Application Note

AN2203/D
Rev.1, 07/2002

MPC7450 RISC
Microprocessor Family
Software Optimization Guide

Freescale Semiconductor, Inc.

I\

o
MOTOROLA P b
intelligence everywhere” dlglta/dna

Part |
Overview

The primary objective of this document is to provide information to programmers to write
optimal code for the MPC750, MPC7400, and MPC7450 microprocessors that implement the
PowerPC architecture, with particular emphasis on the MPC7450, which is significantly
different from previous designs. The target audience includes performance-oriented writers of
both compilers and hand-coded assembly. This document may be regarded as a companion to
the Power PC Compiler Writer’'s Guide (CWG) with major updates for new implementations
not covered by that work.

This document is not intended as a guide for making a basic PowerPC compiler work. For
basic compiler guidelines, see the CWG. However, many of the code sequences suggested in
the CWG are no longer optimal, especially for the MPC7450.

The following documentation provides useful information about the three different
microprocessors and compiler guidelinesin detail:

MPC750 RISC Microprocessor Family User’s Manual
* MPC7410 & MPC7400 RISC Microprocessor User’s Manual
* MPC7450 RISC Microprocessor Family User’s Manual

¢ The PowerPC Compiler Writer’s Guide (available on the IBM website) for compiler
information

Table 1-1 liststhe three main processorsreferenced in this document and their derivatives. The
derivative list is not necessarily complete and will change.

Table 1-1. Microarchitecture List

First Implementation Derivatives (Similar Devices)
MPC750 MPC740, MPC745, MPC755
MPC7400 MPC7410
MPC7450 MPC7441, MPC7451

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Terminology and Conventions

1.1 Terminology and Conventions

This section provides an alphabetical glossary of terms used in this chapter. These definitions review these
commonly used terms and point out specific ways these terms are used in this document.

NOTE

Because of the differences in the MPC7450, many of these definitions
differ dlightly from those used to describe previous processors that
implement the PowerPC architecture, in particular with respect to
dispatch, issue, finishing, retirement, and write back, so reading this
glossary carefully isimportant.

» Branch prediction—The process of guessing the direction or target of a branch. Branch direction
prediction involves guessing whether a branch will be taken. Target prediction involves guessing
the target address of abclr branch. The PowerPC architecture defines a means for static branch
prediction as part of the instruction encoding.

» Branch resolution—The determination of whether a branch prediction was correct or not. If the
prediction is correct, the instructions following the predicted branch that may have been
speculatively executed can complete (see completion). If the prediction isincorrect, instructions
on the mispredicted path and any results of speculative execution are purged from the pipeline and
fetching continues from the correct path.

» Complete—An instruction isin the compl ete stage after it executes and makes its results available
for the next instruction (see finish). At the end of the compl ete stage, the instruction isretired from
the completion queue (CQ). When an instruction completes, it is guaranteed that this instruction
and all previous instructions can cause no exceptions.

» Dispatch—The dispatch stage decodes instructions supplied by the instruction queue, renames any
source/target operands, determines to which issue queue each non-branch instruction is
dispatched, and determines whether the required spaceis available in both that i ssue queue and the
compl etion queue.

e Fal-through folding (branch fall-through)—Removal of a not-taken branch. On the MPC7450,
not-taken branch instructions that do not update LR or CTR can be removed from the instruction
stream if the branch instructionisin 1Q3- Q7.

» Fetch—The process of bringing instructions from memory (such as a cache or system memory)
into the instruction queue.

» Finish—An executed instruction finishes by signaling the completion queue that execution is
complete and results have been made available to subsequent instructions. For most execution
units, finishing occurs at the end of the last cycle of execution; however, FPU, 1U2, and VIU2
instructions finish at the end of a single-cycle finish stage after the last cycle of execution.

» Folding (branch folding)—T he replacement of a branch instruction and any instructions along the
not-taken path with target instructions when a branch is either taken or predicted as taken.

* Issue—The pipeline stage responsible for reading source operands from rename registers and
register files. This stage also assigns and routes instructions to the proper execution unit.

» Latency— The number of clock cycles necessary to execute an instruction and make the results of
that execution available to subsequent instructions.

2 MPC7450 RISC Microprocessor Family Software Optimization Guide MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Terminology and Conventions

* Pipeline—In the context of instruction timing, the term *pipeline’ refers to the interconnection of
the stages. The events necessary to process an instruction are broken into several cycle-length tasks
to allow work to be performed on several instructions simultaneously—anal ogous to an assembly
line. Asan instruction is processed, it passes from one stage to the next. When it does, the stage
becomes available for the next instruction.

» Although an individual instruction can take many cycles to make results available (see latency),
pipelining makes it possible to overlap processing so that the throughput (number of instructions
processed per cycle) is greater than if pipelining were not implemented.

e Program order—The order of instructions in an executing program. More specifically, thisterm is
used to refer to the original order in which program instructions are fetched into the instruction
gueue from the cache.

* Renameregisters—Temporary buffers for holding results of instructions that have finished
execution but have not completed.

» Reservation station—A buffer between the issue and execute stages that allows instructions to be
issued even though the results of other instructions on which the issued instruction may depend are
not available.

* Retirement—Removal of a completed instruction from the CQ.
» Speculative instruction—Any instruction that is currently behind an unresolved older branch.

e Stage—A stageis an e ement in the pipeline where specific actions are performed, such as
decoding theinstruction, performing an arithmetic operation, or writing back the results. Typically,
the latency of a stage is one processor clock cycle. Some events, such as dispatch, writeback, and
completion, happen instantaneously and may be thought to occur at the end of a stage.

* Aninstruction can spend multiple cycles in one stage. An integer multiply, for example, takes
multiple cyclesin the execute stage. When this occurs, subsequent instructions may stall.

* Aninstruction can also occupy more than one stage simultaneoudly, especially in the sense that a
stage can be viewed as a physical resource—for example, when instructions are dispatched they
are assigned a place in the CQ at the same time they are passed to the issue queues.

» Stall—An occurrence when an instruction cannot proceed to the next stage.

» Superscalar—A superscalar processor isonethat can issue multipleinstructions concurrently from
aconventional linear instruction stream. In a superscalar implementation, multiple instructions can
be in the execute stage at the same time.

» Throughput—The number of instructions that are processed per cycle. For example, a series of
mulli instructions have a throughput of one instruction per clock cycle.

* Write-back—Write-back (in the context of instruction handling) occurs when aresult iswritten
into the architecture-defined registers (typically the GPRs, FPRs, and VRS). On the MPC7450,
write-back occursin the clock cycle after the completion stage. Results in the write-back buffer
cannot be flushed. If an exception occurs, results from previous instructions must write back
before the exception is taken.

MOTOROLA MPC7450 RISC Microprocessor Family Software Optimization Guide 3

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

High-Level Differences

Part Il

Processor Overview

This section describes the high-level differences between the MPC750, MPC7400, and MPC7450. Also, it
describes the pipeline differences for these three processors.

2.1 High-Level Differences

To achieve a higher frequency, the MPC7450 design reduces the number of logic levels per cycle, which
extends the pipeline. More resources were added to reduce the effect of the pipeline length on performance.
These pipeline length and resource changes can make an important differencein code scheduling. Table 2-1
describes high-level differences between MPC750, MPC7400, and MPC7450 processors.

Table 2-1. High-Level Differences

Microprocessor Feature MPC750 MPC7400 MPC7450
Basic Pipeline Functions
Logic inversions per cycle 28 28 18
Pipeline stages up to first execute 3 3 5
Minimum total pipeline length 4 4 7
Pipeline maximum instruction throughput 2 + 1 branch 2 + 1 branch 3+ 1 branch
Pipeline Resources

Instruction queue size 6 6 12
Completion queue size 6 8 16
Rename register (integer, vector, FP) 6, N/A, 6 6,6,6 16, 16, 16

Branch Prediction Resources/Features

Branch prediction structures BTIC, BHT BTIC, BHT BTIC, BHT, LinkStack
BTIC size, associativity 64-entry, 4-way 64-entry, 4-way 128-entry, 4-way
BTIC instructions/entry 2 2 4
BHT size 512-entry 512-entry 2048-entry
Link stack depth N/A N/A 8
Unresolved branches supported 2 3
Branch taken penalty (BTIC hit) 0 1
Minimum branch mispredict penalty (cycles) 4 6
Available Execution Units
Integer execution units 11U1, 11U1/1U2, 11U1, 11U1/1U2, 31U1,
1 SRU, 1 SRU, 1 IU2/SRU,
1LSU 1LSU 1LSU
Floating-point execution units 1 double-precision 1 double-precision 1 double-precision
FPU FPU FPU
Vector execution units N/A 2-issue to VPU and 2-issue to any

VALU (VALU has
VSIU, VCIU, VFPU
subunits)

2 vector units (VSIU,
VPU, VCIU, VFPU)

MPC7450 RISC Microprocessor Family Software Optimization Guide

For More Information On This Product,
Go to: www.freescale.com

MOTOROLA

Freescale Semiconductor, Inc.

High-Level Differences

Table 2-1. High-Level Differences (continued)

Microprocessor Feature MPC750 MPC7400 MPC7450
Typical Execution Unit Latencies

Data cache load hit (integer, vector, float) 2,N/A,2 2,2,2 3,34
IU1 (add, shift, rotate, logical) 1 1 1
1U2: multiply (32-bit) 6 6 4
IU2: divide 19 19 23
FPU: single (add, mul, madd) 3 3 5
FPU: single (divide) 17 17 21
FPU: double (add) 3

FPU: double (mul, madd) 3 5
FPU: double (divide) 31 31 35
VSIU N/A 1 1
VCIU N/A 3 4
VFPU N/A 4 4
VPU N/A 1 2

L1 Instruc

tion Cache/Data Cache Features

L1 cache size (instruction, data)

32-Kbyte, 32-Kbyte

L1 cache associativity (instruction, data) 8-way, 8-way

L1 cache line size 32 bytes

L1 cache replacement algorithm Pseudo-LRU

Number of outstanding data cache misses 1 (load or store) 8 (any combination 5 load/1 store
(load/store) load/store)

Additional On-Chip Cache Features

Additional on-chip cache level None None L2
Additional on-chip cache size N/A N/A 256-Kbyte
Additional on-chip cache associativity N/A N/A 8-way
Additional on-chip cache line size N/A N/A 64 bytes

(2 sectors per line)
Additional on-chip cache replacement N/A N/A Pseudo-random

algorithm

Off-Chip Cache Support

Off-chip cache level

L2

L3

Off-chip cache size

256-Kbyte,

512-Kbyte, 1-Mbyte,

1-Mbyte, 2-Mbyte

512-Kbyte, 1-Mbyte 2-Mbyte
Off-chip cache associativity 2-way 2-way 8-way
Off-chip cache line size/sectors per line 64B/2, 64B/2, 128B/4 | 32B/1, 64B/2, 128B/4 64B/2, 128B/4
Off-chip cache replacement algorithm FIFO FIFO Pseudo-random

MOTOROLA MPC7450 RISC Microprocessor Family Software Optimization Guide
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Pipeline Differences

2.2 Pipeline Differences

The MPC7450 instruction pipeline differs significantly from the MPC750 and MPC7400 pipelines.
Figure 2-1 shows the basic pipeline of the MPC750/M PC7400 processors.

Branch U1 LSU
F F F
BE D D

EO
WB El
WwB

Figure 2-1. MPC750 and MPC7400 Pipeline Diagram
Table 2-2 briefly explains the pipeline stages.

Table 2-2. MPC750/MPC7400 Pipeline Stages

Pipeline Stage Abbreviation Comment
Fetch F Read from instruction cache
Branch execution BE Execute branch and redirect fetch if needed
Dispatch D Decode, dispatch to execution units, assigned to rename register,
register file read
Execute E, EO, E1, ... |lInstruction execution and completion
Write back WB Architectural update

Figure 2-2 shows the basic pipeline of the MPC7450 processor, and Table 2-3 briefly explains the stages.

Branch U1 LSU
F1 F1 F1
F2 F2 F2
BE D D

| |
E EO
C El
WB E2
C
wB

Figure 2-2. MPC7450 Pipeline Diagram

6 MPC7450 RISC Microprocessor Family Software Optimization Guide MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Overview of Target Microprocessors

Table 2-3 briefly explains the MPC7450 pipeline stages.
Table 2-3. MPC7450 Pipeline Stages

Pipeline Stage Abbreviation Comment
Fetchl F1 First stage of reading from instruction cache
Fetch2 F2 Second stage of reading from instruction cache
Branch execute BE Execute branch and redirect fetch if needed
Dispatch D Decode, dispatch to 1Qs, assigned to rename register
Issue | Issue to execution units, register file read
Execute E, EO, E1, ... |Instruction execution
Completion C Instruction completion
Write back WB Architectural update

The MPC7450 pipeline is longer than the MPC750/MPC7400 pipeline, particularly in the primary load
execution part of the pipeline (3 cycles vs. 2 cycles). Better processor performance often requires designs
to operate at higher clock speeds. Clock speed isinversaly related to the work performance of the processor.
Therefore, higher clock speeds imply less work to be performed per cycle, which necessitates longer
pipelines. Also, increased density of the transistors on the chip has enabled the addition of sophisticated
branch-prediction hardware, additional processor resources, and out-of-order execution capability. This
industry trend should continue for at |east one more microprocessor generation.

The longer pipelines yield a processor more sensitive to code selection and ordering. As hardware can add
additional resources and out-of-order processing ability to reduce this sensitivity, the hardware and the
software must work together to achieve optimal performance.

2.3 Overview of Target Microprocessors

This section provides a high level overview of the three target microprocessors, with first-order details that
are useful in developing a compiler model of the microprocessor.

2.3.1 MPC750 Microprocessor
Figure 2-3 shows a functional block diagram of the MPC750.

MOTOROLA MPC7450 RISC Microprocessor Family Software Optimization Guide 7

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Overview of Target Microprocessors

.l

> A sng eed 1189 =
- A _sngsseppy g¥e@zt —
" OWLOdWN 8 Ul loN - >
| I~ A sng eleq 1g-9 >
, sbe) 21 | A sng ssaippy 1g-ze
| \ \ y y
, H9¢1 ” — q11a
” J9jj01u0) 21 | ananp) peo eled 8yde) @ sbe| | £
| | akgy-ee ey
ananp N0jse) z , —— 1vaa | | (reubuo)
! > gnanp Inojsen | Y Y _ suc 0 (Anuz-9)
| Hun ng-¥9 — o s layng Jopioay
” doepa)u| sng g1 .| enanp yore4 uononnsuy| ng-%9 > P
| ! | nun aoepelu) sng xo9 o hun uopejdwo)
o V3 vd
.
Y i
m ug-ce Ig-c¢ Y
H0Sd4 enenp &l0lS | _ B .]
(= x + | (uoneinofen v3) / X *
nun <> : <] <> : nun Z un Jabau| 1 Hun Jabaju|
wiod-buneoy | ng-9 1g-v9 | Hun aloys/peo | ug-ce la)sibay waysAg
© (©) 1 A A
slayng aweusy * Slajing sweuay
A -
UONBIS UOIIBAIaSaY oIl Hd mo_HSAw hhu_mg_mmwommm olld §d9 _ uonelS UoleAlasey __ uonelS UoieAlasay _ _ uonelS UoieAlasey _
] ‘ , }
- A
(suononnsuj g)
wge | N yoredsig
suononisu| g
\ -
dill 10JIUOI douUBWIONAd «
oxomo | sbe| || | Aeuy 11 Juswabeuey Jamod/rewlay]
SIAY-2E Lval | |(mopeyg) < (P1OM-9) 29el8U| dOD/OVLC »
SHS 1 Auz-9 ananp) uononiisu| 121dBINIA 420D
J9luswWialdad/Iialuno) aseg sl e
NININ uononJIsu| 10 JlL8 + sainyead [eUONIPPY
nun - o -
(suogonsu| §) Buissadoid youerg | > doydpd =
1g-8cl Jun uonaniisu|

Figure 2-3. MPC750 Microprocessor Block Diagram

MOTOROLA

MPC7450 RISC Microprocessor Family Software Optimization Guide

For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Overview of Target Microprocessors

Instructions are fetched from the instruction cache and placed into a six-entry 1Q. When the fetch pipeline
is fully utilized, as many as four instructions can be fetched to the 1Q during each clock cycle, subject to
cache block wrap restrictions.

