from the bottom
reservation station (reservation station 0).

Table 3-15. IU1 Timing Example

Instruction 0 1 2 3 4 5 6

sraw r1,r20,r21 D I E E C

sraw r2,r20,r22 D I E E C

add r4,r2,r3 D I — E C

extsh r5,r25, F2 D — I E C

extsh. r6,r26 F2 D — I E E C

subf r7,r5,r6 F2 D — I — E C
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Like the IU2, the FPU requires a separate finish stage to return CR and FPSCR data, as shown in Table 3-16.
However, FPR data produced in E4 (the fifth stage) is ready and can be forwarded directly (if needed) to an
instruction entering E0 in the next cycle.

The five-stage scalar FPU pipeline has a 5-cycle latency. However, when the pipeline contains instructions
in stages E0–E3, the pipeline stalls and does not allow a new instruction to start in E0 on the following cycle.
This bubble limits maximum FPU throughput to four instructions every five cycles, as the following code
example shows:

xxxxxx00 fadd f10,f20,f21
xxxxxx04 fadd f11,f20,f22
xxxxxx08 fadd f12,f20,f23
xxxxxx0C fadd f13,f20,f24
xxxxxx10 fadd f14,f20,f25
xxxxxx14 fadd f15,f20,f26
xxxxxx18 fadd f16,f20,f27
xxxxxx1C fadd f17,f20,f28
xxxxxx20 fadd f18,f20,f29

Table 3-16 shows the timing for this sequence. 

The FPU is also constrained by the number of FPSCR rename registers. The MPC7450 supports four
outstanding FPSCR updates. An FPSCR is allocated in the E3 FPU stage and is deallocated at completion.
If no FPSCR rename is available, the FPU pipeline stalls. A fully pipelined case such as that in Table 3-16
is not affected, but if something blocks completion it can become a bottleneck. Consider the following code
example:

xxxxxx00l fdu f3,0x8(r9)
xxxxxx04 fadd f11,f20,f22
xxxxxx08 fadd f12,f20,f23
xxxxxx0C fadd f13,f20,f24
xxxxxx10 fadd f14,f20,f25
xxxxxx14 fadd f15,f20,f26
xxxxxx18 fadd f16,f20,f27
xxxxxx1C fadd f17,f20,f28
xxxxxx20 fadd f18,f20,f29

Table 3-16. FPU Timing Example 

Instruction 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

fadd D I E0 E1 E2 E3 E4 F C

fadd — D I E0 E1 E2 E3 E4 F C

fadd — — D I E0 E1 E2 E3 E4 F C

fadd — — — D I E0 E1 E2 E3 E4 F C

fadd F2 — — — D I — E0 E1 E2 E3 E4 F C

fadd F2 — — — — D — I E0 E1 E2 E3 E4 F C

fadd F2 — — — — — D — I E0 E1 E2 E3 E4 F C

fadd F2 — — — — — — — D I E0 E1 E2 E3 E4 F C

fadd F1 F2 — — — — — — — D I — E0 E1 E2 E3 E4
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The timing for this sequence in Table 3-17 assumes that the load misses in the data cache. Here, after the
first four fadds, the MPC7450 runs out of FPSCR rename registers and the pipeline stalls. When the load
completes, the pipeline restarts after an additional 2-cycle lag.

Note that denormalized numbers can cause problems for the FPU pipeline, so the normal latencies in
Table A-6 may not apply. Output denormalization in the very unlikely worst case can add as many as three
cycles of latency. Input denormalization takes four to six additional cycles, depending on whether one, two,
or three input source operands are denormalized.

3.6.1 Vector Units
On the MPC7450, the four vector execution units are fully independent and fully pipelined. Table 3-18
shows the latencies.

VFPU latency is usually four cycles, but some instructions, particularly the vector float compares and vector
float min/max (see Table A-8 to Table A-11 for a list) have only a 2-cycle latency. This can create
competition for the VFPU register forwarding bus. This is solved by forcing a partial stall when a bypass is
needed. Consider the following code example:

xxxxxx20 vaddfp v10,v11,v12
xxxxxx24 vsubfp v11,v14,v13
xxxxxx28 vaddfp v12,v13,v14
xxxxxx2C vcmpbfp. v13,v18,v19
xxxxxx30 vmaddfp v14,v20,v21,v14

Table 3-19 shows the timing for this vector compare bypass/stall situation. In cycle 6 the vcmp bypasses
from E0 to E3, stalling the vsubfp and vlogefp for a cycle in stages E1 and E2. Note that an instruction in
E1 stalls in E1 under a bypass scenario even if no instruction is in E2.

Table 3-17. FPSCR Rename Timing Example  

Instruction 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

lfdu D I E0 E1 C

fadd D I E0 E1 E2 E3 E4 F — — — — C

fadd — D I E0 E1 E2 E3 E4 F — — — C

fadd — — D I E0 E1 E2 E3 E4 F — — — C

fadd F2 — — D I E0 E1 E2 E3 E4 F — — C

fadd F2 — — — D I — E0 E1 E2 E3 E4 E4 E4 E4 F

fadd F2 — — — — D — I E0 E1 E2 E3 E3 E3 E3 E4

fadd F2 — — — — — D — I E0 E1 E2 E2 E2 E2 E3

fadd F1 F2 — — — — — — D I E0 E1 E1 E1 E1 E2

Table 3-18. Vector Execution Latency Summary

Unit Typical Latency

VIU1 1

VIU2 4

VFPU 4

VPU 2
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3.7 Load/Store Unit (LSU)
The LSU has two reservation stations. Instruction execution is allowed only from the bottom reservation
station (reservation station 0).

The 32-Kbyte, 8-way data cache has a cache line size of 32 bytes. The replacement algorithm is
pseudo-LRU (PLRU). The LSU on the MPC7450 is different from prior designs in many ways. The most
critical is that load latencies are now one (or two for load-float) cycle longer than in previous
microprocessors. 

3.7.1 Load Hit Pipeline
The following code sequence shows the various normal load latencies: 

xxxxxx00 lfdu f3,0x8(r10)
xxxxxx04 fadd f1,f3,f4
xxxxxx08 lwzu r3,0x4(r11)
xxxxxx0C add r1,r3,r4
xxxxxx10 subf r5,r11,r6
xxxxxx14 lvewx v3,r12,r13
xxxxxx18 vaddsws v1,v3,v4

As Table 3-20 shows, the load-floating-point latency is four cycles and the load-integer and load-vector
latency are each three cycles. Although the load has a 4-cycle latency, it also completes on that fourth cycle.
The update has an effective latency of one. The lwzu forwards its update target R11 from E0 in cycle 3 to
the subf instruction, such that it executes in cycle 4.

Table 3-19. Vector Unit Example

Instruction 0 1 2 3 4 5 6 7 8 9 10

vaddfp D I E0 E1 E2 E3 C

vsubfp D — I E0 E1 E2 E2 E3 C

vlogefp — D — I E0 E1 E1 E2 E3 C

vcmpbfp. — D — — I E0 E3 — — C

vmaddfp F2 — D — — I E0 E1 E2 E3 C

Table 3-20. Load Hit Pipeline Example 

Instr.
No.

Instruction 0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 lfdu D I E0 E1 E2 E3/C

1 fadd D I — — — — E0 E1 E2 E3 E4 F C

2 lwzu — D I E0 E1 E2 — — — — — — C

3 add — D I — — — E — — — — — C

4 subf F2 D I — E — — — — — — — — C

5 lvewx F2 — D I E0 E1 E2 — — — — — — C

6 vaddsws F2 — D I — — — E F — — — — C

    

  

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.

For More Information On This Product,
  Go to: www.freescale.com

n
c

..
.



36 MPC7450 RISC Microprocessor Family Software Optimization Guide  MOTOROLA

Load/Store Unit (LSU)  

3.7.2 Store Hit Pipeline
The pipeline for stores before the data is written to the cache includes several different queues. A store
instruction must go through E0 and E1 to handle address generation and translation. It is then placed in the
three-entry finished store queue (FSQ). When the store is the oldest instruction, it can access the store data
and update architecture-defined resources (store serialization). From this point on, the store is considered
part of the architectural state.

However, before the data reaches the data cache, two write-back stages (WB0 and WB1) are needed to
acquire the store data and transfer it from the FSQ to the 5-entry committed store queue (CSQ). Arbitration
into the data cache from the CSQ is pipelined so a throughput of one store per cycle can be maintained.
During this arbitration and cache write, stores arbitrate into the data cache from the CSQ and stay there for
at least four cycles. Table 3-21 shows pipelining of four stw instructions to the data cache.

Because floating-point stores are not fully pipelined, the bottleneck is at the FSQ, where only one
floating-point store can be executed every 3 cycles. See Table 3-22 for an example execution of four stfd
instructions. Vector stores do not have this problem and are fully pipelined (similar to the integer stores as
shown in Table 3-21).

To avoid floating-point store throughput bottlenecks, strings of back-to-back floating-point stores (like that
shown in Table 3-22) should be avoided. Instead, floating-point stores should be mixed with other
instructions wherever possible. For maximum store throughput, vector stores should be used.

Table 3-21.  Store Hit Pipeline Example

Instruction 0 1 2 3 4 5 6 7 8 9 10 11 12 13

stw D I E0 E1 FSQ0/C WB0 WB1 CSQ0 CSQ0 CSQ0 CSQ0

stw — D I E0 E1 FSQ0/C WB0 WB1 CSQ1 CSQ1 CSQ1 CSQ0

stw — — D I E0 E1 FSQ0/C WB0 WB1 CSQ2 CSQ2 CSQ1 CSQ0

stw — — — D I E0 E1 FSQ0/C WB0 WB1 CSQ3 CSQ2 CSQ1 CSQ0

Table 3-22.  Execution of Four stfd Instructions

Instr.
No.

Instruction
Cycle Number

0 1 2 3 4 5 6 7 8 9

0 stfd D I E0 E1 FSQ0/C WB0 WB1 CSQ0 CSQ0 CSQ0

1 stfd — D I E0 E1 FSQ0 FSQ0 FSQ0/C WB0 WB1

2 stfd — — D I E0 E1 FSQ1 FSQ1 FSQ0 FSQ0

3 stfd — — — D I E0 E1 FSQ2 FSQ1 FSQ1

10 11 12 13 14 15 16 17 18 19

0 stfd CSQ0

1 stfd CSQ1 CSQ0 CSQ0 CSQ0

2 stfd FSQ0/C WB0 WB1 CSQ1 CSQ0 CSQ0 CSQ0

3 stfd FSQ1 FSQ0 FSQ0 FSQ0/C WB0 WB1 CSQ1 CSQ0 CSQ0 CSQ0
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3.7.3 Store Gathering and Merging
The MPC7450 implements two techniques to improve store performance by coalescing adjacent entries in
the CSQ. Store gathering refers to coalescing adjacent cache-inhibited or write-through stores; store
merging refers to coalescing adjacent cacheable writeback stores. Note that these two techniques are used
only when the bottom CSQ entry is processing a cache miss or sending a store request to the memory
subsystem. In such a situation, the bottom entry itself is not eligible for any coalescing operations, but all
other CSQ entries are examined.

The throughput of cache-inhibited or write-through stores is usually limited by the system address bus
bandwidth. With store gathering enabled (HID0[SGE] = 1), cache-inhibited or write-through stores may be
combined into larger transactions. If the bottom entry of the CSQ is processing a cacheable store miss or
sending a store request on to the memory subsystem, the processor examines the remaining CSQ entries for
store gathering. Any set of adjacent entries in the CSQ are gathered into one transaction if they are aligned,
the same size, to the same or adjacent addresses, either cache-inhibited or write-through, and the result is
aligned. When the MPC7450 is on a system bus supporting the MPX protocol, this gathering may continue
up to a 32-byte store request. On a 60x bus, the MPC7450 does not gather beyond a 64-bit transaction. Under
ideal conditions, a stream of write-through or cache-inhibited stores to sequential addresses reduces store
transactions on the system bus by a factor of four. Note that cache-inhibited guarded stores are never
gathered.