2.3.1.1 Dispatch

The bottom two 1Q entries are available for dispatch, which involves the following operations:

» Renaming—Six rename registers are available for integer operation and six more are available for
floating-point operations.

» Digpatching—A reservation station must be available for the correct execution unit.
* CQ check—An entry must be available in the six-entry CQ.

» Branch check—A branch instruction must have executed before being dispatched. Section 2.3.1.4,
“Branches,” provides additional information.

2.3.1.2 Execution
An instruction in the bottom of a reservation station is available for execution. Execution involves the
following operations:

* Busy check—The unit must be available. For example, some units are not fully pipelined.

» Operand check—All source operands must be available before any execution can start.

» Seriaization check—If the instruction is execution serialized, it must wait to become the ol dest
instruction in the machine (bottom of the CQ entry) before it can start execution.

2.3.1.3 Completion

The bottom two CQ entries are available for completion, which involves the following operations:

» Finish check—Only instructions that have finished or are in the last stage of execution are eligible
for finishing.

* Rename check—The MPC750 can write back only two rename registers per cycle. Some
instructions, such as aload-with-update, have multiple renamed targets. If aload-with-update and
an add instruction are in the bottom two CQ entries, the add cannot complete because the
load-with-update already requires two rename-register-writeback slots for the subsequent cycle.

NOTE

In the MPC750, execution and completion can occur simultaneously for
single-cycle execution instructions.

2.3.1.4 Branches

Branches are handled differently from other instructions. Branch instructions must be executed by the
branch unit before they can be dispatched. The BPU searches the six-entry |Q for the oldest unexecuted
branch, and executesiit. If the branch instruction does not update the architectural state by setting the link
or count register, it isigible for folding. In branch execution, the instruction is folded immediately if the
branch is taken. In this case, folding removes the branch instruction from the 1Q, so the branch instruction
does not reach the dispatcher. If the branch is not taken, the dispatcher must dispatch the branch. However,
the branch is not allocated in the CQ, so no completion is required either.

MOTOROLA MPC7450 RISC Microprocessor Family Software Optimization Guide 9

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Overview of Target Microprocessors

If the branch is either b or bc, a taken branch can get instructions from the BTIC. The BTIC lookup is
automatically performed based on the instruction address of the executing branch, and producesinstructions
starting at the branch target address. The BTIC supplies two instructions for that cycle, as opposed to the
normal four from theinstruction cache. Indirect branches, such asbcctr or bclr, do not get instructions from
the BTIC. Thus, ataken branch incurs a one-cycle fetch bubble when it executes.

2.3.1.5 MPC750 Compiler Model

A good compiler scheduling model for the MPC750 includes the two-instruction-per-clock-cycle dispatch
limitation, a base model of the CQ with maximum of six instructions with two-instruction-per-clock-cycle
completion limitation, and execution units—SRU, U1, 1U2, FPU, and LSU with typical unit execution
latencies as given in Table 2-1.

A full model incorporates full table-driven latency/throughput/serialization specifications given instruction
by instruction in Appendix A, “MPC7450 Execution Latencies” The notion of reservation stations
(particularly, the second LSU reservation station) should be added. Rename registers limitations for the
GPRs are also needed to allow more accurate modeling of the |oad/store-with-update instructions.

2.3.2 MPC7400 Microprocessor

The MPC7400 microprocessor is similar to the MPC750 microprocessor. The primary differences include
the following attributes:

» Eight-entry CQ (although rename registers are still limited to six)

» Vector units (and instructions), which implement the Altivec extensions to the PowerPC
architecture

» Better latency and pipelining on double-precision floating-point operations
* Increased pipelining of load/store missesin the LSU
Figure 2-4 shows a functional block diagram of the MPC7400.

2.3.2.1 Vector Unit

The MPC7400 can dispatch two vector instructions per cycle: one to the VPU and one to the VALU. The
VPU is a single-cycle execution unit unlike the VALU which has three independent subunits, each with
different latencies, as follows:

e TheVSIU subunit handles simple integer and logical operations with single-cycle latency per
instruction.

» TheVCIU handles complex integer instructions (mostly multiplies) with alatency of three clocks
and a throughput of one instruction per cycle.

» TheVFPU subunit handles vector floating-point instructions with alatency of four clocks and a
throughput of one instruction per cycle.

TheVALU can initiate oneinstruction per cycleto any of these three subunits. After execution begins, these
subunits are fully independent.

10 MPC7450 RISC Microprocessor Family Software Optimization Guide MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

9|qeL prOjeY 8nany peojey

uoionasu uononsu|

d|qeL

ananp
peojey Bleq peojeYy Bleg
wajsAsqng Liowsapy

A

sng eled 1g-¥9

|

/

—

IN0ISe) 21

sng ssaippy 119-¢¢

Y

A

-

sng ejeq ¢14g-¥9

\/

A

uonoesue, |

SSIN 21 >
Hun 8oepa)u| sng

d0¢1 | uonoesues]
sbe] g1

191102U09 21

Eled ¢l

4

}

Overview of Target Microprocessors

Sng ssaippy ¢11g-81

¥00[9 Jad suononisul om} 0}
dn a)a1dwod o] Ajigy

\/

Y

(Anuz-g)

ananp) uonajdwon

nun uoysjdwon

Freescale Semiconductor, Inc.

'
m pr— 1g-8zt
ng-¥9 | ug-p9 |Suoneiedp sei0is yonoy ig-ce g-ce
H0Sd4 AJ ﬂﬁV 17 palgjdwo) 10109\ Y HISA
[
e | / = x +] o+ Yy v v v ‘
Xt SoI01S nd3aANIDA[NISA wn
Hun Juiod : PIod PEOT paysiul : nun Jeisiboy Znun L nun : ainuiiad
-buneoy4 (uonemnored v3) | + | wayshs 1abau| 1abayu| N7V 401997 101997\
siayng N 1018 DED siayng siayng
» aweusy 9 Hun slois/peot aweusy 9 + + + aweusy 9 + +
uonels 9|4 Hd4 R) 9l4 HdD uonels uonels uonels 9l4 HA uonels uoneis
uoljeAIaseY L (W_ﬁm__%\,v._mmwsm] uoneriesay | | uonemssey | | uonensssey UONEAI8SaY UOIJEAISSaY
] . ; ! Y Y]] ;
« (suononasul 2) ug-v9
d1.d
Rewy Anu3-gel ; suononisu| g
»| PUED A | 5f un yoreasig
amaygg | SOBL[<| | LVEC (euIBLIO) —
SHS J0]IUO doUeBWIOpSd «
NN elea Juswabeue|y Jamod/[ewayl «
7 dio 7 7 o1 7 () 90el8lu| dOD/OVLC »
. . - PIOM-9 Jaydnini %00[0
mr_omo | \C M|_H_-_ A\A\:Hm_mN_‘mv A\CE_IM_.m.VOV O:@:O uononsu| J19lusWialdad/I1aluno) aseg sl e
akgyze | SO°L ™ M@% maeel 0 A seunead [eUONIPPY
<> uun
(suononsul) A;w@w% s Buissaooid youesg | 18yoied
ug-8ct NININ uononsu| Hun uononisul

11

Figure 2-4. MPC7400 Microprocessor Block Diagram
MPC7450 RISC Microprocessor Family Software Optimization Guide
For More Information On This Product,
Go to: www.freescale.com

MOTOROLA

Freescale Semiconductor, Inc.
Overview of Target Microprocessors

2.3.2.2 MPC7400 Compiler Model

A good compiler scheduling model for the MPC7400 includes the dispatch limitations of two instructions
per clock, a base model of the CQ with maximum of eight instructions, the completion limitation of two
instructions per clock, and the execution units—SRU, U1, U2, FPU, VPU, VALU (VSIU, VCIU, VFPU),
and LSU with typical execution unit latencies as given in Appendix A, “MPC7450 Execution Latencies”

A full model incorporates full table-driven latency/throughput/serialization specifications given instruction
by instruction in Appendix A, “MPC7450 Execution Latencies” The concept of reservation stations
(especialy the second L SU reservation station) should be added. The rename registers limitations are much
more important than in the MPC750, as the number of rename registers (6) do not match the number of
completion entries (8).

2.3.3 MPC7450 Microprocessor

This section provides an overview of the MPC7450. More details are available in Part 111, “MPC7450
Microprocessor Details.”

Different resource sizes, the issue queues, and the splitting of completion and execution stages are the main
differences between the MPC7450 and the MPC750/MPC7400 models. Also, the MPC7450 can dispatch
up to threeinstructions per cycle (compared to two on the MPC7400) and can compl ete a maximum of three
instructions per cycle (compared to two on the MPC7400).

With the addition of extra integer units, the MPC7450 has more integer computing capacity available for
scheduling. The MPC7450 has three single-cycle IUs (IUla, IUlb, IUlc) that execute al integer
(fixed-point) instructions (addition, subtraction, logical operations—AND, OR, shift, and rotate) except
multiply, divide, and move to/from special-purpose register instructions. Note that all U1 instructions
execute in one cycle, except for some instructions like tw[i] and sraw[i][.], which take two. In addition, it
has one multiple-cycle IU (IU2) that executes miscellaneous instructions including the CR logical
operations, integer multiplication and division instructions, and move to/from special-purpose register
instructions. The issue requirements for the vector subunits are also improved which is described in detail
in Section 3.3.2, “Vector Issue Queue (VIQ).”

The longer pipeline of the MPC7450 is more sensitive to branch mispredictions. Taken branches of
MPC7450 cause a single-cycle fetch bubble, whereas most taken branches on the MPC750/MPC7400 were
nearly free. The MPC7450 also changes the load-use latency, which is critical to adjust to achieve best
performance on many applications. Also, serialized instructions are more costly in terms of performance on
this microprocessor.

Figure 2-5isafunctional block diagram of the MPC7450.

12 MPC7450 RISC Microprocessor Family Software Optimization Guide MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Overview of Target Microprocessors

sng ejeq ig-v9 Hw:m $S8IpPY 1g-9¢ (940 000 Jad suononsul w,EE 0} dn sajs|dwon
(Rwred g-8)
(1) 1sanbay _ I , , J01BINWNJ2Y SN _ (e 20 1) eleq Ig-v9
010} d|qeaYoR) VLS [Bwog
() yored uononasu) ———— | | suonuaneul ¥ ssaIppy
/ysnd dooug——— SINOISED |7 (6) ug-8l
() ssiw peot 11 (0sz1) enanp au0is 27 anany
— | | [oy
[]
(517) 8nenp peo |1 T wav“w, — ma,snw, mH_" ananp a.10jS sng Jloje|nwinddy sng
(o5 sbe] =1
aneny 2101 |1 — (ewhg-ce) L ¥ooilg (eMg-ce) 0%001g eur] T — uoeT s e
$ananp 99IAI8S |1 J19]|013u09 ayaen/ayoe) g paiiun akqy-96eg aoe}Ia)u| sng walsAs snjels sbe| SEm_.orv
ananp uone|dwo
[A A wayshsqng Arowapy HO00ig - 8un O uonaiduiod
° J9[j0u0) ayse) g1 yun uonajdwon
A
T v
”~ 1g-8ct ug-8ci
I H_muwm H_muwm SSI\ peo mm‘_oyw :m.Nm :m.mm We-ce 4‘ 4‘ 4‘ 4‘ “
H0Sd pajajdwio) _
- vy ey ; x| YLy L Ex]
: #end H1 . ® .) zuun nun
Hun iod M . L uun Zuun U nd4 Jabaju| Jabaju| ajnwiad
-Buneol4 slayng SBI0IS slang | 1abajuj 1aBajuy siayng 10J937 10393 10309 1031997
» dWeusY 9} 1noise) | paysiul4 Sweusy 91 -|$| » sweusy 91 » » + +
(o) suopeyg | L2 Hdd (uogeInaled v3) [+ | o Hd9 uoels (z) suoneis %14 YA uonels uonels uoels vonelg
uoneniasay vy 7 auiBu3 yono| 10j08A 7 »| anenp || uonenssay uoleAIssay uoijeniasay | | uonenissay | | uoneaesey || uonenissey
A un a10)g/peo] yonoy M » i %
Y + 10J09\
v3
| (Anuz-g) suonels | o "
uolenIasay T
= e ——
Y ¥ — ———
fewy 1vaq (enss|-1/Anu3-g) (enss|-g/Anu3-9) (enssi-g/knuz-y)
) ol oID DIA
a1.1a (reuibuo)) A X suononisu| €
» m.»omo Q| s || tou3-82t S - I
Vet NI eleq — N
Yoredsig 10JIUO|A| BoUBWIONA o
feuy Lval | w1 || (w3ev02) LHE | Juawabeueyy Jlemod/feway] «
mmgo || sbe| |« | 410 || (Rwzgzyoug | 99eldaUl dOJ/OVLCL
alhay-ze 1Ll (mopeys) | fat—m- 104010 | Jaydniny %0010
Anuz-gel SHS (p1opm-z1) =] Hun Buissasoud youeig Ja1UsWaI08(/I81uNo) aseg sl »
(suononuisul ¥) ug-g21 NN uondNysu| ensn uononisul A" Jun uononasy| sainyea [euonIppy

Figure 2-5. MPC7450 Microprocessor Block Diagram

13

MPC7450 RISC Microprocessor Family Software Optimization Guide

MOTOROLA

For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Overview of Target Microprocessors

2.3.3.1 Dispatch

The bottom three |Q entries are available for dispatch, which involves the following:

* Renaming—16 rename registers are available for each of the integer, floating-point, and vector
operations.

» Digpatching—Available issue queue entries must be available for each dispatched instruction.
* CQ check—An entry must be available in the 16-entry CQ.

* Branch check—A branch instruction must have executed before being dispatched. Section 2.3.3.8,
“Branches,” provides more information on branching.

2.3.3.2 Issue Queues
Each issue queue handlesissuing slightly differently and they are described separately as follows.

2.3.3.3 General-Purpose Issue Queue

The six-entry general-purpose issue queue (GIQ in Figure 2-5) handles integer instructions, including all
load/store instructions. The GIQ accepts as many as three instructions from the dispatch unit each cycle. All
IU1s, 1U2, and LSU instructions (including floating-point and AltiVec loads and stores) are dispatched to
the GIQ. Instructions can be issued out-of-order from the bottom three GIQ entries (GIQ2-GIQOQ). An
instruction in GIQL1 destined to one of the |U1s does not have to wait for an instruction stalled in GIQO that
isbehind along-latency integer divide instruction in the IU2. The primary check isthat areservation station
must be available.

2.3.3.4 Floating-Point Issue Queue

The two-entry floating-point issue queue (FIQ) can accept one dispatched instruction per cyclefor the FPU,
and if an FPU reservation station is available, it can also issue one instruction from the bottom FIQ entry.

2.3.3.5 Vector Issue Queue

The four-entry vector issue queue (V1Q) accepts as many as two vector instructions from the dispatch unit
each cycle. All AltiVec instructions (other than load, store, and vector touch instructions) are dispatched to
the VIQ. The bottom two entries are allowed to issue as many as two instructions to the four AltiVec
execution unit’s reservation stations, but unlike the GIQ, instructions in the VIQ cannot be issued out of
order. The primary check determinesif areservation station is available.

NOTE

The VIQ can issue to any two vector units, unlike the MPC7400. For
example, the MPC7450 can issue to the VSIU and VCIU simultaneously,
whereas the MPC7400 allows pairing between the VPU and one of the
other three VALU subunits.

2.3.3.6 Execution

The instruction in the bottom of the reservation station is available for execution. Execution involves the
following:

* Busy check—The unit must not be busy. For example, some units are not fully pipelined and so
cannot accept a new instruction on every clock.

14 MPC7450 RISC Microprocessor Family Software Optimization Guide MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Overview of Target Microprocessors

» Operand check—All source operands must be available before any execution can start.
e Seridization check—If the instruction is execution serialized, it must wait to become the ol dest
instruction in the machine (bottom of the CQ entry) before it can start execution.

The MPC7450 has two more 1Us than the MPC750/MPC7400. However, the integer unit capabilities have
changed dightly from the MPC750/MPC7400 to the MPC7450, as shown in Table 2-4. Appendix A,
“MPC7450 Execution Latencies,” compares latencies between MPC750, MPC7400, and MPC7450 for
various instructions.

Table 2-4. MPC750/MPC7400 vs. MPC7450 Integer Unit Breakdown

Instruction Class MPC750/MPC7400 MPC7450
add, subtract, logical, shift/rotate U1 or 1U2 IU1 (any of 3)
mul, div U2 U2
mtspr, mfspr, CR logical, and other miscellaneous instructions SRU U2

2.3.3.7 Completion

The bottom three CQ entries are available for retiring instructions. Completion involves the following
operations:

* Finish check—Only instructions that have finished can complete (except store instructions, which
finish and complete simultaneously to allow pipelining).

* Rename check—An MPC7450 can write back only three rename registers per cycle. Some
instructions, such as aload-with-update, have multiple renamed targets. If aload-with-updateis
followed by two adds, only the load-with-update and the first add can complete at the same time
(although all three instructions are finished executing), as the |oad-with-update requires two of the
three rename-register-writeback resources. Due to this resource constraint, the second add waits
until the second cycle is completed.

2.3.3.8 Branches

Branches are handled differently from other instructions. Branch instructions must be executed by the
branch unit before they can be dispatched. The BPU searchesthe bottom eight entries of the | Q for the oldest
unexecuted branch, and executes it. A branch instruction is eligible for folding if it does not update the
architectural state by setting the link or count register. In branch execution, the instruction is folded
immediately if the branch is taken. In this case, folding removes the branch instruction from the |Q, so the
branch instruction does not reach the dispatcher. If the branch is not taken, the dispatcher must dispatch the
branch and the branch is placed in the CQ.

NOTE

Note that in the MPC750, the dispatched (fall-through) foldable branches
are not allocated in the CQ.

If the branch is either b or bc, a taken branch can get instructions from the BTIC. The BTIC lookup is
automatically performed based on the instruction address of the executing branch, and producesinstructions
starting at the branch target address. Taken branches have a minimum one-cycle fetch bubble, asthe BTIC
supplies four instructions on the following cycle. Indirect branches such as bcctr or bclr do not get
instructions from the BTIC. Thus, taken branches incur atwo-cycle fetch bubble when they execute. From

MOTOROLA MPC7450 RISC Microprocessor Family Software Optimization Guide 15

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Overview of Target Microprocessors

a code performance point of view, the need for biasing the branch to be fall-through has increased to avoid
the 1- or 2-cycle fetch bubble of a taken branch.

The longer pipeline makes the MPC7450 more sensitive to branch misprediction than earlier designs.

2.3.3.9 MPC7450 Compiler Model

A good scheduling model for the MPC7450 should take into account the dispatch limitations of the three
instructions per cycle, the 16-entry CQ has completion limitation of three instructions per cycle, and the
various execution units with the latencies discussed earlier.

A full model would also incorporate the full table-driven latency/throughput/serialization specifications for
each instruction listed in Appendix A, “MPC7450 Execution Latencies” The usage and availability of
reservation stations and rename registers should also be incorporated. Finally, attention should be given to
the issue limitations of the various issue queues—for example, it is important to note that AltiVec
instructions must be issued in-order out of the vector issue queue. This means that a few poorly scheduled
instructions can potentially stall the entire vector unit for many cycles.

16 MPC7450 RISC Microprocessor Family Software Optimization Guide MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Fetch/Branch Considerations

Part Ill
MPC7450 Microprocessor Details

This section describes many architectural details of the MPC7450 and gives examples of the pipeline
behavior. These attributes are al so described in the MPC7450 RISC Microprocessor Family User’s Manual.

3.1 Fetch/Branch Considerations

Thefollowingisalist of branch instructions and the resources required to avoid stalling the fetch unit in the
course of branch resolution:

» Thebclr instruction requires LR availability for resolution. However, it uses the link stack to
predict the target addressin order to avoid stalling fetch.

» Thebcctr instruction requires CTR availability.

» The branch conditional on counter decrement and the CR condition requires CTR availability or
the CR condition must be false.

» A fourth conditional branch instruction cannot be executed following three unresolved predicted
branch instructions.

3.1.1 Fetching

Branchesthat target an instruction at or near the end of acache block can cause instruction supply problems.
Consider atight loop branch where the loop entry point is the last word of the cache block, and the loop
contains a total of four instructions (including the branch). For this code, any MPC750/MPC7400 class
machine needs at least two cycles to fetch the four instructions, because the cache block boundary breaks
the fetch group into two groups of accesses. For the MPC750/MPC7400, realigning this loop to not cross
the cache block boundary significantly increases the instruction supply.

Additionally, on the MPC7450 this tight loop encounters the branch-taken bubble problem. That is, the
BTIC supplies instructions one cycle after the branch executes. For the instructions in the cache block
crossing case, four instructions are fetched every three cycles. Aligning instructions to be within a cache
block increases the number of instructions fetched to four every two cycles. For loops with more
instructions, this branch-taken bubble overhead can be better amortized or in some cases can disappear
(because the branch is executed early and the bubble disappears by the time the instructions reach the
dispatch point). One way to increase the number of instructions per branch is software loop unrolling.

NOTE

The BTIC on al MPC750/MPC7400/MPC7450 microprocessors contain
targetsfor only b and bc branches. Indirect branches (bcctr and bclr) must
go to the instruction cache for instructions, which incurs an additional
cycle of fetch latency (another branch-taken bubble).

In future generations of these high performance microprocessors, expect a further bias: instruction fetch
groupings that do not cross quad-word boundaries are preferable. In particular, this means that branch
targets should be biased to be thefirst instruction in aquad word (instruction address = Oxxxxx_xxx0) when
optimizing for performance (as opposed to code footprint).

MOTOROLA MPC7450 RISC Microprocessor Family Software Optimization Guide 17

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Fetch/Branch Considerations

3.1.1.1 Fetch Alignment Example
The following code loop is asimple array accumulation operation.

xxxxxx18 loop: 1lwzu rl0,0x4 (R9)
XXXXXX1C add rl1l,r11,r10
XxXxXXXX20 bdnz loop

The lwzu and add are the last two instructions in one cache block, and the bdnz is the first instruction in
the next. In this example, the fetch supply is the primary restriction. Table 3-1 assumes instruction cache
and BTIC hits. The Iwzu/add of the second iteration are available for dispatch in cycle 3, as aresult of a
BTIC hit for the bdnz executed in cycle 1. The bdnz of the second iteration is available in the 1Q one cycle
later (cycle 4) because the cache block break forced a fetch from the instruction cache. Overall, the loop is
limited to one iteration for every three cycles.

Table 3-1. MPC7450 Fetch Alignment Example

Instruction 0 1 2 3 4 5 6 7 8 9 10 11
lwzu (1) D | EO El E2 C
add (1) D | — | - | — E C
bdnz (1) F2|BE| D |—|—|—]C
lwzu (2) D | EO El E2
add (2) D | - | = | = E C
bdnz (2) FL|FR|BE|D|—|—|—|cCcC
lwzu (3) D | EO El E2 C
add (3) D I — | = | = E
bdnz (3) FL| F2 |BE| D | — | — | —

Performance can beincreased if theloop isaligned so that all three instructions are in the same cache block,
asin the following example.

xxxxxx00 loop: 1lwzu rl0,0x4 (r9)
XXXXxX04 add rl1l,r11,r10
xxxxxx08 bdnz loop

The fact that the loop fits in the same cache block allows the BTIC entry to provide al three instructions.
Table 3-2 shows pipelined execution results (again assuming BTIC and instruction cache hits). While fetch
supply isstill abottleneck, itisimproved by proper alignment. The loop isnow limited to oneiteration every
two cycles, increasing performance by 50 percent.

Table 3-2. MPC7450 Loop Example—Three Iterations

Instruction 0 1 2 3 4 5 6 7 8 9
lwzu (1) D [EO | E1 | E2 | C
add (1) D [— | - | =1 E C
bdnz (1) BE| D | —| —| —|—1]c¢c
lwzu (2) D [EO | E1 | E2
add (2) D [— | - | =1 E C
bdnz (2) BE| D | —| — | —|—1]c¢c
lwzu (3) D | EO E1l E2 C
18 MPC7450 RISC Microprocessor Family Software Optimization Guide MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Fetch/Branch Considerations

Table 3-2. MPC7450 Loop Example—Three Iterations (continued)

Instruction 0 1 2 3 4 5 6 7 8 9
add (3) D | — — — E
bdnz (3) BE D — — — —

Loop unrolling and vectorization can further increase performance. These are described in Section 4.4.3,
“Loop Unroalling for Long Pipelines,” and Section 4.4.4, “Vectorization.”

3.1.1.2 Branch-Taken Bubble Example

The following code shows how favoring taken branches affects fetch supply.

xXxXxx00 lwz rl0,0x4(r9)
XXxXxx04 cmpi 4,r10, 0x0
XXXXxxX08 bne 4, targ

xxXxxXxx0C stw rll, 0x4 (r9)

xxxxxx1l0 targ add (next basic block)

This example assumes the bneis usually taken (that is, most of the datain the array is non-zero). Table 3-3
assumes correct prediction of the bne, and cache and BTIC hits.

Table 3-3. Branch-Taken Bubble Example

Instruction 0 1 2 3 4 5 6
lwz D | EO El E2
cmpi D | — — — E C
bne BE
add D | E — C

Rearranging the code as follows improves the fetch supply.

XXxXxxX00 lwz rl1l0,0x4 (r9)
XXXXxX04 cmpi 4,r10,0x0
xxxxxx08 beq 4, targ

xxxxxx0C targ2 add (next basic block)

yyyyyy00 targ stw rll, 0x4 (r9)

VYyyyyy04 b targ2

Using the same assumptions as before, Table 3-4 shows the performance improvement. Note that the first
instruction of the next basic block (add) completes in the same cycle as before. However, by avoiding the
branch-taken bubble (because the branch is usually not taken), it also dispatches one cycle earlier, so that
the next basic block begins executing one cycle sooner.

MOTOROLA MPC7450 RISC Microprocessor Family Software Optimization Guide 19

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Fetch/Branch Considerations

Table 3-4. Eliminating the Branch-Taken Bubble

Instruction 0 1 2 3 4 5 6
lwz D | EO El E2 C
cmpi D | — — — E C
beq BE D — — — — C
add D E — — C

3.1.2 Branch Conditionals

The cost of mispredictions increases with pipeline length. The following section shows common problems
and suggests how to minimize them.

3.1.2.1 Branch Mispredict Example

Table 3-5 uses the same code as the two previous examples but assumes the bne mispredicts. The compare
executes in cycle 5, which means the branch mispredicts in cycle 6 and the fetch pipeline restarts at that
correct target for theadd in cycle 7. This particular mispredict effectively costs seven cycles (add dispatches
incycle2in Table 3-3and in cycle 9in Table 3-5).

Table 3-5. Misprediction Example

Instruction 0 1 2 3 4 5 6 7 8 9 10 11 12
lwz D I EO E1l E2
cmpi D I — — — E C
bne BE M
add F1 F2 D | E C

3.1.2.2 Branch Loop Example

CTR should be used whenever possible for branch loops, especially for tight inner loops. After the CTR is
loaded (using mtctr), a branch dependent on the CTR requires no directional prediction in any of the
MPC750/MPC7400 devices. Additionally, loop termination conditions are always predicted correctly,
which is not so with the normal branch predictor.

XXXXXX18 outer loop: addi. r6,r6,#FFFF

XXXxxX1C cmpi 1,16, #0
XxXXxXxX20 inner loop: addic. r7,r7,#FFFF
XXXXXX24 lwzu rl1l0,0x4 (r9)
XXXXXX28 add rll,rll,r10
xxxxxx2C bne inner loop
XXXXXX30 stwu rll, O0x4 (r8)
XXXXXX34 xor rll,rll,rll
XXXXXX38 ori r7,r0,#4
XXXXxX3C bne crl,outer loop

For the exampl e, assume the inner loop executes four times per outer iteration. On aMPC7450 and also on
MPC750/MPC7400 microprocessors, inner loop termination is always mispredicted because the branch
predictor learns to predict the inner bne as taken, which is wrong every fourth time. Table 3-6 shows that

20 MPC7450 RISC Microprocessor Family Software Optimization Guide MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Fetch/Branch Considerations

the misprediction causes the outer 10oop code to be dispatched in cycle 13. If the branch had been correctly
predicted as not taken, these instructions would have dispatched five cycles earlier in cycle 8.
Table 3-6 shows this example transformed when using CTR for the inner loop.

Table 3-6. Three Iterations of Code Loop

Instruction 0 1 2 3 4 5 6 7 8 9 10 | 11 | 12 | 13 | 14
addi D I E C

cmp D | — E C

addic (1) F2 | D | E | C

Iwzu (1) F2 | D | |EO | E1 | E2 | C

add (1) F2 | D Il | —| —| —| E | C

bne (1) F2 | BE

addic. (2) D | E — C

lwzu (2) D | | EO | E1 | E2 | C

add (2) D Il | —| —| —| E | C

bne (2) BE

addic. (3) D | E — C

lwzu (3) D | | EO | E1 | E2

add (3) D I — | — | = E C

bne (3) BE

addic. (4) D | E — C

lwzu (4) D | EO | E1 | E2

add (4) D I — | — | = E C
bne (4) BE M

stwu F1 | F2 D |
xor F1 | F2 D

ori F1 | F2 D |
bne F1 | F2 | BE

The following code uses the CTR, which shortens the loop because the compare test (done by the addic. at
Xxxxxx20 in the previous code example) is combined into the bdnz branch. Note that in the previous
example, the outer loop required an addi/cmpi sequence to save the compare resultsinto CRF1, rather than
an addic., since the inner loop used CRFO. In the example below, as the inner loop no longer uses CRFO,
the outer loop compare code can be simplified to just an addic. instruction.

XXXXxX1C outer loop: addic. ré6,r6, #FFFF
XXXXxX20 inner loop: lwzu rl0, 0x4 (r9)

XXXXXX24 add rll,rll,r10

XXXXXX28 bdnz inner loop

XXXXXX2C mtctr r7

XXXXxX30 stwu rll, 0x4 (r8)

XXXXXX34 xor rll,rll,rl1ll

XXXXXX38 bne 0,outer_ loop

MOTOROLA MPC7450 RISC Microprocessor Family Software Optimization Guide 21

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Fetch/Branch Considerations

As Table 3-7 shows, the inner loop termination branch does not need to be predicted and is executed as a
fall-through branch. Instructions in the outer loop start dispatching in cycle 8, saving five cycles over the
code in Table 3-6. Note that because mtctr is execution serialized, it does not complete until cycle 16;
nevertheless, the CTR value is forwarded to the BPU by cycle 11. This early forwarding starts for a
mtctr/mtlr when the instruction reaches reservation station 0 of the 1U2 and the source register for the
mtctr/mtlr isavailable.