The throughput of cacheable stores that miss in the L1 is limited by the latency to the L2 or L3 caches and
the memory latency. When store gathering is enabled (HID0[SGE] = 1), cacheable writeback stores may
also be combined. If the bottom entry of the CSQ is processing a cacheable store miss or sending a store
request to the memory subsystem, any other adjacent entries in the CSQ are merged into one transaction if
they are both to the same 32-byte granule, are both cacheable and writeback, and are waiting to access the
L1 or have already missed in the L1 cache. For store merging, the size and alignment restrictions are relaxed,
because cacheable stores are always performed by writing bytes to the L1 (if the data L1 hits) or merging
bytes with reload data (if the data L1 misses).

3.7.4 Load/Store Interaction
When loads and stores are intermixed, the stores normally lose arbitration to the cache. A store that
repeatedly loses arbitration can stay in the CSQ much longer than four cycles, which is not normally a
performance problem because a store in the CSQ is effectively part of the architecture-defined state.
However, sometimes—including if the CSQ fills up or if a store causes a pipeline stall (as in a partial address
alias case of store to load)—the arbiter gives higher priority to the store, guaranteeing forward progress.

Also, accesses to the data cache are pipelined (two stages) such that back-to-back loads and back-to-back
stores are fully pipelined (single-cycle throughput). However, a store followed by a load cannot be
performed in subsequent clock cycles. Loads have higher priority than stores and the LSU store queues stage
store operations until a cache cycle is available. When the LSU store queues become full, stores take priority
over subsequent loads.

From an architectural perspective, when a load address aliases to a store address the load needs to read the
store data rather than the data in the cache. A store can forward only after acquiring its data, which means
forwarding happens only from the CSQ. Additionally, the load address and size must be contained within
the store address and size for store forwarding to occur. If the alias is only a partial alias (for example a stb
and a lwz) the load stalls. Table 3-23 shows a forwardable load/store alias, where the load stalls in E1 for
three cycles until the store arrives in CSQ0 and can forward its data.
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3.7.5 Misalignment Effects
Misalignment, particularly the back-to-back misalignment of loads, can cause negative performance effects.
The MPC7450 splits misaligned transactions into two transactions, so misaligned load latency is at least one
cycle greater than the default latency. On the MPC7450, misalignment typically occurs when an access
crosses a double-word boundary. 

Table 3-24 shows what is considered misaligned based on the EA of the access. Accesses marked as
misaligned are split into two transactions and incur an extra cycle of latency. Accesses that are not marked
are considered aligned. Note that vector transactions ignore non-size-aligned low-order address bits and so
are considered aligned.

Future generations of high-performance microprocessors that implement the PowerPC architecture may
experience greater misalignment penalties.

3.7.6 Load Miss Pipeline
The MPC7450 supports as many as five outstanding load misses in the load miss queue (LMQ). Table 3-25
shows a load followed by a dependent add. Here, the load misses in the data cache and the full line is
reloaded from the L2 cache back into the data cache. The load L2 cache hit latency is effectively nine cycles.

Table 3-23. Load/Store Interaction (Assuming Full Alias)

Instruction 0 1 2 3 4 5 6 7 8

stw r3,0x0(r9) E0 E1 FSQ0/C WB0 WB1 CSQ0 CSQ0 CSQ0 CSQ0

lwz r4,0x0(r9) I E0 E1 E1 E1 E1 E2 C

Table 3-24. Misaligned Load/Store Detection

Size in Bytes 1 2 4 8 16

EA[29–31] Byte Half Word Integer
Multiple-Integer

(lmw/stmw)
Floating-Point

Single
Floating-Point

Double
 Bus!=60x

000 — — — — — — —

001 — — — Alignment
exception

Alignment
exception

Alignment
exception

Align to QW

010 — — — Alignment
exception

Alignment
exception

Alignment
exception

Align to QW

011 — — — Alignment
exception

Alignment 
exception

Alignment
exception

Align to QW

100 — — — — — Misaligned Align to QW

101 — — Misaligned Alignment
exception

Alignment
exception

Alignment
exception

Align to QW

110 — — Misaligned Alignment
exception

Alignment
exception

Alignment
exception

Align to QW

111 — Misaligned Misaligned Alignment
exception

Alignment
exception

Alignment
exception

Align to QW
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If a load misses in the L1 data cache and in the L2 data cache, critical data forwarding occurs, followed
shortly by the rest of the line. The following example shows that the load L3 cache hit latency is effectively
33 cycles.

The following L3 parameters are assumed for the example in Table 3-26:

• DDR SRAM at 4:1 L3 bus ratio 

• L3 clock sample point is 5 clocks

• L3 Processor-clock sample point is 0 clocks

Note that the LMQ0 entry for the load remained allocated for four cycles after the critical data arrived in
cycle 32. This is because with a 4:1 DDR SRAM, there is a 4-cycle gap between critical data and full line
data, and the LMQ entry is only deallocated when the full line has returned.

If a load/store miss aliases to the same line as a previously outstanding miss, the LSU halts new access until
this stall condition is resolved. The following example contains a series of loads, where the data starts in the
L3 cache, with the L3 cache configured similarly to the example in Table 3-26.

Table 3-25. Data Cache Miss, L2 Cache Hit Timing 

Instruction 0 1 2 3–7 8 9 10

lwz r4,0x0(r9) E0 E1 Miss LMQ0 LMQ0/E2 C

add r5,r4,r3 — — — — — E C

Table 3-26. Data Cache Miss, L2 Cache Miss, L3 Cache Hit Timing

Instruction 0 1 2 3–31 32 33 34 35–36

 lwz r4,0x0(r9) E0 E1 Miss  LMQ0 LMQ0/E2 LMQ0/C LMQ0 LMQ0 

 add r5,r4,r3 E C

Table 3-27. Load Miss Line Alias Example 

Cycle Number

Instr.
No.

Instruction 0 1 2 3–31 32 33 34 35–36

0 lwz r3,0x0(r9) E0 E1 Miss LMQ0 LMQ0/E2  LMQ0/C LMQ0 LMQ0

1 add r4,r3,r20 E C

2 lwz r5,0x4(r9) I E0 E1 E1 E1 E1 E1 E1

3 add r6,r5,r4 I

4 lwz r7,0x20(r9) D I E0 E0 E0 E0 E0 E0

5  add r8,r7,r6 D I

37–39 40 41 42 43–61 62 63 64

0 lwz r3,0x0(r9)

1 add r4,r3,r20

2 lwz r5,0x4(r9) E1 E2 C

3 add r6,r5,r4 E C

4 lwz r7,0x20(r9) E0 E1 Miss LMQ0 LMQ0 LMQ0/E2 LMQ0/C LMQ0

5  add r8,r7,r6 E C
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Note that instruction 2 stalls in stage E1 (in the RA latch in Table 3-27). This stall occurs because the line
miss caused by instruction 0 is the same line that instruction 2 requires. Instruction 2 does not finish
execution until cycle 40 (that is eight cycles after instruction 0). This delay is due to two major components.
The first delay component is that instruction 0 finished by using critical forwarded data, whereas instruction
2 must wait for the full cache line to appear before it can start execution (a 4-cycle delay, in this example).
The second delay component is also due to the cache being updated and the occurance of a pipeline restart
condition.

The second issue that this example shows is that the misses are not fully pipelined. Instructions 0 and 4 miss
in the data cache and L2 cache but hit in the L3 cache. The stall caused by the line miss alias between
instructions 0 and 2 has caused the miss for instruction 4 to delay its access start by many cycles. A simple
reordering of the code, as shown in the following example, allows the two load misses to pipeline to the L3
cache, improving performance by nearly 50 percent.

This type of stall is common in some code examples, including simple data streaming or striding array
accesses. For example, a long stream of vector loads with addresses incrementing by 16 bytes (a quad word)
per load results in every other load stalled in this manner, and no miss pipelining occurs. This stall causes
an even larger performance bottleneck when cache misses are required to go to the system bus and when
missed opportunities to pipeline system bus misses occur. This performance problem can be solved by code
reordering as shown in Table 3-28 or by the use of prefetch instructions (dcbt or dst).

The MPC7450 performs back-end allocation of the L1 data cache, which means that it selects the line
replacement (and pushes to the six-entry castout queue as needed) only when a cache reload returns.
Because any new miss transaction may later require a castout, a new miss is not released to the memory
subsystem until a castout queue slot is guaranteed.

Table 3-28. Load Miss Line Alias Example With Reordered Code 

Cycle Number

Instr.
No.

Instruction 0 1 2 3 4–31 32 33

0 lwz r3,0x0(r9) E0 E1 Miss LMQ0 LMQ0 LMQ0/E2 LMQ0/C 

1 add r4,r3,r20 E

2 lwz r7,0x20(r9) I E0 E1 Miss LMQ1 LMQ1 LMQ1

3 lwz r5,0x4(r9) D I E0 E1 E1 E1 E1

4 add r6,r5,r4 D I

5 add r8,r7,r6 D I

34 35–36 37–39 40 41 42 43

0 lwz r3,0x0(r9) LMQ0 LMQ0

1 add r4,r3,r20 C

2 lwz r7,0x20(r9)  LMQ1 LMQ1 LMQ1 LMQ1 LMQ1/E2 LMQ1/C  LMQ1

3 lwz r5,0x4(r9) E1 E1 E1 E2 C

4 add r6,r5,r4 E C

5 add r8,r7,r6 E C
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3.7.7 DST Instructions and the Vector Touch Engine (VTE)
The MPC7450 VTE engine is similar to that on the MPC7400 but can only initiate an access every three
cycles rather than two. However, due to miss-handling differences described in Section 3.7.6, “Load Miss
Pipeline,” the engine may fall behind and conflict with the processor work. Therefore, retuning the dst may
be necessary to optimize MPC7450 performance as compared to the MPC7400.

Also, note the information on hardware prefetching in Section 3.8.4, “Hardware Prefetching.” Although
hardware prefetching is useful for many general-purpose applications, it may not be the best choice when
active prefetch control through software is attempted. Hardware prefetching can sometimes interfere with
the dst engine’s attempt to keep the bus busy with specific prefetch transactions, especially for dst strides
larger than one cache block or transient dst operations. Experimentation is encouraged, but in this instance
the best solution may be to disable hardware prefetching.

3.8 Memory Subsystem (MSS)
The three-level cache implementation affects instruction fetching, and the loading and storing of source and
destination operands, as described in the following sections.

3.8.1 I/O Access Ordering
The MPC7450 follows the PowerPC architecture in ordering all cache-inhibited guarded loads with respect
to other cache-inhibited guarded loads. It also orders cache-inhibited guarded stores with respect to other
cache-inhibited guarded stores and all stores with respect to earlier loads. Cache-inhibited guarded loads are
normally only ordered with previous cache-inhibited guarded stores if they are to overlapping addresses.
The eieio instruction forces ordering of cache-inhibited guarded loads with previous cache-inhibited
guarded stores to different addresses. The best performance of sequences of cache-inhibited and guarded
ordered accesses is gained when stores are grouped and then a single eieio instruction is used to form a
barrier between the group of stores and any subsequent load.

3.8.2 L2 Cache Effects 
The unified 256-Kbyte on-chip L2 cache has 8-way set associativity and 64-byte lines (with two
sectors/lines). This implies 4096 lines (256 K/64) and 512 sets (256 Kbyte/64/8). Each line has two sectors
with one tag per line but separate valid and dirty bits for each sector. Because of the sectoring, code uses
more of the L2 storage if the spatial locality is characterized by the use of the adjacent 32-byte line.

A load that misses in the L1 but hits in the L2 causes a full line reload. Its latency is ideally nine cycles (six
more than for an L1 hit) assuming no other higher priority L2 traffic. See Table 3-25.

An access missing in the L2 goes to the L3 or main memory bus to fetch the needed 32-byte sector.