Table 3-7. Code Loop Example Using CTR

Instruction | 0 1 2 4 5 6 7 8 9 |10 |11 |12 | 13| 14 | 15| 16 | 17
addic D | E|C

lwzu (1) F2| D| | |EO|E1|E2| C

add (1) FP|p|ll |—|—|—|E|C

bdnz (1) F2 |BE| D —|—|—=1c

lwzu (2) D| | |EO|E1l|E2

add (2) D|I |—|—|—=]|E]|C

bdnz (2) BE|D|—|—|—|—|C

Iwzu (3) D| | |EO|E1l|E2

add (3) D|I |—|—|—=|E]|C

bdnz (3) BE|D|—|—|—|—|C

lwzu (4) D| I |EO|EL|E2| C

add (4) D|I |—|—|—=]|E]|C

bdnz (4) BE| D|—|—|—|—|C

mtctr D | E C
stwu b|lI |EO|—|—|—|—|—|—]|C
xor — | D | E|—|—|—|—|—]|C
bne BE

3.1.3 Static Versus Dynamic Prediction Trade-Offs

On the MPC750/MPC7400/MPC7450 microprocessors, using static branch prediction (clearing
HIDO[BHT]) meansthat the hint bit in the branch opcode predicts the branch and the dynamic predictor (the
BHT) isignored.

In general, dynamic branch prediction is likely to outperform static branch prediction for several reasons.
With satic branch prediction, the compiler may have guessed wrongly about a particular branch. With
dynamic branch prediction, the hardware can detect the branch’s dominant behavior after a few executions
and predict it properly in the future. Dynamic branch prediction can also adapt its prediction for a branch
whose behavior changes over time from mostly taken to mostly not taken.

Sometimes static prediction is superior, either through informed guessing or through available
profile-directed feedback. Run-time for code using static prediction is more nearly deterministic, which can
be useful in an embedded system.

22 MPC7450 RISC Microprocessor Family Software Optimization Guide MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Fetch/Branch Considerations

3.1.4 Usingthe Link Register (LR) Versus the Count Register
(CTR) for Branch Indirect Instructions

On the MPC7450, a bclr uses the link stack to predict the target. To use the link stack correctly, each
branch-and-link (bl) instruction must be paired with a branch-to-link-register (blr) instruction. Using the
architected LR for computed targets corrupts the link stack. A number of compilersare currently generating
code in this format.

In general, the CTR should be used for computed target addresses and the LR should be used only for
call/return addresses. If using the CTR for aloop conflicts with a computed goto, the computed goto should
be used and the loop should be converted to a GPR form.

Note that the PowerPC Compiler Writer’s Guide (Section 3.1.3.3) suggests using either CTR or LR for a
computed branch, and suggests that using the LR is acceptable when the CTR is used for a loop. This
suggestionisinappropriate for the MPC7450. For the MPC7450, the rules given in the preceding paragraphs
should be followed.

When generating position-independent code, many compilers use an instruction sequence such as the
following to obtain the current instruction address (CIA).

bcl 20,31,3+4
mflr r3

Note that thisis not atrue call and is not paired with areturn. The MPC7450 is optimized so the link stack
ignores position-independent code when the bel 20,31,$+4 formisused. Thisconditional call, whichisused
only for putting the instruction address in a program-visible register, does not force apush on the link stack
and is treated as a non-taken branch.

3.1.4.1 Link Stack Example

The following code sequence is a common code sequence for a subroutine call/return sequence, where
main cals foo, foo calsack, and ack possibly calls additional functions (not shown).

main: .
mflr r5
stwu r5,-4(rl)
bl foo
5 add r3,r3,r20
foo: stwu r31,-4(rl)
stwu r30,-4(rl)
mflr r4
stwu 1r4,-4(rl)
bl ack
add r3,r3,r6
0 lwzu 30,4 (rl)
1 lwzu r31,4(rl)
2 lwzu 5,4 (rl)
3 mtlr 5
4 bclr
MOTOROLA MPC7450 RISC Microprocessor Family Software Optimization Guide 23

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Fetch/Branch Considerations

ack: ce..
(possible calls to other functions)
lwzu 14,4 (rl)
mtlr r4
bclr

The bl in main pushes a value onto the hardware managed link stack (in addition to the
architecturally-defined link register). Then the bl in foo pushes a second value onto the stack.

When ack later returns through the bclr, the hardware link stack is used to predict the value of the LR, if
the actual value of the LR is not available when the branch is executed (typically because the lwzu/mtlr pair
has not finished executing). It also pops a value off of the stack, leaving only the first value on the stack.
This occurs again with the belr in £oo which returnsto main, and this pop leaves the stack empty.

Table 3-8 shows the performance implications of the link stack. The following code starts executing from
instruction 0 in procedure foo.

Table 3-8. Link Stack Example

",‘\fgr' Instruction o | 1|2 |3 4|5 |6 | 7|8 |9 |10]11] 1
0 [wzur30,401) | F1 | F2 | D I | eo | E1|E2]| C
1 |wzurat,aey) | FL |2 | — | D I | eo | E1]E2]| C
2 [Iwzu s, 4(r1) F1 | 2| — | — | D I | eo | E1|E2]| C
3 |mtir F1 | Fr2| — | D - = =1 =] =1€|c
4 |bclr F1 | F2 | BE | D
5 add r3,r3,r20 F1 F2 D | E — — — C

With the link stack prediction, the BPU can successfully predict the target of the bclr (instruction 4), which
alowstheinstruction at the return address (instruction 5) to be executed in cycle 8. The U2 forwarded the
LR value to the BPU in cycle 9 (which implies that the branch resolution occurs in cycle 10), even though
it is not able to execute from an execution serialization viewpoint until cycle 11.

Without the link stack prediction, the branch would stall on the link register dependency and not execute
until after the LR is forwarded (that is, branch execution would occur in cycle 10), which allows
instruction 5 not to execute until cycle 15 (seven cycles later than it executes with link stack prediction).

3.1.4.2 Position-Independent Code Example

Position-independent code is used when not all addresses are known at compile time or link time. Because
performance is typically not good, position-independent code should be avoided when possible. The
following example expands on the code sequence, which is described in Section 4.2.4.2, “Conditional
Branch Control” in the Programming Environments for 32-Bit Implementations of the PowerPC
Architecture.

24 MPC7450 RISC Microprocessor Family Software Optimization Guide MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Fetch/Branch Considerations

Table 3-9. Position-Independent Code Example

l?ﬁ;n Instruction 0(1|2|3|4|5|6|7|8|9]|10|11|12|13|14|15|16 |17
0 |bcl 20,31, $+4 F1|F2|BE| D | C
1 |mflrr2 F1|/F2|—| D | | | —|EO|E1|E2|E3| F | C
2 |addir2, r2#constant |[FL|F2|—|D || |—|—|—|—|—]|E|C
3 |[mtctrr2 Fi\lF2|—|—|D|I|—|—|—|—|—|—|—]|E]|C
4 |Dbcctr FLIR2|—|—|—|—|—|—|—]|—|—|BE
5 |addr3,r3,r20 F1|F2| D | | E

Because areturn (bclr) isnever paired with this bcl (instruction 0), the MPC7450 takes two special actions
when it recognizes this special form (“bcl 20,31,$+4"):

» Although the bcl does update the link register as architecturally required, it does not push the value
onto the link stack. Not pairing areturn with this bcl prevents the link stack from being corrupted,
which would likely require alater branch mispredict for some later bclr.

» Because the branch has the same next instruction address whether it is taken or fall-through, the
branch is forced as afal-through branch. This avoids a potential branch-taken bubble and saves a

cycle.

The instruction address is available for executing a subsequent operation (instruction 2, addi) in cycle 10,
primarily due to the long latency of the execution serialized mflr. However, the data has to be transferred
back to the BPU through the CTR register, which prevents the beetr to execute until cycle 12, so it’s target
instruction (5) cannot start execution until cycle 17.

Note that it isimportant that instructions 3 and 4 be amtctr/bcctr pair rather than amtlir/bclr pair. A bclr
would try to use the link stack to predict the target address, which would almost certainly be an address
mispredict, which would be even more costly than the 7-cycle branch execution stall for instruction 4 shown
inthisexample. In addition, an address mispredict would require that the link stack be flushed, which would
mean that bclr instructions that occur later in the program would have to stall rather than use the link stack
address prediction. Thiswould further degrade performance.

3.1.4.3 Computed Branch and Function Pointer Examples

Computed branches are used in switch statements with enough different entries to warrant a table-lookup
approach (instead of creating a series of if-else tests). The following example shows a typica
implementation of such a switch statement using the CTR register.

Source codein C;

switch (x)
case 0: /* code for case 0. */

break;

case 1: /* code for case 1. */
break;

case 2: /* code for case 2. */
break;

default: /* code for default case. */

MOTOROLA MPC7450 RISC Microprocessor Family Software Optimization Guide 25

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Dispatch Considerations

break;

}
Assume r6 holds the address of SWITCH_TABLE for the following assembly code:

lwz rd,x

slwi rd, r4, 2 # Multiply by 4 to create word index.
lwzx r5, r4, re6 # r5 = SWITCH_ TABLE [r4].

mtctr r5 # Move r5 to CTR.

bctr # Perform indirect branch.

Function pointersand virtual function calls should also usethe CTR for their indirection, to avoid corrupting
the hardware link stack. The following example shows atypical indirect function call. Note that the CTR is
used to hold the target address, and the link form of the branch (bctrl) is used to save the return address.

Source codein C:

extern int (*funcptr) () ;

a = funcptr();

Assume r9 holds the address of funcptr for the following assembly code:

lwz r0, 0(r9) # Load the value at funcptr.
mtctr r0 # Move it to the CTR.
bectrl # Perform indir. branch, save return address.

3.1.5 Branch Folding

Branches that do not set the LR or update the CTR are eligible for folding. In all three architectures, taken
branches are folded immediately. For MPC750 or MPC7400, non-taken branches are folded at dispatch. In
the MPC7450, not-taken branches cannot be fall-through folded if they are in 1Q0-1Q2; however, branches
are removed in the cycle after execution if they arein Q3 Q7.

3.2 Dispatch Considerations
Thefollowing isalist of resources required for MPC7450 to avoid stallsin the dispatch unit (1Q0- Q2 are
the three dispatch entries in the instruction queue):

e Theappropriate issue queueis available.

« TheCQisnot full.

* Previousinstructionsin the |Q must dispatch. For example, | Q0 must dispatch for 1Q1 to be ableto
dispatch.

* Needed rename registers are available.

The following sections describe how to optimize code for dispatch.

3.2.1 Dispatch Groupings

MPC7450 can dispatch a maximum throughput of three instructions per cycle. The dispatch process
includes a CQ available check, an issue queue available check, a branch ready check, and a rename check.

26 MPC7450 RISC Microprocessor Family Software Optimization Guide MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Dispatch Considerations

Thedispatcher can send threeinstructionsto the variousissues queues, with amaximum of threeto the GIQ,
two to the VIQ, and one to the FIQ. Thus only two instructions can be dispatched per cycle to the AltiVec
units (VIUZL, VIU2, VPU, and VFPU). Only one FPU instruction can be dispatched per cycle, so threefadds
take three cycles to dispatch.

The dispatcher also enforces arule that only one load/store instruction can dispatch in any given cycle.

The dispatcher can rename as many asfour GPRs, threeVRs, and two FPRs per cycle, so athree-instruction
dispatch window composed of vaddfp, vaddfp, and lvewx could be dispatched in one cycle.

Note that aload/store update form instruction (for example, Iwzu), requires a GPR rename for the update.
Thismeans that an lwzu needs two GPR rename registers and an Ifdu needs one FPU rename and one GPR
rename. The possibility that one instruction may need two GPR rename registers means that even though
the MPC7450 has a 16-entry CQ and 16 GPR rename registers, GPR rename registers could run out even
though there is space in the CQ, as when eight Iwzu instructions are in the CQ. Eight CQ entries are
available, but because all 16 GPR rename registers are in use, no instruction needing a GPR target can be
dispatched.

The restriction of four GPR rename registers in a dispatch group means that the sequence lwzu, add, add
can be dispatched in one cycle. The instruction pair Iwzu, lwzu aso uses four GPR rename registers and
passes this rule but is disallowed by the rule that enforces a dispatch of only one load/store per cycle.

3.2.1.1 Dispatch Stall Due to Rename Availability
Table 3-10 contains a code example that shows a dispatch stall due to rename availability.
Table 3-10. Dispatch Stall Due to Rename Availability

",‘\lso” Instruction ol1|2|3|4a|5|6|7|8|9]|..]25]|26 |27|28]|29]|30
0 |divw r4,r3,r2 Fi|F2| D | 1 |eo|E1|E2|E3|E4|ES5] .. [E21|E22| C [WB

1 [wzur22,0x04(1) [F1|F2| D [1 [EO|EL|E2|— | == .. = | = [c|wB

2 |wzur2soxo4(y) [FL|F2| — [D | 1 [EO|EL|E2| = =] .. | = [= [—=] Cc [wB

3 [wzur2a0x04¢1) |[FL|F2| — [—|D | 1 [EO|EL|E2|—| .. | = | = [=] =] c [wB
4 [lwzu r25,0x04(r1) Filr2|—|—|po|1 [eolEt|le2] .| =] = |=|=]=1cC
5 |lwzu r26,0x04(r1) Frlr2|—|—[—|p| 1]eoler] . .| =] == ==

6 |lwzu r27,0x04(rl1) FIFR2|—|—|—|—|D]| I |EO|..| — | —|—]|—1|—

7 |lwzu r28,0x04(rl) FIIFR2|—|—|—|—|—|D}|Il|.]—]|—|—|—1|—

8 |lwzu r29,0x04(r1) FRIRP - -—|—|—|—]—1|D |

Instruction 8 stallsin cycle 9 because it needs two rename registers, and 15 rename registers are in use (one
for the divw, and two each for instructions 1 through 7). As only 16 GPR rename registers are allowed,
instruction 8 cannot be dispatched until at least one rename is released.

When the div later completes (cycle 27 in example above), rename registers are released during the
write-back stage and instruction 8 can thus dispatch in cycle 29.

Note that this code uses|wzu instructions, which require two rename registers, only to shorten the contrived
code example. In general, sequences of lwzu instructions should be avoided for performance reasons as they
throttle dispatch to one lwzu instruction per cycle and completion to two lwzu instructions per cycle.

MOTOROLA MPC7450 RISC Microprocessor Family Software Optimization Guide 27

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Dispatch Considerations

3.2.2 Dispatching Load/Store Strings and Multiples

The MPC7450 splits load/store multiple instructions (Imw and stmw) and strings (Isw and stsw) into
micro-operations at the dispatch point. The processor can dispatch only one micro-operation per cycle,
which does not use the dispatcher to its full advantage.

Using load/store multiple instructions is best restricted to cases where minimizing code size is critical or
where there are no other available instructions to be scheduled, such that the under-utilization of the
dispatcher is not a consideration.

3.2.2.1 Example of Load/Store Multiple Micro-Operation Generation
Consider the following assembly instruction sequence:

Imw r25,0x00(rl)
addi r25,r25,0x01
addi r26,r26,0x01
addi r27,r27,0x01
addi r28,r28,0x01
addi r29,r29,0x01
addi r30,r30,0x01
addi r31,r31,0x01

The load multiple instruction specified with register 25 loads registers 25-31. The MPC7450 splits this
instruction into seven micro-operations at dispatch, after which the Imw executes as multiple operations, as
Table 3-11 shows.