The L2 cache uses a pseudo-random replacement algorithm. With 8-way set associativity, a miss randomly
replaces one of eight ways. This works well for smaller working set sizes, but for working set sizes close to
the size of the cache, the hit rate is not quite as good. Imagine a 64-Kbyte array structure and a byte striding
access pattern that loops over the array several times. The access of the first 32 Kbytes (256-Kbyte/8-ways)
will miss and load correctly, but the second 32 Kbytes has a one in eight chance per set of thrashing with an
index of the first 32 Kbytes. This means that the first pass will probabilistically leave 93.75 percent of the
64-Kbyte structure in the L2 cache, and a second pass through the 64-Kbyte will probabilistically leave
99.8 percent of the 64-Kbyte structure in the L2 cache.
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For a 128-Kbyte object, 82.8 percent is left in the L2 cache after one pass, but for a 256-Kbyte object only
slightly less than two-thirds of the structure is left in the L2 cache. However, in both cases the percentage
of the structure left in improves with subsequent strides through the data structure.

3.8.3 L3 Cache Effects
The L3 cache is an off-chip SRAM with on-chip cache tags. The MPC7450 supports 1- and 2-Mbyte L3
caches. A 1-Mbyte cache is two-sectored (64-byte lines) and a 2-Mbyte cache is 4-sectored (128-byte lines).
The L3 is 8-way set associative, implying 16,384 lines (1-Mbyte/64 or 2-Mbyte/128) or 2,048 sets
(1-Mbyte/64/8 or 2-Mbyte/128/8).

An access missing in the L3 fetches the required 32-byte sector regardless of the L3 line size. Like the L2,
the L3 uses a random replacement algorithm, the implications of which are described in Section 3.8.2, “L2
Cache Effects.”

3.8.4 Hardware Prefetching
The MPC7450 supports alternate sector prefetching from the L2 cache. Because the L2 cache is
two-sectored, an access requesting a 32-byte line from the L1 that also misses in the L2 and the L3, can
generate a prefetch (if enabled) for the alternate sector as needed. As many as three outstanding prefetches
are allowed.

The example shown in Table 3-27 can also be used to illustrate the benefits of hardware prefetching for code
when other software techniques are not applied.

The following example shows timing when the loads miss all levels of the cache hierarchy and go to the
system bus. Hardware prefetching is disabled. The load misses to the bus are serialized by the load miss line
alias stall (instruction 2 on instruction 0).

Table 3-29. Timing for Load Miss Line Alias Example 

Cycle Number

Instr.
No.

Instruction 0 1 2 3–81 82 83 84 85–99

0 lwz r3,0x0(r9) E0 E1 Miss LMQ0 LMQ0/E2 LMQ0/C LMQ0 LMQ0

1 add r4,r3,r20 E C

2 lwz r5,0x4(r9) I E0 E1 E1 E1 E1 E1 E1

3 add r6,r5,r4 I

4 lwz r7,0x20(r9) D I E0 E0 E0 E0 E0 E0

5 add r8,r7,r6 D I

100–102 103 104 105 106–184 185 186 187

0 lwz r3,0x0(r9)

1 add r4,r3,r20

2 lwz r5,0x4(r9) E1 E2 C

3 add r6,r5,r4 E C

4 lwz r7,0x20(r9) E0 E1 Miss LMQ0 LMQ0 LMQ0/E2 LMQ0/C LMQ0

5 add r8,r7,r6 E C
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However, if hardware prefetching is enabled, the hardware starts prefetching the line desired by instruction
4 even before instruction 4 accesses (and misses) the L1 data cache, thus parallelizing some serialized bus
accesses. In Table 3-30, with prefetching enabled, performance is improved by about 40 percent. In this
case, the prefetch is not finished when instruction 4 goes to the L2 cache, so the load is forced to stall while
the prefetch bus access is completed. However, in other cases, the hardware prefetch is entirely finished,
allowing subsequent loads to have the access time of a L2 cache hit. In general, hardware prefetch benefits
are very dependent on what type of applications are run and how the system is configured.

Hardware prefetching is often preferable. However, sometimes an unnecessary prefetch transaction can
delay a later-arriving demand transaction and slow down the processor. Also, as described in Section 3.7.7,
“DST Instructions and the Vector Touch Engine (VTE),” if software prefetching is used, hardware
prefetching may sometimes provide more interference than benefit.

Table 3-30. Hardware Prefetching Enable Example 

Cycle Number

Instr.
No.

Instruction 0 1 2 3–81 82 83 84 85–99

0 lwz r3,0x0(r9) E0 E1 Miss LMQ0 LMQ0 LMQ0/E2 LMQ0/C LMQ0

1 add r4,r3,r20 E C

2 lwz r5,0x4(r9) I E0 E1 E1 E1 E1 E1 E1

3 add r6,r5,r4 I

4 lwz r7,0x20(r9) D I E0 E0 E0 E0 E0 E0

5 add r8,r7,r6 D I

100–102 103 104 105 106–133 134 135 136

0 lwz r3,0x0(r9)

1 add r4,r3,r20

2 lwz r5,0x4(r9) E1 E2 C

3 add r6,r5,r4 E C

4 lwz r7,0x20(r9) E0 E1 Miss LMQ0 LMQ0 LMQ0/E2 LMQ0/C LMQ0

5 add r8,r7,r6 E C
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Part IV 
Microprocessor Application to Optimal Code
Although many of the code optimizations described in this document can also be performed by hand in
assembly language, this chapter focuses on improving the code performance on an established compiler tool
chain.

If the goal is instead to build a compiler for the PowerPC architecture, a useful (but outdated) document is
the PowerPC Compiler Writer’s Guide. However, many of the code sequences suggested in that document
are no longer optimal, especially for the MPC7450.

There are multiple locations in the compiler tool chain, independent of the source language used, in which
code can be transformed to better exploit the architecture and microarchitecture. The optimizations in this
chapter are loosely classified into expected work and benefit. The actual work depends on the compiler tool
chain infrastructure.

4.1 Optimizations to Exploit the MPC7450 
Microprocessor

The MPC7450 microprocessor has more functional units and extends the basic pipeline compared with
previous microprocessors that implement the PowerPC architecture. Running code on an MPC7450 that
was targeted or optimized for a previous microprocessor may leave some functional units idle and may
cause the pipeline to stall more often. Although the MPC7450 attempts to dynamically reorder code, a
compiler can often do a much better job.

This section describes several optimizations that take advantage of features of the MPC7450 processor.
Instruction scheduling is likely to provide the largest performance impact. Also, due to the MPC7450 deeper
pipeline, some serializing instructions have a higher performance penalty than on previous processors; their
use should be carefully examined to see if an alternate instruction will suffice. Finally, because some
instruction timings have changed, some commonly used code sequences can be modified to run faster.

4.1.1 Instruction Scheduling
To get good performance, the compiler must schedule the code for the target microprocessor. A good first
approximation at an optimal schedule can be obtained by modeling the number of instructions that can be
issued per clock, the number and types of functional units, the pipeline stages for each type of instruction
and the number of cycles spent in each stage, as well as the overall latency of the instruction. More
sophisticated scheduling models may incorporate the issue and completion queue sizes. The details
necessary for modifying the internal scheduling models can be found in the preceding chapters.

4.1.2 Instruction Form Selection
There are several instructions that cause execution serialization, either always (carry consuming instructions
like adde and subfe, for example), or under certain conditions (such as overflow-recording-form
instructions that change XER[SO]). As the pipeline gets longer, the potential loss of performance due to
serialization gets higher. Care should be exercised during instruction selection to avoid those serializations
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in the final code. A general set of rules is given below. Although these rules are generally reliable, there are
always a few cases where it can make sense to break them.

• Use the load update and store update forms to merge a subsequent pointer update instruction with 
the access. Note that excessive use of the load-update form (three load-update instructions in a 
row) can cause dispatch and retirement stalls. See Section 3.2, “Dispatch Considerations,” and 
Section 3.4.2, “Completion Groupings,” for more details.

• Avoid carry consumers (instructions like adde that require the XER[CA] as an input) unless doing 
more than 32-bit arithmetic.

• Use carry generating instructions such as addc and subfc, only when they are needed to generate 
XER[CA].

• Use the record form of instructions only when needed.

• Avoid toggling XER[SO]; see Section 3.4.3, “Serialization Effects.”

4.1.3 Optimal Code Sequences
Programming languages are implemented such that applications repeatedly use smaller sequences of code
for common operations. Some examples are absolute value, minimum and maximum of two numbers and
bit manipulations. For those simple functions it is worthwhile to find the set of MPC7450 instructions that
has the best performance and use these instructions during code generation, writing peephole optimizations
where necessary. Part V, “Optimized Code Sequences,” lists a number of such known functions and
respective optimal instruction sequences.

4.1.4 Conversion of Control Path into Data Path
Some control path problems can be converted to data path problems (predication). This includes the use of
instructions like fsel or vsel, or groups of instructions on the integer side to emulate a conditional integer
select. This approach should be taken only after careful analysis. It is typically useful if the branch is
difficult to predict or the computation overhead of the predicated code is very small.

Note that as pipelines get longer and mispredicts get more expensive, converting control path problems to
data path problems is an increasingly favored solution.

4.2 Optimizations to Exploit the Branch Unit
Because the MPC7450 microprocessor has higher branch penalties and a hardware link stack, the compiler
toolchain should consider some measures to improve branch performance.

4.2.1 Bias Towards CTR for Loops 
Using the CTR is generally preferable over pairing compare/branch instructions. This has been a guideline
for prior implementations, but the possible penalty of using add/compare/branch instead of the CTR-based
branch-and-decrement is greater than on previous processors.

See Section 3.1.2.2, “Branch Loop Example,” for an example of how CTR-based loops can be better.
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4.2.2 Using the Link Register 
The CTR instruction pair mtctr/bcctr should be used for all computed branches. This includes case
statement jumps and all indirect function calls. Note that to save the return address on indirect function calls,
the link form of the bcctr instruction (bcctrl) should be used. The LR-based indirect branch (bclr) should
be used only for subroutine call/return. Misusing the LR and CTR can corrupt the hardware link stack such
that several future branches are mispredicted.

See Section 3.1.4, “Using the Link Register (LR) Versus the Count Register (CTR) for Branch Indirect
Instructions,” for more information.

4.2.3 Branch Bubbles
Where possible, branches should be biased as fall-through. This is because taken branches can interrupt the
fetch supply. On the MPC7450, a taken branch incurs a 1–2 cycle fetch bubble. A 1-cycle bubble occurs for
a b or bc with a BTIC hit. A 2-cycle bubble occurs for a BTIC miss or for branches that cannot use the BTIC
(bcctr, bclr). The 2-cycle fetch bubble is due to the 2-cycle fetch latency to the instruction cache.

Section 3.1.1.1, “Fetch Alignment Example,” and Section 3.1.1.2, “Branch-Taken Bubble Example,” show
how the fetch supply works and why it is useful to bias branches to the not-taken case.

4.2.4 Branch Dependencies
The availability of eight CR fields in the PowerPC architecture means that multiple condition checks can
effectively occur simultaneously. Some scenarios can take advantage of this to handle branch-dependent
indicators such that the branch resolves before it would be predicted, eliminating the cost of misprediction.
Even if the branch is mispredicted, having data earlier may allow the mispredict recovery to occur earlier.

Issuing a mtctr or mtlr instruction well ahead of its dependent branch instruction can often help avoid stalls
or mispredictions as well.

4.3 Optimizations to Exploit the Memory Hierarchy
Memory considerations can also affect code performance. This section describes several areas where there
is opportunity for optimization.

4.3.1 Data Alignment
Any data cache access crossing a double-word boundary (with the exception of vectors, which are naturally
quad-word based accesses) causes misalignment, and incurs at least one additional cycle of latency. See
Section 3.7.5, “Misalignment Effects,” for more MPC7450 specific information.

Note that misalignment penalties may increase on future high-performance microprocessor.

4.3.2 Instruction Code Alignment
Aligning a branch target can be useful to the fetch supply. Preferred alignment for a MPC7450 should be
such that the first four instructions of a branch target should be in the same cache block. See Section 3.1.1.1,
“Fetch Alignment Example,” for more information.
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In future high performance processors that implement the PowerPC architecture, the preferred instruction
alignment will be that the branch target be the first instruction in a quad word (target address =
0xxxxx_xxx0).

4.3.3 Load Hoisting
Load hoisting refers to the general technique of increasing the load-to-use distance. Increasing the time
between when a load is executed and the operand is needed reduces stalls waiting for the load to complete
(although a balance must be struck against the increased register pressure). Note that typical MPC7450 load
latencies are longer than in prior microprocessors (see the code in Section 3.1.1.1, “Fetch Alignment
Example”) increasing the benefit of load hoisting.