N o0k W N R o

Table 3-11. Load/Store Multiple Micro-Operation Generation Example

",‘\ISO” Instruction o|1|2|3|4|5|6|7|8|9|10|11]12]13|14]15
0-0 |Imwr25,0x00(rl) |F1|F2| D | | |EO|E1|E2]| C
0-1 |Imwr26,0x04(r1) |F1|F2| — | D | | |EO|E1|E2| C
0-2 |Imwr27,0x08(r1) |F1|F2| —| — | D | | |EO|El1|E2]| C
0-3 |Imwr28,0x0oC(rl) |F1|F2| —| —| —| D | | |EO|E1|E2]| C
0-4 |Imwr29,0x10(1) |FA1|F2| —| — | —|—| D | I |EO|E1|E2]| C
0-5 |Imwr30,0x14(r1) |F1|F2| —| —| —|—|—| D | | |EO|E1|E2]| C
0-6 |Imwr3toxic(r) |FA|F2| —| —| —|—|—|—|D| I |EO|EL|E2]| C
1 |addir25r250x01 |F1|F2| — | —|—|—|—|—|DJ| I |E|—]|—]|C
2 |addir26,26,0x01 |F1|F2 | — | — | —|—| — | — | D | I —|—1]cC
3 J|addir27r270x01 |[F1|FR2| —| —|—|—|—|—|—|D| I |E|—|—]|C
4 |addir28,r28,0x01 FRRIRP,|—|—|—|—|—]|—1|D I E|—|—|C
5 |addir29,r29,0x01 FIIFR2|—|—|—|—|—|—|D|]I |E|—|—]C
6 |addir30,r30,0x01 FIIRR|—|—|—|—|—]|—|—|DJ]I |E|—]|—]C
7 |addir31,r31,0x01 FPIFR|—|—|—|—|—|—|—|DJ|] I |—|E]|—]C
28 MPC7450 RISC Microprocessor Family Software Optimization Guide MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Issue Queue Considerations

Because the MPC7450 can dispatch only one LSU operation per cycle, the Imw is micro-oped at arate of
one per cycle and so in this example takes seven cycles to dispatch all the operations. However, when the
last operation in the multiple is dispatched (cycle 8), instructions 1 and 2 can dispatch along withit.

The use of load/store string instructionsis strongly discouraged.

3.3 Issue Queue Considerations

Instructions cannot be issued unless the specified execution unit is available. The following sections
describe how to optimize use of the three issue queues.

3.3.1 General Purpose Issue Queue (GIQ)

Asmany asthreeinstructions can be dispatched to the six-entry GPR issue queue (GIQ) per cycle. Asmany
as three instructions can be issued in any order to the LSU, 1U2, and IU1 reservation stations from the
bottom three GIQ entries.

Issuing instructions out-of-order can help in a number of situations. For example, if the lU2 isbusy and a
multiply is stalled at the bottom GIQ entry (unable to issue because both 1U2 reservation stations are being
used), instructions in the next two GIQ entries can be issued to LSU or 1U1s, bypassing that multiply.

The following seguence is not well scheduled, but effectively, the MPC7450 micro-architecture
dynamically reschedules around the potential multiply bottleneck.

0 xXxXxX00 mulhw r10,r20,r21
1 XXXXxXX04 mulhw rll,r22,r23
2 XXxXxX08 mulhw rl2,r24,r25
3 XXXxXXX0C lwzu rl13,0x4 (r9)
4 XXxXXxX10 add r10,r10,rll

5 XXXXXX14 add r13,rl3,r25

6 XXXXXX18 add rl14,r5,r4

7 XXXXXX20 subf rl5,r6,r4

Table 3-12 shows the timing for the instruction in GIQ entries. Instruction 3 issues out-of-order in cycle 2;
instructions 4 and 5 issue out-of-order in cycle 3.

Note that instruction 7 (subf) does not issue in cycle 4 because all three U1 reservation stations have an
instruction (4, 5, and 6). Instructions 4 and 5 are waiting in the reservation station for their source registers
to beforwarded from the lU2 and L SU, respectively. Becauseinstruction 6 executesimmediately after issue
(incycleb), instruction 7 can issue in that cycle.

Table 3-12. GIQ Timing Example

'r,‘\lso”' Instruction | 0 | 12 | 2 | 3 | 4 | 5 | 6 | 7|8 |9 |10]|1
0 mulhw D | EO EO El F C
1 mulhw D — | — EO EO El F C
2 mulhw D — — — | — EO EO El F C
3 lwzu —_ D | EO El E2 — — — — C
4 add F2 D — | — — — E — — C
5 |add RP|b|—|—|—|—|E|—|—|—|—]TC
6 add F2 — D — | E —_ — —_ — —_ C
MOTOROLA MPC7450 RISC Microprocessor Family Software Optimization Guide 29

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Issue Queue Considerations

Table 3-12. GIQ Timing Example (continued)

Instr.

No Instruction 0 1 2 3 4 5 6 7 8 9 10 11

7 subf F2 — — D — | E — — — — C

GIQ5
GIQ4
GIQ3
GIQ2 2
GIQ1
GIQO 0

7
6
2 7

RPN WSO
N[~ O O

Similar examples could also be given for loads bypassing adds, and multiplies bypassing loads. However,
the ability to use out-of-order instructions is mostly across functiona units, and has been extended
somewhat for integer instructions beyond the functionality provided by MPC750 and MPC7400 processors.

3.3.2 Vector Issue Queue (VIQ)

The four-entry vector issue queue (V1Q) handles all AltiVec computational instructions. Two instructions
can dispatch to it per cycle, and it can issue two instructions in-order per cycle from its bottom two entries
if reservation stations are available. The primary check is that a reservation station must be available.

NOTE
On the MPC7450, the VIQ can issue to any two vector units, as opposed to
the MPC7400 which only allows pairing between VPU and one other unit.

Table 3-13 shows two cases where a vector add and a vector multiply-add (vmsummbm) start execution
simultaneously (cycles 2 and 3). Note that the load-vector instructions go to the GIQ because its address
source operands (rA and rB) are GPRs. This example also shows the MPC7450 ability to dispatch three
instructions with vector targetsin a cycle (cycles 0 and 1) as well asto retire three instructions with vector
targets (cycle 7).

Table 3-13. VIQ Timing Example

Instruction 0 1 2 3 4 5 6 7
vaddshs v20,v24,v25 D | E F C
vmsummbm v10,v11,v12,v13 D | EO El E2 E3 C
lvewx v5,r5,r9 D | EO El E2 — C
vmsummbm v11,v11,v14,v15 — D | EO El E2 E3 C
vaddshs v21,v26,v27 D | E F — — C
lvewx v5,r6,r9 D | EO El E2 — C

3.3.3 Floating-Point Issue Queue (FIQ)

The two-entry floating-point issue queue (FIQ) can accept one dispatched instruction per cycle, and if an
FPU reservation station is available, it can also issue one instruction from the bottom FIQ entry.

30 MPC7450 RISC Microprocessor Family Software Optimization Guide MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Completion Queue

3.4 Completion Queue

The following sections describe the conditions for the completion queue such as the re-order sizing, how
the instruction sequence is grouped, and the effects of serialization.

3.4.1 Reorder Size

The completion queue size on the MPC7450 is 16 entries. This means that up to 16 instructions can bein
the execution window, not counting branches, which execute from the instruction buffer.

3.4.2 Completion Groupings

The MPC7450 can retire up to three instructions per cycle. Only three rename registers of a given type can
be retired per cycle. For example, an lwzu, add, subf sequence has four GPR rename targets and all cannot
retirein the same cycle. The lwzu and add retire first and subf retires one cycle | ater.

3.4.3 Serialization Effects

The MPC7450 supports refetch, execution, and store serialization. Store serialization is described in
Section 3.7.2, “ Store Hit Pipeline”

Refetch serialized instructions include isync, rfi, sc, mtspr[XER], and any instruction that toggles
XER[SO]. Refetch serialization forces a pipeline flush when the instruction is the oldest in the machine.
These instructions should be avoided in performance-critical code.

Note that XER[SO] is a sticky bit for XER[OV] updates, so avoiding toggling XER[SO] often means
avoiding these instructions (overflow-record, O form).

Execution-serialized instructions wait until the instruction is the oldest in the machine to begin executing.
Tables in Appendix A, “MPC7450 Execution Latencies,” list execution-serialized instructions, which
include mtspr, mfspr, CR logical instructions, and carry consuming instructions (such as adde).

Table 3-14 shows the execution of a carry chain. The addc executes normally and generates a carry. As an
execution-serialized instruction, adde must become the oldest instruction (cycle 4) before it can execute
(cycle5). A long chain of carry generation/carry consumption can execute at arate of oneinstruction every
three cycles.

Table 3-14. Serialization Example

Instruction 0 1 2 3 4 5 6
addc r11,r21,r23 D | E C
adde r10,r20,r22 D | — — — E C

3.5 Numeric Execution Units

The following sections describes how to optimize the use of the execution units.

3.5.1 IUl Considerations

Each of thethree IlU1shas onereservation station in which instructions are held until operands are available.
The lU1ls allow a potentialy large window for out-of-order execution. IU1 instructions can progress until

MOTOROLA MPC7450 RISC Microprocessor Family Software Optimization Guide 31

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
FPU Considerations

three U1 instructions are stuck in the three reservation stations, requiring operands (or until the GIQ or
dispatcher stalls for other reasons).

Table 3-12 shows a case where although two |U1s are blocked, the third makes progress.

Also note that some 1U1 instructions take more than one cycle and that some are not fully pipelined. The
most common 2-cycle instructions are sraw and srawi.

Thefollowing instructions are not fully pipelined when their record bit is set: extsb, extsh, rlwimi, rlwinm,
rlwnm, slw, and srw. These instructions return GPR data after the first cycle but continue executing into a
second cycle to generate the CR result.

Table 3-15 shows sraw, extsh, and extsh. latency effects. The two sraw instructions both take 2 cycles of
execution, blocking the extsh/extsh. pair from issuing until cycle 3 but allowing the dependent add to
execute in cycle 3 (see Table A-5, footnote 3). Note that extsh. takes two cycles to execute, but that the
dependent subf can pick up the forwarded GPR value after thefirst cycle of execution (cycle 4) and execute
incycle5.

Table 3-15. IU1 Timing Example

Instruction 0 1 2 3 4 5 6
sraw r1,r20,r21 D | E E C
sraw r2,r20,r22 D | E E C
add r4,r2,r3 D | — E C
extsh r5,r25, F2 D — | E C
extsh.r6,r26 F2 D — | E E C
subf r7,r5,ré F2 D — | — C

3.5.2 U2 Considerations

The 1U2 has two reservation station entries. Instruction execution is allowed only from the bottom station.
Although mtctr/mtlr instructions are execution serialized, if datais available, their values are forwarded to
the BPU as soon as they are in the bottom reservation station.

Divides, mulhwu, mulhw, and mull are not fully pipelined; they iterate in execution stage 0 and block other
instructions from entering reservation station 0. For example, in Table 3-12, the second multiply issues to
IU2 in cycle 2. Because the first multiply still occupies reservation station O, the second is issued to
reservation station 1. When the first multiply enters E1, the second moves down to reservation station 0 and
begins execution.

Note that the 1U2 takes an extra cycle beyond the latencies listed in Table A-5 to return CR data and finish.
Thisimpliesthat, asthe examplein Section 3.3.1, “General Purpose Issue Queue (GIQ),” shows, a 3-cycle
instruction such as mulhw requires a separate finish stage, even though GPR datais still forwarded and used
after three execution cycles. In the previous example, instruction 4 executes in cycle 7, the cycle after the
dependent instruction 2 progressed through its third execution stage.

3.6 FPU Considerations

The FPU has two reservation station entries. Instruction execution is allowed only from the bottom
reservation station (reservation station 0).

32 MPC7450 RISC Microprocessor Family Software Optimization Guide MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
FPU Considerations

LikethelU2, the FPU requires a separate finish stage to return CR and FPSCR data, as shown in Table 3-16.
However, FPR data produced in E4 (thefifth stage) is ready and can be forwarded directly (if needed) to an
instruction entering EO in the next cycle.

The five-stage scalar FPU pipeline has a 5-cycle latency. However, when the pipeline contains instructions
in stages EO—ES3, the pipeline stalls and does not allow anew instruction to start in EO on the following cycle.
This bubble limits maximum FPU throughput to four instructions every five cycles, as the following code
example shows:

XXXxxX00 fadd f£10,£f20,£f21
XXXXxX04 fadd f£11,£f20,£f22
XXXxxX08 fadd f£12,£f20,£f23
XXXXxX0C fadd f£13,£f20,£f24
XXXXXX10 fadd f14,f20,f25
XXXXXX14 fadd f£15,f20,f26
XXXXXX]18 fadd f16,£f20,£f27
XXXXXX1C fadd f£17,£20,£f28
XXXXXX20 fadd f£18,f20,£f29

Table 3-16 shows the timing for this sequence.

Table 3-16. FPU Timing Example

Instruction | O 1 2 3 4 5 6 7 8 9 10 | 11 | 12 | 13 | 14 | 15 | 16
fadd D | EO | E1 | E2 | ES | E4 | F C

fadd — | D | EO | E1 | E2 | ES | E4 | F C

fadd — | — | D | EO | E1 | E2 | E3 | E4 | F C

fadd — | —| — | D | EO | E1 | E2 | ES | E4 | F C

fadd FP|—|—|— | D | — | EO | E1 | E2 | E3 | E4 | F C

fadd RP|—|—|—|—]| D]|— | EO | E1 | E2 | E3 | E4 | F C

fadd RP|—|—|—|—]|—]|D]|— | EO | E1 | E2 | ES | E4 | F C

fadd FRP|——|—|—|—|—|—1|D | EO | E1 | E2 | ES | E4 | F C
fadd Fr|R,| - —|—|—|—]|—| D | — | EO | E1 | E2 | E3 | E4

The FPU is also constrained by the number of FPSCR rename registers. The MPC7450 supports four
outstanding FPSCR updates. An FPSCR is allocated in the E3 FPU stage and is deallocated at completion.
If no FPSCR rename is available, the FPU pipeline stalls. A fully pipelined case such asthat in Table 3-16
isnot affected, but if something blocks completion it can become abottleneck. Consider the following code
example:

xxxXxxx001 fdu £3,0x8(r9)

XXXXxX04 fadd £11,£20,£22

XXXXxX08 fadd £12,£20,£23

xXxXxxX0C fadd £13,£20,£f24

XXXXXX10 fadd f£14,£f20,£f25

XXXXXX14 fadd £15,£f20,£f26

XXXXXX18 fadd f16,£20,£27

XXXXxX1C fadd £17,£20,£28

XXXXXX20 fadd £18,£f20,£f29

MOTOROLA MPC7450 RISC Microprocessor Family Software Optimization Guide 33

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
FPU Considerations

The timing for this sequence in Table 3-17 assumes that the load misses in the data cache. Here, after the
first four fadds, the MPC7450 runs out of FPSCR rename registers and the pipeline stalls. When the load
completes, the pipeline restarts after an additional 2-cycle lag.

Table 3-17. FPSCR Rename Timing Example

Instruction | O 1 2 3 4 5 6 7 8 9 10 | 11 | 12 | 13 | 14 | 15
Ifdu D I EO | E1 C

fadd D I EO | E1 | E2 | E3 | E4 | F — | — | —]—1C

fadd — | D I EO | E1 | E2 | E3 | E4 | F — | —]|—1C

fadd — | — | D I EO | E1 | E2 | E3 | E4 | F — | —]—1C

fadd F2| —| — | D I EO | E1 | E2 | E3 | E4 | F — | — 1 C

fadd F2| —| —|— 1| D I — | EO | E1 | E2 | ES | E4 | E4 | E4 | E4 | F
fadd FP|—| —|—| —1| D | — I EO | E1 | E2 | E3 | E3 | ES | E3 | E4
fadd RP|—|—|—|—]|—1| D|— I EO | E1 | E2 | E2 | E2 | E2 | E3
fadd FrIFR2|—|—|—|—|—|—1|D I EO | E1 | E1 | E1 | E1 | E2

Note that denormalized numbers can cause problems for the FPU pipeline, so the normal latencies in
Table A-6 may not apply. Output denormalization in the very unlikely worst case can add as many asthree
cyclesof latency. Input denormalization takes four to six additional cycles, depending on whether one, two,
or three input source operands are denormalized.

3.6.1 Vector Units

On the MPC7450, the four vector execution units are fully independent and fully pipelined. Table 3-18
shows the latencies.

Table 3-18. Vector Execution Latency Summary

Unit Typical Latency
ViUl 1
VIiu2 4
VFPU 4
VPU 2

VFPU latency isusually four cycles, but someinstructions, particularly the vector float compares and vector
float min/max (see TableA-8 to TableA-11 for a list) have only a 2-cycle latency. This can create
competition for the VFPU register forwarding bus. Thisis solved by forcing a partia stall when abypassis
needed. Consider the following code example:

XXXXXX20 vaddfp v10,v1l,v12
XXXXXX24 vsubfp v11,v14,v13
XXXXXX28 vaddfp v12,v13,v1l4
XXXXXX2C vempbfp. v13,v18,v19
XXXXxX30 vmaddfp v14,v20,v21,v14

Table 3-19 shows the timing for this vector compare bypass/stall situation. In cycle 6 the vemp bypasses
from EO to E3, stalling the vsubfp and vliogefp for acyclein stages E1 and E2. Note that an instruction in
El stallsin E1 under a bypass scenario even if no instructionisin E2.

34 MPC7450 RISC Microprocessor Family Software Optimization Guide MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Load/Store Unit (LSU)

Table 3-19. Vector Unit Example

Instruction 0 1 2 3 4 5 6 7 8 9 10
vaddfp D | EO El E2 E3 C
vsubfp D — I EO E1l E2 E2 E3 C
vlogefp — D — | EO E1l E1l E2 E3 C
vempbfp. — D — — I EO E3 — — C
vmaddfp F2 — D — — | EO El E2 E3 C

3.7 Load/Store Unit (LSU)

The LSU has two reservation stations. Instruction execution is allowed only from the bottom reservation
station (reservation station 0).

The 32-Kbyte, 8-way data cache has a cache line size of 32 bytes. The replacement algorithm is
pseudo-LRU (PLRU). The LSU on the MPC7450 is different from prior designs in many ways. The most
critical is that load latencies are now one (or two for load-float) cycle longer than in previous
Mi Croprocessors.

3.7.1 Load Hit Pipeline

The following code sequence shows the various normal load latencies:

XXXxxX00 1fdu £3,0x8(r10)
XXxXxX04 fadd f1,£f3,f4
XXXXXX08 lwzu r3,0x4 (rll)
xxxxxx0C add rl,r3,r4
XXXXxXX10 subf r5,rll,ré6
XXXXXX14 lvewx v3,r12,rl3
XXXXXX18 vaddsws v1,v3,v4

As Table 3-20 shows, the load-floating-point latency is four cycles and the load-integer and |oad-vector
latency are each three cycles. Although the load has a 4-cyclelatency, it also completes on that fourth cycle.
The update has an effective latency of one. The lwzu forwards its update target R11 from EO in cycle 3to
the subf instruction, such that it executesin cycle 4.

Table 3-20. Load Hit Pipeline Example

"I‘\ISO”' Instruction | 0 | 1 | 2 | 3 | 4| 5 | 6 | 7 | 8| 9 |10]11]12] 13
0 Ifdu D | EO | E1 | E2 | E3/C
1 fadd D | — — — — EO | E1 | E2 | E3 | E4 F C
2 lwzu — D | EO | E1 E2 — — — — — — C
3 |add — | D Il | — | —| — | E|=|=]|—=|—=|—=1|C¢C
4 subf F2 D | — E — — — — — — — — C
5 lvewx F2 | — D | EO E1l E2 | — — — — — — C
6 vaddsws F2 | — D | — — — E F - | = | — | = C
MOTOROLA MPC7450 RISC Microprocessor Family Software Optimization Guide 35

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Load/Store Unit (LSU)

3.7.2 Store Hit Pipeline

The pipeline for stores before the data is written to the cache includes several different queues. A store
instruction must go through EO and E1 to handle address generation and tranglation. It is then placed in the
three-entry finished store queue (FSQ). When the storeis the oldest instruction, it can access the store data
and update architecture-defined resources (store serialization). From this point on, the store is considered
part of the architectural state.

However, before the data reaches the data cache, two write-back stages (WBO and WB1) are needed to
acquire the store data and transfer it from the FSQ to the 5-entry committed store queue (CSQ). Arbitration
into the data cache from the CSQ is pipelined so a throughput of one store per cycle can be maintained.
During this arbitration and cache write, stores arbitrate into the data cache from the CSQ and stay there for
at least four cycles. Table 3-21 shows pipelining of four stw instructions to the data cache.

Table 3-21. Store Hit Pipeline Example

Instruction [0 | 1| 2 | 3 4 5 6 7 8 9 10 | 11 | 12 | 13
stw D|1|EO|EL|FSQo/c| wBO | wB1 | CcsSQo [csqQo|csqQo|csqo

stw —|p| 1 [eo] E1 |Fsqoic| wsBo | w1l |[csqQi|csqQ1i|csq1i|csqo

stw —|—|p| 1| Eo El |FsqQo/c| wso | w1l |csQ2|csQ2|csQi|csqo

stw —|—|—1D | EO E1 |Fsqo/c| wso | w1l |[csQ3|csQ2|csQi|csqo

Because floating-point stores are not fully pipelined, the bottleneck is at the FSQ, where only one
floating-point store can be executed every 3 cycles. See Table 3-22 for an example execution of four stfd
instructions. Vector stores do not have this problem and are fully pipelined (similar to the integer stores as
shown in Table 3-21).

To avoid floating-point store throughput bottlenecks, strings of back-to-back floating-point stores (like that
shown in Table 3-22) should be avoided. Instead, floating-point stores should be mixed with other
instructions wherever possible. For maximum store throughput, vector stores should be used.

Table 3-22. Execution of Four stfd Instructions

Instr. _ Cycle Number
No. Instruction
0 1 2 3 4 5 6 7 8 9
0 |stfd D [EO E1l |FSQO/C| WBO | WB1 | CSQO | CSQO | CSQO
1 |stfd — D | EO E1l FSQO | FSQO |FSQO/C| WBO WB1
2 |stfd — — D | EO El FSQ1 | FSQ1 | FSQO | FSQO
3 |stfd — — — D | EO El FSQ2 | FSQ1 | FSQ1
10 11 12 13 14 15 16 17 18 19
0 |stfd CSQO
1 |stfd CSQ1 | CSQO | CSQO | CSQO
2 |stfd FSQO/C| WBO | WB1 | CSQ1 | CSQO | CSQO | CSQO0
3 |stfd FSQ1 | FSQO | FSQO |FSQO/C| WBO | WB1 | CSQ1 | CSQO | CSQO | CSQO
36 MPC7450 RISC Microprocessor Family Software Optimization Guide MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Load/Store Unit (LSU)

3.7.3 Store Gathering and Merging

The MPC7450 implements two techniques to improve store performance by coalescing adjacent entriesin
the CSQ. Store gathering refers to coalescing adjacent cache-inhibited or write-through stores; store
merging refers to coalescing adjacent cacheable writeback stores. Note that these two techniques are used
only when the bottom CSQ entry is processing a cache miss or sending a store request to the memory
subsystem. In such a situation, the bottom entry itself is not eligible for any coalescing operations, but all
other CSQ entries are examined.

The throughput of cache-inhibited or write-through stores is usually limited by the system address bus
bandwidth. With store gathering enabled (HIDO[SGE] = 1), cache-inhibited or write-through stores may be
combined into larger transactions. If the bottom entry of the CSQ is processing a cacheable store miss or
sending a store request on to the memory subsystem, the processor examines the remaining CSQ entriesfor
store gathering. Any set of adjacent entries in the CSQ are gathered into one transaction if they are aligned,
the same size, to the same or adjacent addresses, either cache-inhibited or write-through, and the result is
aligned. When the MPC7450 is on a system bus supporting the MPX protocol, this gathering may continue
up to a32-byte store request. On a60x bus, the M PC7450 does not gather beyond a 64-bit transaction. Under
ideal conditions, a stream of write-through or cache-inhibited stores to sequential addresses reduces store
transactions on the system bus by a factor of four. Note that cache-inhibited guarded stores are never
gathered.

The throughput of cacheable stores that missin the L1 islimited by the latency to the L2 or L3 caches and
the memory latency. When store gathering is enabled (HIDO[SGE] = 1), cacheable writeback stores may
also be combined. If the bottom entry of the CSQ is processing a cacheable store miss or sending a store
reguest to the memory subsystem, any other adjacent entries in the CSQ are merged into one transaction if
they are both to the same 32-byte granule, are both cacheable and writeback, and are waiting to access the
L1 or have already missed inthe L 1 cache. For store merging, the size and alignment restrictions are rel axed,
because cacheable stores are always performed by writing bytesto the L1 (if the data L1 hits) or merging
bytes with reload data (if the data L1 misses).

3.7.4 Load/Store Interaction

When loads and stores are intermixed, the stores normally lose arbitration to the cache. A store that
repeatedly loses arbitration can stay in the CSQ much longer than four cycles, which is not normally a
performance problem because a store in the CSQ is effectively part of the architecture-defined state.
However, sometimes—including if the CSQfillsup or if astore causesapipelinestall (asin apartial address
alias case of store to load)—the arbiter gives higher priority to the store, guaranteeing forward progress.

Also, accesses to the data cache are pipelined (two stages) such that back-to-back loads and back-to-back
stores are fully pipelined (single-cycle throughput). However, a store followed by a load cannot be
performed in subsequent clock cycles. Loads have higher priority than stores and the L SU store queues stage
store operations until acache cycleisavailable. When the LSU store queues becomefull, storestake priority
over subsequent loads.

From an architectural perspective, when aload address aliases to a store address the |oad needs to read the
store data rather than the datain the cache. A store can forward only after acquiring its data, which means
forwarding happens only from the CSQ. Additionally, the load address and size must be contained within
the store address and size for store forwarding to occur. If the aliasisonly apartial alias (for example astb
and alwz) the load stalls. Table 3-23 shows a forwardable load/store alias, where the load stallsin E1 for
three cycles until the store arrivesin CSQO and can forward its data.

MOTOROLA MPC7450 RISC Microprocessor Family Software Optimization Guide 37

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Load/Store Unit (LSU)

Table 3-23. Load/Store Interaction (Assuming Full Alias)

Instruction 0 1 2 3 4 5 6 7 8
stw r3,0x0(r9) EO E1l FSQo/C WBO0 WB1 CSQoO CSQo CSQoO CSQo
Iwz r4,0x0(r9) | EO El El El El E2 C

3.7.5 Misalignment Effects

Misalignment, particularly the back-to-back misalignment of loads, can cause negative performance effects.
The MPC7450 splits misaligned transactionsinto two transactions, so misaligned load latency is at |east one
cycle greater than the default latency. On the MPC7450, misalignment typically occurs when an access
crosses a double-word boundary.

Table 3-24 shows what is considered misaligned based on the EA of the access. Accesses marked as
misaligned are split into two transactions and incur an extra cycle of latency. Accesses that are not marked
are considered aligned. Note that vector transactions ignore non-size-aligned low-order address bits and so
are considered aligned.

Table 3-24. Misaligned Load/Store Detection

Sizein Bytes| 1 2 4 8 16
Multiple-Integer | Floating-Point | Floating-Point =
EA[29-31] | Byte | Half Word Integer (Imw/stmw) Single Double Bus!=60x
000 — — — — — — —
001 — — — Alignment Alignment Alignment Align to QW
exception exception exception
010 — — — Alignment Alignment Alignment Align to QW
exception exception exception
011 — — — Alignment Alignment Alignment Align to QW
exception exception exception
100 — — — — — Misaligned Align to QW
101 — — Misaligned Alignment Alignment Alignment Align to QW
exception exception exception
110 — — Misaligned Alignment Alignment Alignment Align to QW
exception exception exception
111 — | Misaligned | Misaligned Alignment Alignment Alignment Align to QW
exception exception exception

Future generations of high-performance microprocessors that implement the PowerPC architecture may
experience greater misalignment penalties.

3.7.6 Load Miss Pipeline

The MPC7450 supports as many as five outstanding load misses in the load miss queue (LM Q). Table 3-25
shows a load followed by a dependent add. Here, the load misses in the data cache and the full line is
reloaded from the L2 cache back into the data cache. Theload L2 cache hit latency is effectively nine cycles.

38 MPC7450 RISC Microprocessor Family Software Optimization Guide MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Load/Store Unit (LSU)

Table 3-25. Data Cache Miss, L2 Cache Hit Timing

Instruction 0 1 2 3-7 8 9 10
lwz r4,0x0(r9) EO E1l Miss LMQO LMQO/E2 C
add r5,r4,r3 — — — — — E C

If aload missesin the L1 data cache and in the L2 data cache, critical data forwarding occurs, followed
shortly by therest of the line. The following example shows that the load L3 cache hit latency is effectively
33 cycles.

The following L3 parameters are assumed for the example in Table 3-26:
» DDRSRAM at 4:1L3busratio
e L3 clock sample pointis5 clocks
» L3 Processor-clock sample point is 0 clocks
Table 3-26. Data Cache Miss, L2 Cache Miss, L3 Cache Hit Timing

Instruction 0 1 2 3-31 32 33 34 35-36
lwz r4,0x0(r9) EO E1l Miss LMQO | LMQO/E2 | LMQO/C LMQO LMQO
add r5,r4,r3 E C

Note that the LM QO entry for the load remained allocated for four cycles after the critical data arrived in
cycle 32. Thisis because with a4:1 DDR SRAM, there is a 4-cycle gap between critical data and full line
data, and the LMQ entry is only deallocated when the full line has returned.

If aload/store miss aliasesto the same line as a previously outstanding miss, the LSU halts new access until
thisstall condition isresolved. The following example contains a series of loads, where the data startsin the
L3 cache, with the L3 cache configured similarly to the example in Table 3-26.