Some possible load hoisting optimizations include scheduling, moving loads from basic blocks to previous
basic blocks, and moving loads from the bodies of if-then statements or from loops when the analysis
indicates it is safe.

One potential situation that may prevent load hoisting is the possibility of pointer aliasing between a load
and some store operations. Careful analysis of such situations may show that performance would improve
if the code was compiled assuming no aliases between these accesses, with a check and a branch at the
beginning of this code to fix-up code or an alternate version of the code that handles the aliasing case.

The following example shows a function modify_a_b that can be optimized to perform run-time
checking of aliasing.

C Source Code:

void modify_a_b(int *a, int *b) {
*a += 5;
*b &= 0xff;
*a += *b;
...

}

Assembly code:

lwz 9,0(3)
addi 9,9,5
stw 9,0(3)
lbz 11,3(4)
stw 11,0(4)
lwz 0,0(3)
add 0,0,11
stw 0,0(3)
...
blr

Here is C and assembly code of the function after inserting a run-time alias check. Note that within the first
block, the pointers are only dereferenced once for loads and once for stores.

void modify_a_b_smart(int *a, int *b) {
if (a != b) {

int aval = *a;
int bval = *b;
aval += 5;
bval &= 0xff;
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aval += bval;
...
*a = aval;
*b = bval;

} else {
*a += 5;
*b &= 0xff;
*a += *b;
...

}
}

Assembly code:

cmpw 0,3,4
beq alias_case
lwz 9,0(3)
lbz 0,3(4)
addi 9,9,5
add 9,9,0
...
stw 9,0(3)
stw 0,0(4)
blr

alias_case:
lwz 9,0(3)
addi 9,9,5
rlwinm 9,9,0,23,30
...
stw 9,0(3)
blr

Note that in both the non-alias and alias case, the new code has higher performance. In the non-alias case,
only one load and store per pointer is needed; in the alias case, because the compiler knows that the two
pointers point to the same location, only a single load and store is needed. Also note that in the alias case,
additional optimizations may now be possible. Here, the AND operation on b and the add to a can now be
merged into a single rlwinm instruction since a and b are now known to be the same memory location.

4.4 Other Optimizations Worth Investigating
As the complexity of architecture design increases, each new processor relies more on the compiler
toolchain to perform complex analysis and code transformations to fully use the architecture features. The
following sections describe some optimizations that are significant for the MPC7450 and are likely to be
more important on future microprocessors:

4.4.1 Software-Controlled Data Prefetching 
On the MPC7450, care should be taken to allow the microprocessor to pipeline data cache misses. For some
applications, pipelining cache misses to lower levels of the memory hierarchy is key to achieving high
performance. Because the MPC7450 stalls on multiple load misses to the same cache block, it is often
necessary to clump miss accesses together when trying to achieve high bandwidth.
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For example, when it is known (or strongly suspected) that a 128-byte array structure is not in the data cache,
it is often not a good idea to load it in by using a looped series of lwzu rx, 0x4(ry) instructions. Note that
128 bytes is equal to four cache blocks on the MPC750/MPC7400/MPC7450, because all three
microprocessors have 32-byte cache blocks. 

The second (and subsequent) loads stall until the first gets its data from memory. When the 9th,17th, and
25th loads miss, the 10th, 18th, and 26th loads collide on them and again stall the pipe. Better bandwidth
can be achieved if the four cache block misses are allowed to go out in parallel, which requires that each of
the first four accesses be to one of the four lines that needs loading.

Determining whether this is best done with loads, dcbt instructions, a dst, or a combination of the above,
can be complicated. In the above scenario, one load and three dcbt instructions may be the best solution.
Generally, dcbt instructions are best used to prefetch a few cache blocks of information, but dst instructions
are best used when pulling in a larger amount of information. However, the trade-offs are often application
dependent.

The VTE engine on the MPC7450 can initiate a prefetch once every three cycles. Because the engine can
sometimes fall behind actual code execution and thus become useless, one useful trick can be to prefetch
less data with a particular dst, and then refresh the dst every so often with a new block to prefetch.
Determining the amount of data to prefetch with a particular dst and the refresh rate is often very application
(also platform/environment) dependent, and usually requires some trial and error experimentation. See
Section 5.2.1.8 “Stream Usage Notes,” in the AltiVec Technology Programming Environments Manual for
additional reasons why numerous small dst operations are likely to provide better performance than a few
large dst operations.

The following code shows pseudo-code for two loops. The first loop performs a single dst operation for the
entire data stream, while the second performs several smaller dst operations. If the VTE engine falls behind
for the first loop, it provides no benefit from that time forward. If the VTE engine in the second loop falls
behind the computation, it is likely that in the next iteration of the outer loop, the VTE engine will again be
prefetching useful data, as the VTE engine is reprogrammed to prefetch what is going to be required next.

/* Single dst for entire array. */
vec_dst(a, <256 blocks of 32 byte size>)
for (i=0; i<2048; i++) {

total += A[i];
}
/* Series of smaller dsts. */
for (i=0; i<2048; i+=64) {/* 32 iterations of this loop. */

vec_dst(a[i], <8 blocks of 32 byte size>)
for (j=i; j<i+64; j++) {

total += A[j];
}

}

For example, assume that the VTE engine only prefetches the first four blocks in the dst before falling
behind. In the first loop, only 4 out of 256 blocks are prefetched. In the second loop, the first four blocks in
each iteration of the outer loop are prefetched in time, for a total of 128 blocks usefully prefetched.
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4.4.2 Software Pipelining
With longer pipelines, more functional units, and higher instruction issue rate, the MPC7450 can provide
more instruction level parallelism (ILP) than previous microprocessors. Loops that have long dependency
chains may benefit from software pipelining. On those loops, software pipelining increases ILP by
executing several iterations of the loop in parallel.

4.4.3 Loop Unrolling for Long Pipelines 
Small body inner loops may benefit from unrolling on the MPC7450 more than on prior microprocessors
that implement the PowerPC architecture. By increasing the number of instructions in a loop and reducing
the number of times the loop needs to execute, possible stalls are minimized. The drawback of this technique
is the increased instruction space size required to hold the information. In some cases, increased code size
can result in more instruction cache misses, which may cost more performance than the loop unrolling
gained.

The costs of setting up and fixing up code may also affect the loop unrolling trade-off.

To further extend the code example first used in Section 3.1.1, “Fetching,” loop unrolling can be applied.
Because every taken branch on the MPC7450 represents at least one cycle of lost fetch opportunity, it can
often be more advantageous to unroll loops than it has been in the past. The following code assumes that it
is permitted to loop unroll four times (that is, the loop size is evenly divisible by four) and that a value of
loopsize/4 was previously loaded into the CTR (rather than the prior two examples, which assumed the loop
size was loaded into the CTR).

xxxxxx00 loop: lwzu r10,0x4(r9)
xxxxxx04 add r11,r11,r10
xxxxxx08 lwzu r10,0x4(r9)
xxxxxx0C add r11,r11,r10
xxxxxx10 lwzu r10,0x4(r9)
xxxxxx14 add r11,r11,r10
xxxxxx18 lwzu r10,0x4(r9)
xxxxxx1C add r11,r11,r10
xxxxxx20 bdnz loop

Table 4-1 shows that the fetch supply is no longer the bottleneck for the above code sequence. At this point,
the limiting bottleneck becomes the single cache port. For this code, one effective iteration (lwzu/add) is
completing per cycle. Loop unrolling doubles the performance of the aligned example case.

Table 4-1. MPC7450 Execution of One—Two Iterations of Code Loop Example 

Instruction 0 1 2 3 4 5 6 7 8 9

lwzu (1) D I E0 E1 E2 C

add (1) D I — — — E C

lwzu (2) — D I E0 E1 E2 C

add (2) — D I — — — E C

lwzu (3) — D I E0 E1 E2 C

add (3) — D I — — — E C

lwzu (4) — — D I E0 E1 E2 C
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4.4.4 Vectorization 
Transforming code to reference vector data as opposed to scalar data can produce significant performance
benefits for certain types of code. The MPC7400 and MPC7450 support the AltiVec extension to the
PowerPC architecture, which enables vector SIMD computing.

The analysis required to automatically vectorize scalar applications is quite sophisticated and requires
significant infrastructure to incorporate into a compiler. Note that it is possible to create a preprocessor that
takes a C file, performs the autovectorization using the AltiVec programming interface, and outputs a vector
version of the C file. Now the file can be compiled using any AltiVec-enabled compiler and no modifications
to the compiler itself were required.

The AltiVec Programming Interface Manual, available on the Motorola website, contains information on the
AltiVec programming interface and should be referenced.

To take the example in Section 4.4.3, “Loop Unrolling for Long Pipelines,” one step further, this code
sequence could also be vectorized. Table 4-2 is a vectorized (and loop unrolled) version of the following
code sequence. This code assumes that the data is aligned on a 128-bit boundary. Note that the lack of a
vector update form means a few extra integer registers must be reserved for holding constants, but because
the primary computation is now in the vector registers, this should not be a problem. A vector sum across
(vsumsws) is needed after the loop body to sum the four words within the vector into a single final result.

xxxxxx00 loop: lvx v10,r8,r9
xxxxxx04 vaddsws v11,v11,v10
xxxxxx08 lvx v10,r7,r9
xxxxxx0C vaddsws v11,v11,v10
xxxxxx10 lvx v10,r6,r9
xxxxxx14 vaddsws v11,v11,v10
xxxxxx18 lvx v10,r5,r9
xxxxxx1C vaddsws v11,v11,v10
xxxxxx20 addi r9,r9,0x10
xxxxxx24 bdnz loop
xxxxxx28 vsumsws v11,v11,v0

Table 4-2 shows that the code has been vastly accelerated from the original example. For this code, four
effective iterations (lwz/add) are completing per cycle. Vectorization quadruples performance over the loop
unrolled example and provides a full 12x performance increase from the original example in Table 1-1.

add (4) — — D I — — — E C

bdnz BE D — — — — — C

lwzu (5) D I E0 E1 E2 C

add (5) D I — — — E

Table 4-1. MPC7450 Execution of One—Two Iterations of Code Loop Example (continued)

Instruction 0 1 2 3 4 5 6 7 8 9
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Table 4-2. MPC7450 Execution of 1–2 Iterations of Code Loop Example 

Instruction 0 1 2 3 4 5 6 7 8 9

lvx (1-4) D I E0 E1 E2 C

vaddsws (1-4) D I — — — E C

lvx (5-8)) — D I E0 E1 E2 C

vaddsws (5-8) — D I — — — E C

lvx (9-12) — D I E0 E1 E2 C

vaddsws (9-12) — D I — — — E C

lvx (13-16) — — D I E0 E1 E2 C

vaddsws (13-16)) — — D I — — — E C

addi — D I E — — — C

bdnz BE — D — — — — C

lwzu (5) D I E0 E1 E2 —

add (5) D I — — — E
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Part V 
Optimized Code Sequences
Many of the code sequences given in the book the PowerPC Compiler Writer’s Guide as optimal code
sequences are no longer optimal for current microprocessors. The primary problem with the sequences
suggested in the PowerPC Compiler Writer’s Guide is that they use carry forwarding, and the execution
serialization of carry consumers on the MPC7450 has often made the suggested sequence inferior to
alternatives. This chapter provides better optimized code sequences.

Compiler writers and programmers should carefully evaluate the given options for each sequence—often, a
longer set of instructions may execute faster than a sequence containing fewer instructions. However, the
additional instruction cache space requirements and register usage must be taken into account to determine
which sequence is better in a given case. For code sequences where a cycle count is given, that cycle count
is for the case where the instructions in question are the only instructions executing on the machine. This
assumes that all execution units of the processor are available, and that certain instructions may execute in
parallel. For cases where the cycle count is equal for the PowerPC Compiler Writer’s Guide sequence and
the MPC7450 sequence, the MPC7450 sequence is recommended because it is more likely to do well when
dynamic scheduling occurs.

The tables that follow give the standard recommended code sequence for each operation, along with a
MPC7450-specific recommended sequence, where applicable. The standard recommended code sequences
were taken from the Compiler Writer’s Guide and are located in the columns titled Compiler Writer’s Guide
code. For each code sequence, the input variables are allocated to registers r3, r4, and possibly r5, depending
on the number of arguments. The highest-numbered register used is allocated to the result. All registers
between those used for the arguments and the results hold temporary values.

The future designs mentioned in this document refer to future high performance designs that implement the
PowerPC architecture. The statements may not apply to all future designs.

5.1 Signed Division Sequences
The entries in Table 5-1 originally come from Section 3.2.3.5 of the PowerPC Compiler Writer’s Guide. The
argument is assumed to be in r3.

Table 5-1. Signed Division Sequences

Operation
Compiler Writer’s 

Guide code
MPC7450 Code

(If Different)
Comments

Signed divide by 2 srawi r4,r3,1
addze r4,r4

Cycles: 5

srwi r4,r3,31
add r5,r4,r3
srawi r6,r5,1

Cycles: 3

The MPC7450 sequence takes 4 cycles to 
complete, but the GPR result in r6 is available 
after 3 cycles. As it is the only part of the result 
that is used, the sequence is assumed to take 
3 cycles.

Signed divide by 4 srawi r4,r3,2
addze r4,r4

Cycles: 5

srawi r4,r3,k
srwi r5,r4,30
add r6,r5,r3
srawi r7,r6,2

Cycles: 4

k = any constant between 1 and 3. The 
purpose of the first srawi is to provide a 
duplicate copy of the sign bit, so any amount 
of shifting that results in at least 2 copies of the 
sign bit will suffice.
The MPC7450 sequence avoids execution 
serialization and is more likely to run well on 
future designs.
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5.2 Comparisons and Comparisons Against Zero
Table 5-2 shows the code sequences from Section D.1 of the PowerPC Compiler Writer’s Guide. In each
example, v0 is located in r3 and v1 is located in r4.

Table 5-2. Comparisons and Comparisons Against Zero 

Operation
Compiler Writer’s 

Guide Code
MPC7450 Code

(If Different)
Comments

eq
r = (v0 == v1)

subf r5,r3,r4
cntlzw r6,r5
srwi r7,r6,5

Cycles: 3

ne
r = (v0 != v1)

subf r5,r3,r4
addic r6,r5,-1
subfe r7,r6,r5

Cycles: 5

subf r5,r3,r4
subf r6,r4,r3
or r7,r6,r5
srwi r8,r7,31

Cycles: 3

The MPC7450 
sequence avoids the 
execution-serializing 
addic and subfe 
pair. Additionally, the 
first 2 instructions 
may execute in 
parallel in the 2 
integer units.

les/ges
(r = (signed_word) v0 <= (signed_word) v1) 
(r = (signed_word) v1>= (signed_word) v0)

srwi r5,r3,31
srawi r6,r4,31
subfc r7,r3,r4
adde r8,r6,r5

Cycles: 5

srawi r6,r4,31
subfc r7,r3,r4
srwi r5,r3,31
adde r8,r6,r5

Cycles: 5

The MPC7450 
sequence reorders 
the instructions to 
increase the 
likelihood of better 
performance in 
real-world scenarios 
and on future 
processors.

leu/geu

r = (unsigned_word) v0 <= (unsigned_word) v1

r = (unsigned_word) v1 >= (unsigned_word) v0;

li r6,-1
subfc r5,r3,r4
subfze r7,r6

Cycles: 4

subf r5,r3,r4
orc r7,r4,r3
srwi r6,r5,1
subf r8,r6,r7
srwi r9,r8,31

Cycles: 4

With good scheduling 
and register 
allocation, the 
MPC7450 sequence 
is more likely to 
perform well on future 
processors. If 
instruction cache 
usage or register 
usage is an issue, the 
PowerPC Compiler 
Writer’s Guide 
sequence is 
preferred.

lts/gts

r = (signed_word) v0 < (signed_word ) v;

r = (signed_word) v1 > (signed_word) v0;

subfc r5,r4,r3
eqv r6,r4,r3
srwi r7,r6,31
addze r8,r7
rlwinm r9,r8,0,31,31

Cycles: 6

xor r5,r4,r3
srawi r6,r5,31
or r7,r6,r3
subf r8,r4,r7
srwi r9,r8,31

Cycles: 5
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5.3 Negated Comparisons and Negated Comparisons 
Against Zero

Table 5-3 shows the code sequences from Section D.2 of the PowerPC Compiler Writer’s Guide. In each
example, v0 is located in r3 and v1 is located in r4.

ltu/gtu

r = (unsigned_word) v0 < (unsigned_word) v1

r = (unsigned_word) v1 > (unsigned_word) v0;

subfc r5,r4,r3
subfe r6,r6,r6
neg r7,r6

Cycles: 5

xor r5,r4,r3
cntlzw r6,r5
slw r7,r4,r6
srwi r8,r7,31

Cycles: 4

eq0

r = (v0 == 0);

subfic r4,r3,0
adde r5,r4,r3

Cycles: 4

cntlzw r4,r3
srwi r5,r4,5

Cycles: 2

Both sequences are 
listed in the PowerPC 
Compiler Writer’s 
Guide, with the 
subfic and adde 
sequence being first. 
The cntlzw and srwi 
sequence is 
preferred.

ne0

r = (v0 != 0);

addic r4,r3,-1
subfe r5,r4,r3

Cycles: 4

neg r4,r3
or r5,r4,r3
srwi r6,r5,31

Cycles: 3

les0

r = (signed_word) v0 <= 0

neg r4,r3
orc r5,r3,r4
srwi r6,r5,31

Cycles: 3

li r4,1
cntlzw r5,r3
rlwnm r6,r4,r5,31,31

Cycles: 2

ges0 

r = (signed_word) v0 >= 0;

srwi r4,r3,31
xori r5,r4,1

Cycles: 2

lts0

r = (signed_word) v0 < 0;

srwi r4,r3,31

Cycles: 1

gts0

r = (signed_word) v0 > 0;

neg r4,r3
andc r5,r4,r3
srwi r6,r5,31

Cycles: 3

Table 5-2. Comparisons and Comparisons Against Zero (continued)

Operation
Compiler Writer’s 

Guide Code
MPC7450 Code

(If Different)
Comments
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Table 5-3. Negative Comparisons and Negative Comparisons Against Zero 

Operation
Compiler Writer’s 

Guide Code
MPC7450 Code

(If Different)
Comments

neq

r = -(v0 == v1)

subf r5,r4,r3
addic r6,r5,-1
subfe r7,r7,r7

Cycles: 5

subf r5,r3,r4
subf r6,r4,r3
nor r7,r6,r5
srawi r8,r7,31

Cycles: 3

The MPC7450 
sequence takes 4 
cycles to complete, but 
the GPR result in r8 is 
available after 3 cycles. 
As this is the only part 
of the result that is 
used, the sequence is 
assumed to take 3 
cycles.

nne

r = -(v0 != v1)

subf r5,r4,r3
subfic r6,r5,0
subfe r7,r7,r7

Cycles: 5

subf r5,r3,r4
subf r6,r4,r3
or r7,r6,r5
srawi r8,r7,31

Cycles: 3

The MPC7450 
sequence takes 4 
cycles to complete, but 
the GPR result in r8 is 
available after 3 cycles. 
As this is the only part 
of the result that is 
used, the sequence is 
assumed to take 3 
cycles.

nles/nges

r = -((signed_word) v0 <= (signed_word) v1)

r = -((signed_word)v1 >= (signed_word) v0)

xoris r5,r3,0x8000
subf r6,r3,r4
addc r7,r6,r5
subfe r8,r8,r8

Cycles: 5

nleu/ngeu 

r = -((unsigned_word) v0 <= (unsigned_word) v1)

r = -((unsigned_word) v1 >= (unsigned_word) v0)

subfc r5,r3,r4
addze r6,r3
subf r7,r6,r3

Cycles: 5

nlts/ngts

r = -((signed_word) v0 < (signed_word) v1);

r = -((signed_word) v1 > (signed_word) v0)

subfc r5,r4,r3
srwi r6,r4,31
srwi r7,r3,31
subfe r8,r7,r6

Cycles: 4

nltu/ngtu

r = -((unsigned_word) v0 < (unsigned_word) v1)

r = -((unsigned_word) v1 > (unsigned_word) v0)

subfc r5,r3,r3
subfe r6,r6,r6

Cycles: 4

neq0

r = -(v0 == 0)

addic r4,r3,-1
subfe r5,r5,r5

Cycles: 4

cntlzw r4,r3
srwi r5,r4,5
neg r6,r5

Cycles: 3
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5.4 Comparisons with Addition
Table 5-4 shows the code sequences from Section D.5 of the PowerPC Compiler Writer’s Guide. It is
assumed that there are three arguments for each operation. The v0 and v1 are the two arguments that are
used in the comparison and v2 is added depending on the result of the comparison. The register assumptions

nne0

r = -(v0 != 0)

subfic r4,r3,0
subfe r5,r5,r5

Cycles: 4

neg r4,r3
or r5,r4,r3
srawi r6,r5,31

Cycles: 3

The MPC7450 
sequence takes 4 
cycles to complete, but 
the GPR result in r6 is 
available after 3 cycles. 
As this is the only part 
of the result that is 
used, the sequence is 
assumed to take 3 
cycles.

nles0 

r = -((signed_word) v0 <= 0);

addic r4,r3,-1
srwi r5,r3,31
subfze r6,r5

Cycles: 4

neg r4,r3
orc r5,r3,r4
srawi r6,r5,31

Cycles: 3

The MPC7450 
sequence takes 4 
cycles to complete, but 
the GPR result in r6 is 
available after 3 cycles. 
As this is the only part 
of the result that is 
used, the sequence is 
assumed to take 3 
cycles.

nges0

r = -((signed_word) v1 >= 0);

srwi r4,r3,31
addi r5,r4,-1

Cycles: 2

nlts0

r = -((signed_word) v0 < 0)

srawi r4,r3,31

Cycles: 1

The srawi produces a 
GPR result in 1 cycle, 
even though the 
instruction does not 
complete and produces 
a carry until after 2 
cycles. As the carry is 
not used, the 
instruction is assumed 
to complete in 1 cycle.

ngts0

r = -((signed_word) v0 > 0)

subfic r4,r3,0
srwi r5,r3,31
addme r6,r5

Cycles: 4

neg r4,r3
andc r5,r4,r3
srawi r6,r5,31

Cycles: 3

The MPC7450 
sequence takes 4 
cycles to complete, but 
the GPR result in r6 is 
available after 3 cycles. 
As this is the only part 
of the result that is 
used, the sequence is 
assumed to take 3 
cycles.

Table 5-3. Negative Comparisons and Negative Comparisons Against Zero (continued)

Operation
Compiler Writer’s 

Guide Code
MPC7450 Code

(If Different)
Comments
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are v0 in r3, v1 in r4, v2 in r5. For the cases where the second operand is assumed to be 0 such as eq0+,
assume that v0 is in r3 and v2 is in r4. The argument v1 is assumed to be 0 for these cases and does not
require a register.