Table 3-27. Load Miss Line Alias Example

Cycle Number

"I‘\fot.r' Instruction 0 1 2 3-31 32 33 34 | 35-36
0 |lwzr3,0x0(r9) EO E1l Miss | LMQO |LMQO/E2 | LMQO/C | LMQO | LMQO
1 add r4,r3,r20 E C
2 Iwz r5,0x4(r9) | EO E1l E1l E1l E1l El El
3 add r6,r5,r4 |
4 |lwz r7,0x20(r9) D [EO EO EO EO EO EO
5 add r8,r7,ré D |

37-39 40 41 42 43-61 62 63 64
0 lwz r3,0x0(r9)
1 add r4,r3,r20
2 lwz r5,0x4(r9) El E2 Cc
3 add r6,r5,r4 E C
4 lwz r7,0x20(r9) EO E1l Miss LMQO LMQO LMQO/E2 | LMQO/C | LMQO
5 add r8,r7,ré E C
MOTOROLA MPC7450 RISC Microprocessor Family Software Optimization Guide 39

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Load/Store Unit (LSU)

Note that instruction 2 stallsin stage E1 (in the RA latch in Table 3-27). This stall occurs because the line
miss caused by instruction O is the same line that instruction 2 requires. Instruction 2 does not finish
execution until cycle 40 (that is eight cycles after instruction 0). This delay is due to two major components.
Thefirst delay component isthat instruction O finished by using critical forwarded data, whereasinstruction
2 must wait for the full cache line to appear before it can start execution (a 4-cycle delay, in this example).
The second delay component is also due to the cache being updated and the occurance of a pipeline restart
condition.

The second issue that this example showsisthat the misses are not fully pipelined. Instructions 0 and 4 miss
in the data cache and L2 cache but hit in the L3 cache. The stall caused by the line miss alias between
instructions 0 and 2 has caused the miss for instruction 4 to delay its access start by many cycles. A simple
reordering of the code, as shown in the following example, allows the two load missesto pipelineto the L3
cache, improving performance by nearly 50 percent.

Table 3-28. Load Miss Line Alias Example With Reordered Code

Cycle Number
",‘\fgr' Instruction 0 1 2 3 4-31 32 33
0 |lwz r3,0x0(r9) EO E1l Miss LMQO LMQO | LMQO/E2 | LMQO/C
1 |addr4,r3,r20 E
2 lwz r7,0x20(r9) | EO E1l Miss LMQ1 LMQ1 LMQ1
3 | lwz r5,0x4(r9) D I EO El El E1l El
4 |add r6,r5,r4 D I
5 |add r8,r7,r6 D I
34 35-36 37-39 40 41 42 43
0 |[lwzr3,0x0(r9) LMQO LMQO
1 |addr4,r3,r20 C
2 |lwz r7,0x20(r9) LMQ1 LMQ1 LMQ1 LMQ1 |LMQI/E2| LMQL/C | LMQ1
3 |lwz r5,0x4(r9) El El E1l E2 C
4 |add r6,r5,r4 E C
5 |add r8,r7,r6 E C

This type of stall is common in some code examples, including simple data streaming or striding array
accesses. For example, along stream of vector |oads with addresses incrementing by 16 bytes (a quad word)
per load results in every other load stalled in this manner, and no miss pipelining occurs. This stall causes
an even larger performance bottleneck when cache misses are required to go to the system bus and when
missed opportunitiesto pipeline system bus misses occur. This performance problem can be solved by code
reordering as shown in Table 3-28 or by the use of prefetch instructions (dcbt or dst).

The MPC7450 performs back-end allocation of the L1 data cache, which means that it selects the line
replacement (and pushes to the six-entry castout queue as needed) only when a cache reload returns.
Because any new miss transaction may later require a castout, a new miss is not released to the memory
subsystem until a castout queue slot is guaranteed.

40 MPC7450 RISC Microprocessor Family Software Optimization Guide MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Memory Subsystem (MSS)

3.7.7 DST Instructions and the Vector Touch Engine (VTE)

The MPC7450 VTE engine is similar to that on the MPC7400 but can only initiate an access every three
cycles rather than two. However, due to miss-handling differences described in Section 3.7.6, “Load Miss
Pipeline,” the engine may fall behind and conflict with the processor work. Therefore, retuning the dst may
be necessary to optimize MPC7450 performance as compared to the MPC7400.

Also, note the information on hardware prefetching in Section 3.8.4, “Hardware Prefetching.” Although
hardware prefetching is useful for many general-purpose applications, it may not be the best choice when
active prefetch control through software is attempted. Hardware prefetching can sometimes interfere with
the dst engine's attempt to keep the bus busy with specific prefetch transactions, especialy for dst strides
larger than one cache block or transient dst operations. Experimentation is encouraged, but in thisinstance
the best solution may be to disable hardware prefetching.

3.8 Memory Subsystem (MSS)

Thethree-level cache implementation affects instruction fetching, and the loading and storing of source and
destination operands, as described in the following sections.

3.8.1 1/0O Access Ordering

The MPC7450 follows the PowerPC architecturein ordering all cache-inhibited guarded |oads with respect
to other cache-inhibited guarded loads. It also orders cache-inhibited guarded stores with respect to other
cache-inhibited guarded stores and all storeswith respect to earlier loads. Cache-inhibited guarded loads are
normally only ordered with previous cache-inhibited guarded stores if they are to overlapping addresses.
The eeio instruction forces ordering of cache-inhibited guarded loads with previous cache-inhibited
guarded stores to different addresses. The best performance of sequences of cache-inhibited and guarded
ordered accesses is gained when stores are grouped and then a single eieio instruction is used to form a
barrier between the group of stores and any subsequent load.

3.8.2 L2 Cache Effects

The unified 256-Kbyte on-chip L2 cache has 8-way set associativity and 64-byte lines (with two
sectorg/lines). Thisimplies 4096 lines (256 K/64) and 512 sets (256 K byte/64/8). Each line has two sectors
with one tag per line but separate valid and dirty bits for each sector. Because of the sectoring, code uses
more of the L2 storage if the spatial locality is characterized by the use of the adjacent 32-byte line.

A load that missesin the L1 but hitsin the L2 causesafull linereload. Itslatency isideally nine cycles (six
more than for an L1 hit) assuming no other higher priority L2 traffic. See Table 3-25.

An access missing in the L2 goes to the L3 or main memory bus to fetch the needed 32-byte sector.

The L2 cache uses a pseudo-random replacement algorithm. With 8-way set associativity, a miss randomly
replaces one of eight ways. Thisworkswell for smaller working set sizes, but for working set sizes close to
the size of the cache, the hit rateis not quite as good. Imagine a 64-Kbyte array structure and a byte striding
access pattern that loops over the array several times. The access of thefirst 32 Kbytes (256-K byte/8-ways)
will missand load correctly, but the second 32 Kbytes has aone in eight chance per set of thrashing with an
index of the first 32 Kbytes. This means that the first pass will probabilistically leave 93.75 percent of the
64-Kbyte structure in the L2 cache, and a second pass through the 64-Kbyte will probabilistically leave
99.8 percent of the 64-Kbyte structure in the L2 cache.

MOTOROLA MPC7450 RISC Microprocessor Family Software Optimization Guide 41

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Memory Subsystem (MSS)

For a 128-Kbyte object, 82.8 percent isleft in the L2 cache after one pass, but for a 256-Kbyte object only
sightly less than two-thirds of the structure is left in the L2 cache. However, in both cases the percentage
of the structure left in improves with subsequent strides through the data structure.

3.8.3 L3 Cache Effects

The L3 cache is an off-chip SRAM with on-chip cache tags. The MPC7450 supports 1- and 2-Mbyte L3
caches. A 1-Mbyte cache istwo-sectored (64-byte lines) and a2-Mbyte cache is4-sectored (128-byte lines).
The L3 is 8-way set associative, implying 16,384 lines (1-Mbyte/64 or 2-Mbyte/128) or 2,048 sets
(1-Mbyte/64/8 or 2-Mbyte/128/8).

An access missing in the L3 fetches the required 32-byte sector regardless of the L3 line size. Likethe L2,
the L3 uses a random replacement algorithm, the implications of which are described in Section 3.8.2, “L2
Cache Effects”

3.8.4 Hardware Prefetching

The MPC7450 supports aternate sector prefetching from the L2 cache. Because the L2 cache is
two-sectored, an access requesting a 32-byte line from the L1 that also misses in the L2 and the L3, can
generate a prefetch (if enabled) for the alternate sector as needed. As many as three outstanding prefetches
are allowed.

The example shown in Table 3-27 can also be used to illustrate the benefits of hardware prefetching for code
when other software techniques are not applied.

The following example shows timing when the loads miss all levels of the cache hierarchy and go to the
system bus. Hardware prefetching is disabled. The load missesto the bus are serialized by theload missline
alias stall (instruction 2 on instruction 0).

Table 3-29. Timing for Load Miss Line Alias Example

Cycle Number

",'\ISO” Instruction 0 1 2 3-81 82 83 84 85-99
0 |lwz r3,0x0(r9) EO E1l Miss LMQO |LMQO/E2| LMQO/C | LMQO LMQO
1 add r4,r3,r20 E C
2 |lwz r5,0x4(r9) | EO El El El El El El
3 add r6,r5,r4 |
4 |lwz r7,0x20(r9) D [EO EO EO EO EO EO
5 add r8,r7,ré6 D |

100-102 103 104 105 106-184 185 186 187
0 |[lwzr3,0x0(r9)
1 add r4,r3,r20
2 |lwz r5,0x4(r9) El E2 C
3 |addr6,r5,r4 E C
4 |lwz r7,0x20(r9) EO E1l Miss LMQO LMQO |LMQO/E2| LMQO/C | LMQO
5 |add r8,r7,r6 E C
42 MPC7450 RISC Microprocessor Family Software Optimization Guide MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Memory Subsystem (MSS)

However, if hardware prefetching is enabled, the hardware starts prefetching the line desired by instruction
4 even before instruction 4 accesses (and misses) the L1 data cache, thus parallelizing some serialized bus
accesses. In Table 3-30, with prefetching enabled, performance is improved by about 40 percent. In this
case, the prefetch is not finished when instruction 4 goesto the L2 cache, so theload isforced to stall while
the prefetch bus access is completed. However, in other cases, the hardware prefetch is entirely finished,
alowing subsequent loads to have the access time of a L2 cache hit. In general, hardware prefetch benefits
are very dependent on what type of applications are run and how the system is configured.

Table 3-30. Hardware Prefetching Enable Example

Cycle Number

”,‘\lso”' Instruction 0 1 2 3-81 82 83 84 85-99
0 |lwz r3,0x0(r9) EO El Miss LMQO LMQO | LMQO/E2 | LMQO/C | LMQO
1 add r4,r3,r20 E C
2 Iwz r5,0x4(r9) | EO El El El El El El
3 add r6,r5,r4 |
4 |lwz r7,0x20(r9) D [EO EO EO EO EO EO
5 add r8,r7,r6 D |

100-102 103 104 105 106-133 134 135 136

0 |[lwzr3,0x0(r9)
1 |add r4,r3,r20
2 |lwz r5,0x4(r9) El E2 C
3 |addr6,r5,r4 E C
4 |lwz r7,0x20(r9) EO El Miss LMQO LMQO | LMQO/E2 | LMQO/C LMQO
5 |add r8,r7,r6 E C

Hardware prefetching is often preferable. However, sometimes an unnecessary prefetch transaction can
delay alater-arriving demand transaction and slow down the processor. Also, as described in Section 3.7.7,
“DST Instructions and the Vector Touch Engine (VTE),” if software prefetching is used, hardware
prefetching may sometimes provide more interference than benefit.

MOTOROLA MPC7450 RISC Microprocessor Family Software Optimization Guide 43

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Optimizations to Exploit the MPC7450 Microprocessor

Part IV
Microprocessor Application to Optimal Code

Although many of the code optimizations described in this document can also be performed by hand in
assembly language, this chapter focuses on improving the code performance on an established compiler tool
chain.

If the goal isinstead to build a compiler for the PowerPC architecture, a useful (but outdated) document is
the Power PC Compiler Writer’s Guide. However, many of the code sequences suggested in that document
are no longer optimal, especially for the MPC7450.

There are multiple locations in the compiler tool chain, independent of the source language used, in which
code can be transformed to better exploit the architecture and microarchitecture. The optimizationsin this
chapter are loosely classified into expected work and benefit. The actual work depends on the compiler tool
chain infrastructure.

4.1 Optimizations to Exploit the MPC7450
Microprocessor

The MPC7450 microprocessor has more functional units and extends the basic pipeline compared with
previous microprocessors that implement the PowerPC architecture. Running code on an MPC7450 that
was targeted or optimized for a previous microprocessor may leave some functional units idle and may
cause the pipeline to stall more often. Although the MPC7450 attempts to dynamically reorder code, a
compiler can often do a much better job.

This section describes several optimizations that take advantage of features of the MPC7450 processor.
Instruction scheduling islikely to provide the largest performance impact. Also, dueto the M PC7450 deeper
pipeline, some serializing instructions have a higher performance penalty than on previous processors; their
use should be carefully examined to see if an aternate instruction will suffice. Finally, because some
instruction timings have changed, some commonly used code sequences can be modified to run faster.

4.1.1 Instruction Scheduling

To get good performance, the compiler must schedule the code for the target microprocessor. A good first
approximation at an optimal schedule can be obtained by modeling the number of instructions that can be
issued per clock, the number and types of functional units, the pipeline stages for each type of instruction
and the number of cycles spent in each stage, as well as the overall latency of the instruction. More
sophisticated scheduling models may incorporate the issue and completion queue sizes. The details
necessary for modifying the internal scheduling models can be found in the preceding chapters.

4.1.2 Instruction Form Selection

There are several instructionsthat cause execution serialization, either always (carry consuming instructions
like adde and subfe, for example), or under certain conditions (such as overflow-recording-form
instructions that change XER[SO]). As the pipeline gets longer, the potential loss of performance due to
serialization gets higher. Care should be exercised during instruction selection to avoid those serializations

44 MPC7450 RISC Microprocessor Family Software Optimization Guide MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Optimizations to Exploit the Branch Unit

inthefinal code. A genera set of rulesis given below. Although these rules are generally reliable, there are
always afew cases where it can make sense to break them.

* Usetheload update and store update forms to merge a subsequent pointer update instruction with
the access. Note that excessive use of the load-update form (three load-update instructionsin a
row) can cause dispatch and retirement stalls. See Section 3.2, “ Dispatch Considerations,” and
Section 3.4.2, “Completion Groupings,” for more details.

» Avoid carry consumers (instructions like adde that require the XER[CA] as an input) unless doing
more than 32-bit arithmetic.

» Usecarry generating instructions such as addc and subfc, only when they are needed to generate
XER[CA].

» Usetherecord form of instructions only when needed.

* Avoid toggling XER[SO]; see Section 3.4.3, “ Serialization Effects”

4.1.3 Optimal Code Sequences

Programming languages are implemented such that applications repeatedly use smaller sequences of code
for common operations. Some examples are absolute value, minimum and maximum of two numbers and
bit manipulations. For those simple functions it is worthwhile to find the set of MPC7450 instructions that
has the best performance and use these instructions during code generation, writing peephol e optimizations
where necessary. Part V, “Optimized Code Sequences,” lists a number of such known functions and
respective optimal instruction sequences.

4.1.4 Conversion of Control Path into Data Path

Some control path problems can be converted to data path problems (predication). This includes the use of
instructions like fsel or vsel, or groups of instructions on the integer side to emulate a conditional integer
select. This approach should be taken only after careful analysis. It is typicaly useful if the branch is
difficult to predict or the computation overhead of the predicated code is very small.

Note that as pipelines get longer and mispredicts get more expensive, converting control path problems to
data path problemsis an increasingly favored solution.

4.2 Optimizations to Exploit the Branch Unit

Because the MPC7450 microprocessor has higher branch penalties and a hardware link stack, the compiler
toolchain should consider some measures to improve branch performance.

4.2.1 Bias Towards CTR for Loops

Using the CTR is generally preferable over pairing compare/branch instructions. This has been aguideline
for prior implementations, but the possible penalty of using add/compare/branch instead of the CTR-based
branch-and-decrement is greater than on previous processors.

See Section 3.1.2.2, “Branch Loop Example,” for an example of how CTR-based |oops can be better.