Table 5-4. Comparisons with Addition 

Operation
Compiler Writer’s 

Guide Code
MPC7450 Code

(If Different)
Comments

eq+

r = (v0 == v1) + v2;

subf r6,r3,r4
subfic r7,r6,0
addze r8,r5

Cycles: 5

xor r6,r3,r4
cntlzw r6,r6
rlwinm r6,r6,27,31,31
add r7,r5,r6

Cycles: 4

ne+

r = (v0 != v1) + v2;

subf r6,r3,r4
addic r7,r6,-1
addze r8,r5

Cycles: 5

les+/ges+

r = ((signed_word) v0 <= (signed_word) v1) + v2;

r = (signed_word) v1 >= (signed_word) v0) + v2;

xoris r6,r3,0x8000
xoris r7,r4,0x8000
subfc r8,r6,r7
addze r9,r5

Cycles: 5

leu+/geu+

r = ((unsigned_word) v0 <= (unsigned_word) v1) + v2;

r = (unsigned_word) v1 >= (unsigned_word) v0) + v2;

subfc r6,r3,r4
addze r7,r5

Cycles: 4

lts+/gts+

r = ((signed_word) v0 < (signed_word) v1) + v2;

r = (signed_word) v1 > (signed_word) v0) + v2;

subf r6,r4,r3
xoris r7,r4,0x8000
addc r8,r7,r6
addze r9.r5

Cycles: 5

ltu+/gtu+

r = ((unsigned_word) v0 < (unsigned_word) v1) + v2;

r = (unsigned_word) v1 > (unsigned_word) v0) + v2;

subfc r6,r4,r3
subfze r7,r5
neg r8,r7

Cycles: 5

eq0+

r = (v0 == 0) + v1;

subfic r5,r3,0
addze r6,r4

Cycles: 4

cntlzw r5,r3
srwi r6,r5,5
add r7,r6,r4

Cycles: 3

ne0+

r = (v0 != 0) + v1

addic r5,r3,-1
addze r6,r4

Cycles: 4

neg r5,r3
or r6,r5,r3
srwi r7,r6,31
add r8,r7,r4

Cycles: 4
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les0+

r = ((signed_word) v0 <= 0) + v1

subfic r5,r3,0
srwi r6,r3,31
adde r7,r6,r4

Cycles: 4

cntlzw r6,r3
li r5,1
srw r7,r5,r6
add r8,r7,r4

Cycles: 3

ges0+

r = ((signed_word) v0 >= 0) + v1

addi r5,r4,1
srwi r6,r3,31
subf r7,r6,r5

Cycles: 2

srwi r6,r3,31
addi r5,r4,1
subf r7,r6,r5

Cycles: 2

The MPC7450 
sequence 
simply 
reorders the 
first 2 
instructions. 
This is likely to 
result in better 
performance 
on future 
processors.

lts0+

r = ((signed_word) v0 < 0) + v1

srwi r5,r3,31
add r6,r5,r4

Cycles: 2

gts0+

r = ((signed_word) v0 > 0) + v1

neg r5,r3
srawi r6,r5,31
addze r7,r4

Cycles: 6

neg r5,r3
andc r6,r5,r3
srwi r7,r6,31
add r8,r7,r4

Cycles: 4

Table 5-4. Comparisons with Addition (continued)

Operation
Compiler Writer’s 

Guide Code
MPC7450 Code

(If Different)
Comments
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Appendix A
MPC7450 Execution Latencies
This appendix lists the MPC750, MPC7400, and MPC7450 instruction execution latencies. Instructions are
sorted by mnemonic, primary, extend, form, unit, and cycle. 

A high level summary of execution latencies is given in Table A-1. In particular, note that MPC7450 load
latencies are 1–2 cycles longer than MPC750/MPC7400 latencies. The MPC7450 has higher clock
frequencies than the MPC750 and MPC7400. Also, the execution latencies for the FPU and VPU are
significantly longer.

NOTE
Some unit assignments have changed between designs. The reorganization
of the assignments of SRU/IU1/IU2 in the MPC750/MPC7400 to IU1/IU2
in the MPC7450 is a major change. Some MPC7400 vector instructions
executed by the VSIU of the VALU have also moved for the MPC7450: vsl
and vsr are now executed by the VPU, and mfvscr, mtvscr, vcmpbfp,
vcmpeqfp, vcmpgefp, vcmpgtfp, vmaxfp, and vminfp are now executed by
the VFPU. Note that on the MPC7450, the single field form of mtcrf is
executed by the IU1 and is no longer serialized, which should make it
much more useful.

The following tables specify unit assignments, latencies/throughput, and serialization issues for each branch
instruction. Note the following:

• Pipelined load/store and floating-point instructions are shown with cycles of total latency and 
throughput cycles separated by a colon (3:2 means 3-cycle latency with throughput of 1 every 2 
cycles). Floating-point instructions with a single entry in the cycles column are not pipelined.

Table A-1. Execution Latency in Processor Clock Cycle 

Instruction MPC750  MPC7400 MPC7450

Add, shift, rotate, logical 1 1 1

Multiply (32-bit) 6 6 4

Divide 19 19 23

Load int 2 2 3

Load float 2 2 4

Load vector — 2 3

Floating-point single (add, mul, madd) 3 3 5

Floating-point single (divide) 17 17 21

Floating-point double (add) 3 3 5

Floating-point double (mul, madd) 4 3 5

Floating-point double (divide) 31 31 35

Vector simple — 1 1

Vector permute — 1 2

Vector complex — 3 4

Vector floating-point — 4 4
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• The variable ‘b’ represents the processor/system-bus clock ratio.

• The term ‘broadcast’ indicates a bus broadcast that has a minimum value of 3*b.

• Additional cycles due to serialization are indicated in the cycles column with the following:

— c (completion serialization)

— s (store serialization)

— y (sync serialization)

— e (execution serialization) 

— r (refetch serialization)

NOTE
Branch execution takes at least 1 cycle, but if a branch executes before
reaching the dispatch point, it appears to execute in 0 cycles. On the
MPC7450, a conditional bclr instruction takes 2 cycles to execute.

Table A-3 lists system operation instruction latencies.
 

Table A-2. Branch Operation Execution Latencies 

Mnemonic Unit Cycles 

b[l][a] BPU 11

bc[l][a] BPU 1 1

1 Branches that do not modify the LR or CTR can 
be folded and not dispatched. Branches that are 
dispatched go only to the CQ. 

bcctr[l] BPU 11

bclr[l] BPU 1,21

Table A-3. System Operation Instruction Execution Latencies 

Mnemonic
MPC750 MPC7400 MPC7450

Unit Cycles Unit Cycles Unit Cycles

eieio SRU 1 LSU 2:3*b {y} LSU 3:5 {s}

isync SRU 2 {c,r} SRU 2 {c,r} — 1 0{r}

mfmsr SRU 1 SRU 1 IU2 3-2

mfspr (DBATs) SRU 3 {e} SRU 3 {e} IU2 4:3{e}

mfspr (IBATs) SRU 3 SRU 3 IU2 4:3

mfspr (MSS) - NA - - NA - - NA - - NA - IU2 5{e} 2

mfspr (other) SRU 1 {e} SRU 1 {e} IU2 3{e}

mfspr (Time Base) SRU 1 SRU 1 IU2 5{e}

mfspr (VRSAVE) - NA - - NA - SRU 1 {e} IU2 3:2

mfsr SRU 3 SRU 3 IU2 4:3

mfsrin SRU 3 {e} SRU 3 {e} IU2 4:3
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Table A-4 lists condition register logical instruction latencies.

mftb SRU 1 SRU 1 IU2 5{e}

mtmsr SRU 1 {e} SRU 1 {e} IU2 2{e}

mtspr (DBATs) SRU 2 {e} SRU 2 {e} IU2 2{e}

mtspr (IBATs) SRU 2 {e} SRU 2 {e} IU2 2{e}

mtspr (MSS) - NA - - NA - - NA - - NA - IU2 5{e}

mtspr (other) SRU 2 {e} SRU 2 {e} IU2 2{e}

mtspr (XER) SRU 1 {e} SRU 1 {e} IU2 2{e,r}1

mtsr SRU 2 {e} SRU 2 {e} IU2 2{e}

mtsrin SRU 2 {e} SRU 3 {e} IU2 2{e}

mttb SRU 1 {e} SRU 1 {e} IU2 5{e}

rfi SRU 2 {c,r} SRU 2 {c,r} —1 0{r}

sc SRU 2 {c,r} SRU 2 {c,r} —1 0{r}

sync SRU 3 LSU 8+broadcast {y} LSU 35 3{e,s}

tlbsync NULL — LSU 8+broadcast {y} LSU 3:5{s}

1 Refetch serialized instructions (if marked with a 0-cycle execution time) do not have an execute 
stage, and all refetch serialized instructions have 1 cycle between the time they are completed and 
the time the target/sequential instruction enters the fetch1 stage.

2 Memory subsystem SPRs are implementation specific and are described in the MPC7450 RISC 
Microprocessor Family User’s Manual.

3 Assuming a 5:1 processor to clock ratio.

Table A-4. Condition Register Logical Execution Latencies 

Mnemonic
MPC750,MPC7400 MPC7450

Unit Cycles Unit Cycles

crand SRU 1 {e} IU2 2{e}

crandc SRU 1 {e} IU2 2{e}

creqv SRU 1 {e} IU2 2{e}

crnand SRU 1 {e} IU2 2{e}

crnor SRU 1 {e} IU2 2{e}

cror SRU 1 {e} IU2 2{e}

crorc SRU 1 {e} IU2 2{e}

crxor SRU 1 {e} IU2 2{e}

mcrf SRU 1 {e} IU2 2{e}

Table A-3. System Operation Instruction Execution Latencies (continued)

Mnemonic
MPC750 MPC7400 MPC7450

Unit Cycles Unit Cycles Unit Cycles
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NOTE
The single field mtcrf executes significantly faster on the MPC7450 than
on previous designs. If a small number of fields (2 or 3) need to be moved,
it is often advantageous to issue two or three single field moves rather than
one multi-field move. With three instruction-wide dispatch/complete and
three IU1s, even performing eight single-field moves may sometimes be a
win over the execution of a serialized multi-field move.

Table A-5 lists integer unit instruction latencies.

mcrxr SRU 1 {e} IU2 2{e}

mfcr SRU 1 {e} IU2 2{e}

mtcrf SRU 1 {e} IU2/IU1 2{e}/1 1

1 mtcrf of a single field is executed by an IU1 in a single cycle and is not 
serialized.

Table A-5. Integer Unit Execution Latencies 

Mnemonic
MPC750/MPC7400 MPC7450

Unit Cycles Unit Cycles

addc[o][.] IU1/IU2 1 IU1 1

adde[o][.] IU1/IU2 1 {e} IU1 1 {e}

addi IU1/IU2 1 IU1 1

addic IU1/IU2 1 IU1 1

addic. IU1/IU2 1 IU1 1

addis IU1/IU2 1 IU1 1

addme[o][.] IU1/IU2 1 {e} IU1 1 {e}

addze[o][.] IU1/IU2 1 {e} IU1 1 {e}

add[o][.] IU1/IU2 1 IU1 1

andc[.] IU1/IU2 1 IU1 1

andi. IU1/IU2 1 IU1 1

andis. IU1/IU2 1 IU1 1

and[.] IU1/IU2 1 IU1 1

cmp IU1/IU2 1 IU1 1

cmpi IU1/IU2 1 IU1 1

cmpl IU1/IU2 1 IU1 1

cmpli IU1/IU2 1 IU1 1

Table A-4. Condition Register Logical Execution Latencies (continued)

Mnemonic
MPC750,MPC7400 MPC7450

Unit Cycles Unit Cycles
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cntlzw[.] IU1/IU2 1 IU1 1

divwu[o][.] IU2 19 IU2 23

divw[o][.] IU2 19 IU2 23

eqv[.] IU1/IU2 1 IU1 1

extsb[.] IU1/IU2 1 IU1 1 1

extsh[.] IU1/IU2 1 IU1 1 1

mulhwu[.] IU1 2,3,4,5,6 IU2 4:2 2

mulhw[.] IU1 2,3,4,5 IU2 4:2 2

mulli IU1 2,3 IU2 3:1

mull[o][.] IU1 2,3,4,5 IU2 4:2 2

nand[.] IU1/IU2 1 IU1 1

neg[o][.] IU1/IU2 1 IU1 1

nor[.] IU1/IU2 1 IU1 1

orc[.] IU1/IU2 1 IU1 1

ori IU1/IU2 1 IU1 1

oris IU1/IU2 1 IU1 1

or[.] IU1/IU2 1 IU1 1

rlwimi[.] IU1/IU2 1 IU1 1 1

rlwinm[.] IU1/IU2 1 IU1 1 1

rlwnm[.] IU1/IU2 1 IU1 1 1

slw[.] IU1/IU2 1 IU1 1 1

srawi[.] IU1/IU2 IU1 2 3

sraw[.] IU1/IU2 1 IU1 2 3

srw[.] IU1/IU2 1 IU1 11

subfc[o][.] IU1/IU2 1 IU1 1

subfe[o][.] IU1/IU2 1 {e} IU1 1(e}

subfic IU1/IU2 1 IU1 1

subfme[o][.] IU1/IU2 1 {e} IU1 1(e}

subfze[o][.] IU1/IU2 1 {e} IU1 1(e}

subf[.] IU1/IU2 1 IU1 1

tw IU1/IU2 2 IU1 2

twi IU1/IU2 2 IU1 2

Table A-5. Integer Unit Execution Latencies (continued)

Mnemonic
MPC750/MPC7400 MPC7450

Unit Cycles Unit Cycles
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Table A-6 shows latencies for FPU instructions. Instructions with a single entry in the cycles column are not
pipelined; all FPU stages are busy for the full duration of instruction execution and are unavailable to
subsequent instructions. Floating-point arithmetic instructions execute in the FPU; floating-point loads and
stores execute in the LSU.

For pipelined instructions, two numbers are shown separated by a colon. The first shows the number of
cycles required to fill the pipeline. The second is the throughput once the pipeline is full. For example,
fabs[.] passes through five stages with a 1-cycle throughput.

xori IU1/IU2 1 IU1 1

xoris IU1/IU2 1 IU1 1

xor[.] IU1/IU2 1 IU1 1

1 If the record bit is set, the GPR result is available in 1 cycle while the CR result is 
available in the second cycle.

2 32*32-bit multiplication has an early exit condition. If the 15 most-significant bits 
of the B operand are either all set or all cleared, the multiply finishes with a 
latency of 3 and a throughput of 1.

3 srawi[.] and sraw[.] produce a GPR result in 1 cycle, but the full results, 
including the CA, OV, CR results, are available in 2 cycles.

Table A-6. Floating-Point Unit (FPU) Execution Latencies 

Mnemonic
MPC750 MPC7400 MPC7450

Unit Cycles Unit Cycles Unit Cycles

fabs[.] FPU 3:1 FPU 3:1 FPU 5:1 

fadds[.] FPU 3:1 FPU 3:1 FPU 5:1 

fadd[.] FPU 3:1 FPU 3:1 FPU 5:1 

fcmpo FPU 3:1 FPU 3:1 FPU 5:1 

fcmpu FPU 3:1 FPU 3:1 FPU 5:1 

fctiwz[.] FPU 3:1 FPU 3:1 FPU 5:1 

fctiw[.] FPU 3:1 FPU 3:1 FPU 5:1 

fdivs[.] FPU 17 FPU 17 FPU 21

fdiv[.] FPU 31 FPU 31 FPU 35

fmadds[.] FPU 4:2 FPU 3:1 FPU 5:1 

fmadd[.] FPU 3:1 FPU 3:1 FPU 5:1 

fmr[.] FPU 3:1 FPU 3:1 FPU 5:1 

fmsubs[.] FPU 4:2 FPU 3:1 FPU 5:1 

fmsub[.] FPU 3:1 FPU 3:1 FPU 5:1 

fmuls[.] FPU 4:2 FPU 3:1 FPU 5:1 

fmul[.] FPU 3:1 FPU 3:1 FPU 5:1 

Table A-5. Integer Unit Execution Latencies (continued)

Mnemonic
MPC750/MPC7400 MPC7450

Unit Cycles Unit Cycles
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Table A-7 shows load and store instruction latencies. Load/store multiple and string instruction cycles are
represented as a fixed number of cycles plus a variable number of cycles, where n = the number of words
accessed by the instruction. Pipelined load/store instructions are shown with total latency and throughput
separated by a colon.

fnabs[.] FPU 3:1 FPU 3:1 FPU 5:1 

fneg[.] FPU 3:1 FPU 3:1 FPU 5:1 

fnmadds[.] FPU 4:2 FPU 3:1 FPU 5:1 

fnmadd[.] FPU 3:1 FPU 3:1 FPU 5:1 

fnmsubs[.] FPU 4:2 FPU 3:1 FPU 5:1 

fnmsub[.] FPU 3:1 FPU 3:1 FPU 5:1 

fres[.] FPU 10 FPU 10 FPU 14

frsp[.] FPU 3:1 FPU 3:1 FPU 5:1 

frsqrte[.] FPU 3:1 FPU 3:1 FPU 5:1 

fsel[.] FPU 3:1 FPU 3:1 FPU 5:1 

fsubs[.] FPU 3:1 FPU 3:1 FPU 5:1 

fsub[.] FPU 3:1 FPU 3:1 FPU 5:1 

mcrfs FPU 3 {e} FPU 3:1 {e} FPU 5{e}

mffs[.] FPU 3 {e} FPU 3 {e} FPU 5{e}

mtfsb0[.] FPU 3 FPU 3 {e} FPU 5{e}

mtfsb1[.] FPU 3 FPU 3 {e} FPU 5{e}

mtfsfi[.] FPU 3 FPU 3 {e} FPU 5{e}

mtfsf[.] FPU 3 FPU 3 {e} FPU 5{e}

Table A-7. Store Unit (LSU) Instruction Latencies 

Mnemonic  Class
MPC750 MPC7400 MPC7450

Unit Cycles Unit Cycles Unit Cycles

dcba - NA - - NA - - NA - LSU 2:3 {s} LSU 3:1 {s}

dcbf - NA - LSU 3:5 {e} LSU 2:3*b {s} LSU 3:11 {s}

dcbi - NA - LSU 3:3 LSU 2:3*b {s} LSU 3:11 {s}

dcbst - NA - LSU 3:5 {e} LSU 2:3*b {s} LSU 3:11 {s}

dcbt - NA - LSU 2:1 LSU 2:1 LSU 3:1

dcbtst - NA - LSU 2:1 LSU 2:1 LSU 3:1

dcbz - NA - LSU 3:6(M=0) LSU 2:3 {s} LSU 3:1 {s}

dss - NA - - NA - - NA - LSU 2:1 LSU 3:1

Table A-6. Floating-Point Unit (FPU) Execution Latencies (continued)

Mnemonic
MPC750 MPC7400 MPC7450

Unit Cycles Unit Cycles Unit Cycles
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dssall - NA - - NA - - NA - LSU 2:1 LSU 3:1

dsts[t] - NA - - NA - - NA - LSU 2:2 LSU 3:1

dst[t] - NA - - NA - - NA - LSU 2:2 LSU 3:1

eciwx - NA - LSU 2:1 LSU 2:1 LSU 3:1

icbi - NA - LSU 2:1 LSU 2:1 {s} LSU 3:1{s}

lbz - NA - LSU 3:4 LSU 2:3*b {s} LSU 3:1

lbzu GPR LSU 2:1 LSU 2:1 LSU 3:1

lbzux GPR LSU 2:1 LSU 2:1 LSU 3:1

lbzx GPR LSU 2:1 LSU 2:1 LSU 3:1

lfd Float LSU 2:1 LSU 2:1 LSU 4:1

lfdu Float LSU 2:1 LSU 2:1 LSU 4:1

lfdux Float LSU 2:1 LSU 2:1 LSU 4:1

lfdx Float LSU 2:1 LSU 2:1 LSU 4:1

lfs Float LSU 2:1 LSU 2:1 LSU 4:1

lfsu Float LSU 2:1 LSU 2:1 LSU 4:1

lfsux Float LSU 2:1 LSU 2:1 LSU 4:1

lfsx Float LSU 2:1 LSU 2:1 LSU 4:1

lha GPR LSU 2:1 LSU 2:1 LSU 3:1

lhau GPR LSU 2:1 LSU 2:1 LSU 3:1

lhaux GPR LSU 2:1 LSU 2:1 LSU 3:1

lhax GPR LSU 2:1 LSU 2:1 LSU 3:1

lhbrx GPR LSU 2:1 LSU 2:1 LSU 3:1

lhz GPR LSU 2:1 LSU 2:1 LSU 3:1

lhzu GPR LSU 2:1 LSU 2:1 LSU 3:1

lhzux GPR LSU 2:1 LSU 2:1 LSU 3:1

lhzx GPR LSU 2:1 LSU 2:1 LSU 3:1

lmw GPR LSU 2+n {c,e} LSU 2+n {c,e} LSU 3 + n 

lswi GPR LSU 2+n {c,e} LSU 2+n {c,e} LSU 3 + n 

lswx GPR LSU 2+n {c,e} LSU 2+n {c,e} LSU 3 + n 

lvebx Vector - NA - - NA - LSU 2:1 LSU 3:1

lvehx Vector - NA - - NA - LSU 2:1 LSU 3:1

lvewx Vector - NA - - NA - LSU 2:1 LSU 3:1

Table A-7. Store Unit (LSU) Instruction Latencies (continued)

Mnemonic  Class
MPC750 MPC7400 MPC7450

Unit Cycles Unit Cycles Unit Cycles
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lvsl Vector - NA - - NA - LSU 2:1 LSU 3:1

lvsr Vector - NA - - NA - LSU 2:1 LSU 3:1

lvx Vector - NA - - NA - LSU 2:1 LSU 3:1

lvxl Vector - NA - - NA - LSU 2:1 LSU 3:1

lwarx GPR LSU 3:1 {e} LSU 3:3 {e} LSU 3{e}

lwbrx GPR LSU 2:1 LSU 2:1 LSU 3:1

lwz GPR LSU 2:1 LSU 2:1 LSU 3:1

lwzu GPR LSU 2:1 LSU 2:1 LSU 3:1

lwzux GPR LSU 2:1 LSU 2:1 LSU 3:1

lwzx GPR LSU 2:1 LSU 2:1 LSU 3:1

stb GPR LSU 2:1 LSU 2:1 {s} LSU 3:1{s}

stbu GPR LSU 2:1 LSU 2:1 {s} LSU 3:1{s}

stbux GPR LSU 2:1 LSU 2:1 {s} LSU 3:1{s}

stbx GPR LSU 2:1 LSU 2:1 {s} LSU 3:1{s}

stfd Float LSU 2:1 LSU 2:1 ? LSU 3:3{s}2

stfdu Float LSU 2:1 LSU 2:1 ? LSU 3:3{s}2

stfdux Float LSU 2:1 LSU 2:1 {s} LSU 3:3{s}2

stfdx Float LSU 2:1 LSU 2:1 {s} LSU 3:3{s}2

stfiwx Float LSU 2:1 LSU 2:1 {s} LSU 3:1{s}

stfs Float LSU 2:1 LSU 2:1  ? LSU 3:3{s} 1

stfsu Float LSU 2:1 LSU 2:1 ? LSU 3:3{s}2

stfsux Float LSU 2:1 LSU 2:1 {s} LSU 3:3{s}2

stfsx Float LSU 2:1 LSU 2:1 {s} LSU 3:3{s} 2

sth GPR LSU 2:1 LSU 2:1 {s} LSU 3:1{s}

sthbrx GPR LSU 2:1 LSU 2:1 {s} LSU 3:1{s}

sthu GPR LSU 2:1 LSU 2:1 {s} LSU 3:1{s}

sthux GPR LSU 2:1 LSU 2:1 {s} LSU 3:1 {s}

sthx GPR LSU 2:1 LSU 2:1 {s} LSU 3:1 {s}

stmw - NA - LSU 2+n {e} LSU 2+n {e} LSU 3 + n{s}

stswi GPR LSU 2+n {e} LSU 2+n {e} LSU 3+ n{s}

stswx GPR LSU 2+n {e} LSU 2+n {e} LSU 3 + n{s}

stvebx Vector - NA - - NA - LSU 2:1 LSU 3:1{s}

Table A-7. Store Unit (LSU) Instruction Latencies (continued)

Mnemonic  Class
MPC750 MPC7400 MPC7450

Unit Cycles Unit Cycles Unit Cycles
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Table A-8 lists vector simple integer instruction latencies. This simple interger unit is called the VSIU in the
MPC7400, and the VIU1 in the MPC7450. 

 

stvehx Vector - NA - - NA - LSU 2:1 LSU 3:1{s}

stvewx Vector - NA - - NA - LSU 2:1 LSU 3:1{s}

stvx Vector - NA - - NA - LSU 2:1 LSU 3:1{s}

stvxl Vector - NA - - NA - LSU 2:1 {s} LSU 3:1{s}

stw GPR LSU 2:1 LSU 2:1 {s} LSU 3:1{s}

stwbrx GPR LSU 2:1 LSU 2:1 {s} LSU 3:1{s}

stwcx. GPR LSU 8:8 {e} LSU 5:5 {s} LSU 3:1{s}

stwu GPR LSU 2:1 LSU 2:1 {s} LSU 3:1{s}

stwux GPR LSU 2:1 LSU 2:1 {s} LSU 3:1{s}

stwx GPR LSU 2:1 LSU 2:1 {s} LSU 3:1{s}

tlbie - NA - LSU 3:4 LSU 2:3*b {s} LSU 3:1{s}

tlbld - NA - - NA - - NA - -NA - NA - LSU 3{e}

tlbli - NA - - NA - - NA - -NA - NA - LSU 3{e}

1 For cache operations, the first number indicates the latency for finishing a single 
instruction and the second number indicates the throughput for a large number of 
back-to-back cache operations. The throughput cycle may be larger than the initial 
latency because more cycles may be needed for the data to reach the cache. If the 
cache remains busy, subsequent cache operations cannot execute. 

2 Floating-point stores may take as many as 24 additional cycles if the value being 
stored is a denormalized number.

Table A-8. AltiVec Operations—Vector Simple Integer Unit 

Mnemonic
MPC7400 MPC7450

Unit Cycles Unit Cycles

vaddcuw VALU-VSIU 1 VIU1 1

vaddsbs VALU-VSIU 1 VIU1 1

vaddshs VALU-VSIU 1 VIU1 1

vaddsws VALU-VSIU 1 VIU1 1

vaddubm VALU-VSIU 1 VIU1 1

vaddubs VALU-VSIU 1 VIU1 1

vadduhm VALU-VSIU 1 VIU1 1

vadduhs VALU-VSIU 1 VIU1 1

vadduwm VALU-VSIU 1 VIU1 1

vadduws VALU-VSIU 1 VIU1 1

Table A-7. Store Unit (LSU) Instruction Latencies (continued)

Mnemonic  Class
MPC750 MPC7400 MPC7450

Unit Cycles Unit Cycles Unit Cycles
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vand VALU-VSIU 1 VIU1 1

vandc VALU-VSIU 1 VIU1 1

vavgsb VALU-VSIU 1 VIU1 1

vavgsh VALU-VSIU 1 VIU1 1

vavgsw VALU-VSIU 1 VIU1 1

vavgub VALU-VSIU 1 VIU1 1

vavguh VALU-VSIU 1 VIU1 1

vavguw VALU-VSIU 1 VIU1 1

vcmpequb[.] VALU-VSIU 1 VIU1 1

vcmpequh[.] VALU-VSIU 1 VIU1 1

vcmpequw[.] VALU-VSIU 1 VIU1 1

vcmpgtsb[.] VALU-VSIU 1 VIU1 1

vcmpgtsh[.] VALU-VSIU 1 VIU1 1

vcmpgtsw[.] VALU-VSIU 1 VIU1 1

vcmpgtub[.] VALU-VSIU 1 VIU1 1

vcmpgtuh[.] VALU-VSIU 1 VIU1 1

vcmpgtuw[.] VALU-VSIU 1 VIU1 1

vmaxsb VALU-VSIU 1 VIU1 1

vmaxsh VALU-VSIU 1 VIU1 1

vmaxsw VALU-VSIU 1 VIU1 1

vmaxub VALU-VSIU 1 VIU1 1

vmaxuh VALU-VSIU 1 VIU1 1

vmaxuw VALU-VSIU 1 VIU1 1

vminsb VALU-VSIU 1 VIU1 1

vminsh VALU-VSIU 1 VIU1 1

vminsw VALU-VSIU 1 VIU1 1

vminub VALU-VSIU 1 VIU1 1

vminuh VALU-VSIU 1 VIU1 1

vminuw VALU-VSIU 1 VIU1 1

vnor VALU-VSIU 1 VIU1 1

vor VALU-VSIU 1 VIU1 1

vrlb VALU-VSIU 1 VIU1 1

vrlh VALU-VSIU 1 VIU1 1

vrlw VALU-VSIU 1 VIU1 1

vsel VALU-VSIU 1 VIU1 1

Table A-8. AltiVec Operations—Vector Simple Integer Unit (continued)

Mnemonic
MPC7400 MPC7450

Unit Cycles Unit Cycles
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Table A-9 lists vector complex integer instruction latencies. This complex integer unit is called the VCIU in
the MPC7400, and the VIU2 in the MPC7450. 

vslb VALU-VSIU 1 VIU1 1

vslh VALU-VSIU 1 VIU1 1

vslw VALU-VSIU 1 VIU1 1

vsrab VALU-VSIU 1 VIU1 1

vsrah VALU-VSIU 1 VIU1 1

vsraw VALU-VSIU 1 VIU1 1

vsrb VALU-VSIU 1 VIU1 1

vsrh VALU-VSIU 1 VIU1 1

vsrw VALU-VSIU 1 VIU1 1

vsubcuw VALU-VSIU 1 VIU1 1

vsubsbs VALU-VSIU 1 VIU1 1

vsubshs VALU-VSIU 1 VIU1 1

vsubsws VALU-VSIU 1 VIU1 1

vsububm VALU-VSIU 1 VIU1 1

vsububs VALU-VSIU 1 VIU1 1

vsubuhm VALU-VSIU 1 VIU1 1

vsubuhs VALU-VSIU 1 VIU1 1

vsubuwm VALU-VSIU 1 VIU1 1

vsubuws VALU-VSIU 1 VIU1 1

vxor VALU-VSIU 1 VIU1 1

Table A-9. AltiVec Operations—Vector Complex Interger Unit 

Mnemonic
MPC7400 MPC7450

Unit Cycles Unit Cycles

vmhaddshs VALU-VCIU 3:1 VIU2 4:1

vmhraddshs VALU-VCIU 3:1 VIU2 4:1

vmladduhm VALU-VCIU 3:1 VIU2 4:1

vmsummbm VALU-VCIU 3:1 VIU2 4:1

vmsumshm VALU-VCIU 3:1 VIU2 4:1

vmsumshs VALU-VCIU 3:1 VIU2 4:1

vmsumubm VALU-VCIU 3:1 VIU2 4:1

vmsumuhm VALU-VCIU 3:1 VIU2 4:1

vmsumuhs VALU-VCIU 3:1 VIU2 4:1

Table A-8. AltiVec Operations—Vector Simple Integer Unit (continued)

Mnemonic
MPC7400 MPC7450

Unit Cycles Unit Cycles
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Table A-10 lists vector floating-point (VFPU) instruction latencies. 

vmulesb VALU-VCIU 3:1 VIU2 4:1

vmulesh VALU-VCIU 3:1 VIU2 4:1

vmuleub VALU-VCIU 3:1 VIU2 4:1

vmuleuh VALU-VCIU 3:1 VIU2 4:1

vmulosb VALU-VCIU 3:1 VIU2 4:1

vmulosh VALU-VCIU 3:1 VIU2 4:1

vmuloub VALU-VCIU 3:1 VIU2 4:1

vmulouh VALU-VCIU 3:1 VIU2 4:1

vsum2sws VALU-VCIU 3:1 VIU2 4:1

vsum4sbs VALU-VCIU 3:1 VIU2 4:1

vsum4shs VALU-VCIU 3:1 VIU2 4:1

vsum4ubs VALU-VCIU 3:1 VIU2 4:1

vsumsws VALU-VCIU 3:1 VIU2 4:1

Table A-10. AltiVec Operations—Vector Floating-Point Unit 

Mnemonic
MPC7400 MPC7450

Unit Cycles Unit Cycles

mfvscr VALU-VSIU 1 {e} VFPU 2 {e}

mtvscr VALU-VSIU 1 {e} VFPU 2 {e}

vaddfp VALU-VFPU 4:1 1 VFPU 4:1

vcmpbfp[.] VALU-VSIU 1 VFPU 2:1

vcmpeqfp[.] VALU-VSIU 1 VFPU 2:1

vcmpgefp[.] VALU-VSIU 1 VFPU 2:1

vcmpgtfp[.] VALU-VSIU 1 VFPU 2:1

vcfsx VALU-VFPU 4:11 VFPU 4:1

vcfux VALU-VFPU 4:11 VFPU 4:1

vctsxs VALU-VFPU 4:11 VFPU 4:1

vctuxs VALU-VFPU 4:11 VFPU 4:1

vexptefp VALU-VFPU 4:11 VFPU 4:1

vlogefp VALU-VFPU 4:11 VFPU 4:1

vmaddfp VALU-VFPU 4:11 VFPU 4:1

vmaxfp VALU-VSIU 1 VFPU 2:1

vminfp VALU-VSIU 1 VFPU 2:1

Table A-9. AltiVec Operations—Vector Complex Interger Unit (continued)

Mnemonic
MPC7400 MPC7450

Unit Cycles Unit Cycles
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Table A-11 lists vector permute (VPU) instruction latencies.

vnmsubfp VALU-VFPU 4:11 VFPU 4:1

vrefp VALU-VFPU 4:11 VFPU 4:1

vrfim VALU-VFPU 4:11 VFPU 4:1

vrfin VALU-VFPU 4:11 VFPU 4:1

vrfip VALU-VFPU 4:11 VFPU 4:1

vrfiz VALU-VFPU 4:11 VFPU 4:1

vrsqrtefp VALU-VFPU 4:11 VFPU 4:1

vsubfp VALU-VFPU 4:11 VFPU 4:1

1 In Java mode, MPC7400 VFPU instructions need a fifth cycle of 
execution (5:1) but data dependencies are still forwarded from the end 
of the fourth cycle as in non-Java mode.

Table A-11. AltiVec Operations—Vector Permute Unit 

Mnemonic
MPC7400 MPC7450

Unit Cycles Unit Cycles

vmrghb VPU 1 VPU 2:1

vmrghh VPU 1 VPU 2:1

vmrghw VPU 1 VPU 2:1

vmrglb VPU 1 VPU 2:1

vmrglh VPU 1 VPU 2:1

vmrglw VPU 1 VPU 2:1

vperm VPU 1 VPU 2:1

vpkpx VPU 1 VPU 2:1

vpkshss VPU 1 VPU 2:1

vpkshus VPU 1 VPU 2:1

vpkswss VPU 1 VPU 2:1

vpkswus VPU 1 VPU 2:1

vpkuhum VPU 1 VPU 2:1

vpkuhus VPU 1 VPU 2:1

vpkuwum VPU 1 VPU 2:1

vpkuwus VPU 1 VPU 2:1

vsl VALU-VSIU 1 VPU 2:1

vsldoi VPU 1 VPU 2:1

vslo VPU 1 VPU 2:1

vspltb VPU 1 VPU 2:1

Table A-10. AltiVec Operations—Vector Floating-Point Unit (continued)

Mnemonic
MPC7400 MPC7450

Unit Cycles Unit Cycles

    

  

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.

For More Information On This Product,
  Go to: www.freescale.com

n
c

..
.



74 MPC7450 RISC Microprocessor Family Software Optimization Guide  MOTOROLA

MPC7450 Execution Latencies  

vsplth VPU 1 VPU 2:1

vspltisb VPU 1 VPU 2:1

vspltish VPU 1 VPU 2:1

vspltisw VPU 1 VPU 2:1

vspltw VPU 1 VPU 2:1

vsr VALU-VSIU 1 VPU 2:1

vsro VPU 1 VPU 2:1

vupkhpx VPU 1 VPU 2:1

vupkhsb VPU 1 VPU 2:1

vupkhsh VPU 1 VPU 2:1

vupklpx VPU 1 VPU 2:1

vupklsb VPU 1 VPU 2:1

vupklsh VPU 1 VPU 2:1

Table A-11. AltiVec Operations—Vector Permute Unit (continued)

Mnemonic
MPC7400 MPC7450

Unit Cycles Unit Cycles
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Revision History

Appendix B
Revision History
Table B-1 provides a revision history for this hardware specification.

Table B-1.  Revision History 

Rev. No. Substantive Change(s)

0 Initial release, 11/01.

1 In Section 3.1.4, third sentence in the third paragraph, “MPC7400” is replaced with “MPC7450.”
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