MOTOROLA MPC7450 RISC Microprocessor Family Software Optimization Guide 45

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Optimizations to Exploit the Memory Hierarchy

4.2.2 Using the Link Register

The CTR instruction pair mtctr/bectr should be used for all computed branches. This includes case
statement jumps and all indirect function calls. Note that to save the return address on indirect function calls,
the link form of the bectr instruction (bcctrl) should be used. The LR-based indirect branch (bclr) should
be used only for subroutine call/return. Misusing the LR and CTR can corrupt the hardware link stack such
that several future branches are mispredicted.

See Section 3.1.4, “Using the Link Register (LR) Versus the Count Register (CTR) for Branch Indirect
Instructions,” for more information.

4.2.3 Branch Bubbles

Where possible, branches should be biased asfall-through. Thisis because taken branches can interrupt the
fetch supply. On the MPC7450, ataken branch incurs a 1-2 cycle fetch bubble. A 1-cycle bubble occurs for
ab or bcwithaBTIC hit. A 2-cycle bubble occursfor aBTIC missor for branchesthat cannot usethe BTIC
(bectr, belr). The 2-cycle fetch bubble is due to the 2-cycle fetch latency to the instruction cache.

Section 3.1.1.1, “Fetch Alignment Example,” and Section 3.1.1.2, “Branch-Taken Bubble Example,” show
how the fetch supply works and why it is useful to bias branches to the not-taken case.

4.2.4 Branch Dependencies

The availability of eight CR fields in the PowerPC architecture means that multiple condition checks can
effectively occur simultaneously. Some scenarios can take advantage of this to handle branch-dependent
indicators such that the branch resolves before it would be predicted, eliminating the cost of misprediction.
Even if the branch is mispredicted, having data earlier may allow the mispredict recovery to occur earlier.

Issuing amtctr or mtlr instruction well ahead of its dependent branch instruction can often help avoid stalls
or mispredictions as well.

4.3 Optimizations to Exploit the Memory Hierarchy

Memory considerations can also affect code performance. This section describes several areas where there
is opportunity for optimization.

4.3.1 Data Alignment

Any data cache access crossing a double-word boundary (with the exception of vectors, which are naturally
guad-word based accesses) causes misalignment, and incurs at least one additional cycle of latency. See
Section 3.7.5, “Misalignment Effects,” for more MPC7450 specific information.

Note that misalignment penalties may increase on future high-performance microprocessor.

4.3.2 Instruction Code Alignment

Aligning a branch target can be useful to the fetch supply. Preferred alignment for a MPC7450 should be
such that thefirst four instructions of abranch target should be in the same cache block. See Section 3.1.1.1,
“Fetch Alignment Example,” for more information.

46 MPC7450 RISC Microprocessor Family Software Optimization Guide MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Optimizations to Exploit the Memory Hierarchy

In future high performance processors that implement the PowerPC architecture, the preferred instruction
aignment will be that the branch target be the first instruction in a quad word (target address =
OXXXXX_XXX0).

4.3.3 Load Hoisting

Load hoisting refers to the general technique of increasing the load-to-use distance. Increasing the time
between when aload is executed and the operand is needed reduces stalls waiting for the load to complete
(although a balance must be struck against the increased register pressure). Note that typical MPC7450 load
latencies are longer than in prior microprocessors (see the code in Section 3.1.1.1, “Fetch Alignment
Example”) increasing the benefit of load hoisting.

Some possible [oad hoisting optimizations include scheduling, moving loads from basic blocks to previous
basic blocks, and moving loads from the bodies of if-then statements or from loops when the analysis
indicatesit is safe.

One potential situation that may prevent load hoisting is the possibility of pointer aliasing between a load
and some store operations. Careful analysis of such situations may show that performance would improve
if the code was compiled assuming no aliases between these accesses, with a check and a branch at the
beginning of this code to fix-up code or an alternate version of the code that handles the aliasing case.

The following example shows a function modify a b that can be optimized to perform run-time
checking of aliasing.

C Source Code:
void modify a b(int *a, int *b)
*a += 5;
*b &= O0xff;

*a += *b;

}

Assembly code:

lwz 9,0(3)
addi 9,9,5
stw 9,0(3)
1bz 11,3 (4)
stw 11,0(4)
lwz 0,0(3)
add 0,0,11
stw 0,0(3)

blr
Hereis C and assembly code of the function after inserting arun-time alias check. Note that within the first
block, the pointers are only dereferenced once for loads and once for stores.

void modify a b smart (int *a, int *b)
if (a !'= b) {
int aval = *a;
int bval = *b;
aval += 5;
bval &= O0xff;

MOTOROLA MPC7450 RISC Microprocessor Family Software Optimization Guide a7

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Other Optimizations Worth Investigating

aval += bval;

*a = aval;
*b = bval;

} else {
*a += 5;
*b &= Oxff;
*a += *b;

}

Assembly code:

cmpw 0,3,4
beq alias case
lwz 9,0(3)
lbz 0,3 (4)
5

blr
alias case:

lwz 9,0(3)

addi 9,9,5

rlwinm 9,9,0,23,30

stw 9,0(3)

blr
Note that in both the non-alias and alias case, the new code has higher performance. In the non-alias case,
only one load and store per pointer is needed; in the alias case, because the compiler knows that the two
pointers point to the same location, only a single load and store is needed. Also note that in the alias case,
additional optimizations may now be possible. Here, the AND operation on b and the add to a can now be
merged into a single rlwinm instruction since a and b are now known to be the same memory location.

4.4 Other Optimizations Worth Investigating

As the complexity of architecture design increases, each new processor relies more on the compiler
toolchain to perform complex analysis and code transformations to fully use the architecture features. The
following sections describe some optimizations that are significant for the MPC7450 and are likely to be
more important on future microprocessors.

4.4.1 Software-Controlled Data Prefetching

On the MPC7450, care should be taken to allow the microprocessor to pipeline data cache misses. For some
applications, pipelining cache misses to lower levels of the memory hierarchy is key to achieving high
performance. Because the MPC7450 stalls on multiple load misses to the same cache block, it is often
necessary to clump miss accesses together when trying to achieve high bandwidth.

48 MPC7450 RISC Microprocessor Family Software Optimization Guide MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Other Optimizations Worth Investigating

For example, when it isknown (or strongly suspected) that a 128-byte array structureisnot in the data cache,
it is often not agood ideato load it in by using alooped series of Iwzu rx, 0x4(ry) instructions. Note that
128 bytes is equal to four cache blocks on the MPC750/MPC7400/MPC7450, because all three
microprocessors have 32-byte cache blocks.

The second (and subsequent) loads stall until the first gets its data from memory. When the 9th,17th, and
25th loads miss, the 10th, 18th, and 26th loads collide on them and again stall the pipe. Better bandwidth
can be achieved if the four cache block misses are alowed to go out in parallel, which requires that each of
the first four accesses be to one of the four lines that needs loading.

Determining whether this is best done with loads, dcbt instructions, a dst, or a combination of the above,
can be complicated. In the above scenario, one load and three dcbt instructions may be the best solution.
Generally, dcbt instructions are best used to prefetch afew cache blocks of information, but dst instructions
are best used when pulling in alarger amount of information. However, the trade-offs are often application
dependent.

The VTE engine on the MPC7450 can initiate a prefetch once every three cycles. Because the engine can
sometimes fall behind actual code execution and thus become useless, one useful trick can be to prefetch
less data with a particular dst, and then refresh the dst every so often with a new block to prefetch.
Determining the amount of datato prefetch with aparticular dst and the refresh rate is often very application
(also platform/environment) dependent, and usually requires some trial and error experimentation. See
Section 5.2.1.8 “ Stream Usage Notes,” in the AltiVec Technology Programming Environments Manual for
additional reasons why numerous small dst operations are likely to provide better performance than afew
large dst operations.

The following code shows pseudo-code for two loops. The first loop performs a single dst operation for the
entire data stream, while the second performs several smaller dst operations. If theVTE engine falls behind
for the first loop, it provides no benefit from that time forward. If the VTE engine in the second loop falls
behind the compuitation, it islikely that in the next iteration of the outer loop, the VTE engine will again be
prefetching useful data, asthe VTE engine is reprogrammed to prefetch what is going to be required next.

/* Single dst for entire array. */
vec _dst(a, <256 blocks of 32 byte size>)
for (i=0; i<2048; i++) {
total += A[i];
}

/* Series of smaller dsts. */
for (i=0; 1<2048; i+=64) {/* 32 iterations of this loop. */
vec dst(al[il, <8 blocks of 32 byte size>)
for (j=i; j<i+64; j++) {
total += A[j];
}

}

For example, assume that the VTE engine only prefetches the first four blocks in the dst before falling
behind. In thefirst loop, only 4 out of 256 blocks are prefetched. In the second loop, thefirst four blocksin
each iteration of the outer loop are prefetched in time, for atotal of 128 blocks usefully prefetched.

MOTOROLA MPC7450 RISC Microprocessor Family Software Optimization Guide 49

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Other Optimizations Worth Investigating

4.4.2 Software Pipelining

With longer pipelines, more functional units, and higher instruction issue rate, the MPC7450 can provide
more instruction level parallelism (ILP) than previous microprocessors. Loops that have long dependency
chains may benefit from software pipelining. On those loops, software pipelining increases ILP by
executing several iterations of the loop in parallel.

4.4.3 Loop Unrolling for Long Pipelines

Small body inner loops may benefit from unrolling on the MPC7450 more than on prior microprocessors
that implement the PowerPC architecture. By increasing the number of instructionsin aloop and reducing
the number of timestheloop needsto execute, possible stalls are minimized. The drawback of thistechnique
is the increased instruction space size required to hold the information. In some cases, increased code size
can result in more instruction cache misses, which may cost more performance than the loop unrolling
gained.

The costs of setting up and fixing up code may also affect the loop unrolling trade-off.

To further extend the code example first used in Section 3.1.1, “Fetching,” loop unrolling can be applied.
Because every taken branch on the MPC7450 represents at |east one cycle of lost fetch opportunity, it can
often be more advantageous to unroll loops than it has been in the past. The following code assumes that it
is permitted to loop unroll four times (that is, the loop size is evenly divisible by four) and that a value of
loopsize/4 was previously loaded into the CTR (rather than the prior two examples, which assumed the loop
size was loaded into the CTR).

XxXxxx00 loop: lwzu rl0, 0x4 (r9)
XXXXxX04 add rll,rl1ll,r10
XXXxxX08 lwzu rl0, 0x4 (r9)
xXxXxxX0C add rll,rl1ll,r10
XXXxxX10 lwzu rl0, 0x4 (r9)
XXXXXX14 add rll,rl1ll,r10
XXXXXX18 lwzu rl0, 0x4 (r9)
XXXXxX1C add rll,rl1ll,r10
xxxxxx20 bdnz loop

Table 4-1 shows that the fetch supply is ho longer the bottleneck for the above code sequence. At this point,
the limiting bottleneck becomes the single cache port. For this code, one effective iteration (Iwzu/add) is
completing per cycle. Loop unrolling doubles the performance of the aligned example case.

Table 4-1. MPC7450 Execution of One—Two lIterations of Code Loop Example

Instruction 0 1 2 3 4 5 6 7 8 9
lwzu (1) D | EO | E1 | E2
add (1) D [— | = | = E C
lwzu (2) — D | EO El E2
add (2) — | D [— | - | =] E C
lwzu (3) — D [EO | E1 | E2
add (3) — D | — | = | = E c
lwzu (4) — | = D [EO | E1 | E2 | C
50 MPC7450 RISC Microprocessor Family Software Optimization Guide MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Other Optimizations Worth Investigating

Table 4-1. MPC7450 Execution of One—Two lIterations of Code Loop Example (continued)

Instruction 0 1 2 3 4 5 6 7 8 9
add (4) — — D | — — — E C
bdnz BE D — — — — — C
lwzu (5) D | EO El E2 C
add (5) D | — — — E

4.4.4 \Vectorization

Transforming code to reference vector data as opposed to scalar data can produce significant performance
benefits for certain types of code. The MPC7400 and MPC7450 support the AltiVec extension to the
PowerPC architecture, which enables vector SIMD computing.

The analysis required to automatically vectorize scalar applications is quite sophisticated and requires
significant infrastructure to incorporate into a compiler. Note that it is possible to create a preprocessor that
takes a C file, performsthe autovectorization using the AltiVec programming interface, and outputs a vector
version of the C file. Now thefile can be compiled using any AltiVec-enabled compiler and no modifications
to the compiler itself were required.

The AltiVec Programming I nterface Manual, available on the M otorolawebsite, containsinformation onthe
AltiVec programming interface and should be referenced.

To take the example in Section 4.4.3, “Loop Unrolling for Long Pipelines,” one step further, this code
sequence could also be vectorized. Table 4-2 is a vectorized (and loop unrolled) version of the following
code sequence. This code assumes that the data is aligned on a 128-bit boundary. Note that the lack of a
vector update form means afew extra integer registers must be reserved for holding constants, but because
the primary computation is now in the vector registers, this should not be a problem. A vector sum across
(vsumsws) is needed after the loop body to sum the four words within the vector into asingle final result.

XxXXxxx00 loop: lvx v10,r8,r9
XXXXXxX04 vaddsws v11l,v11l,v10
XXXXxxX08 lvx v10,r7,xr9
XXXXxX0C vaddsws v11l,v11l,v10
XXXXXX10 lvx v10,r6,r9
XXXXXX14 vaddsws v11l,v11l,v10
XXXXXX18 lvx v10,r5,r9
XXXXXX1C vaddsws v11l,v11l,v10
XXXXxXX20 addi r9,r9,0x10
XXXXXX24 bdnz loop

XXKXXXX28 vsumsws v1l,v11l,v0

Table 4-2 shows that the code has been vastly accelerated from the original example. For this code, four
effectiveiterations (Iwz/add) are completing per cycle. Vectorization quadruples performance over the loop
unrolled example and provides afull 12x performance increase from the original examplein Table 1-1.

MOTOROLA MPC7450 RISC Microprocessor Family Software Optimization Guide 51

For More Information On This Product,
Go to: www.freescale.com

52

Table 4-2. MPC7450 Execution of 1-2 Iterations of Code Loop Example

Freescale Semiconductor, Inc.
Other Optimizations Worth Investigating

Instruction 0 1 2 3 4 6 7 8 9
lvx (1-4) D | EO | E1 | E2
vaddsws (1-4) D | — — — E C
Ivx (5-8)) — D [EO | E1 | E2
vaddsws (5-8) — D I — — — E C
lvx (9-12) — | D [EO | E1 | E2
vaddsws (9-12) — D | — — — E C
lvx (13-16) — — D | EO El E2 C
vaddsws (13-16)) — — D | — — — E C
addi — D I E — — — C
bdnz BE — D — — — — C
Iwzu (5) D [EO | E1 | E2 | —
add (5) D | — | — | =] E

MPC7450 RISC Microprocessor Family Software Optimization Guide MOTOROLA

For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
Signed Division Sequences

Part V
Optimized Code Sequences

Many of the code sequences given in the book the PowerPC Compiler Writer's Guide as optimal code
sequences are no longer optimal for current microprocessors. The primary problem with the sequences
suggested in the Power PC Compiler Writer's Guide is that they use carry forwarding, and the execution
serialization of carry consumers on the MPC7450 has often made the suggested sequence inferior to
alternatives. This chapter provides better optimized code sequences.

Compiler writers and programmers should carefully evaluate the given options for each sequence—often, a
longer set of instructions may execute faster than a sequence containing fewer instructions. However, the
additional instruction cache space requirements and register usage must be taken into account to determine
which sequence is better in a given case. For code sequences where a cycle count is given, that cycle count
is for the case where the instructions in guestion are the only instructions executing on the machine. This
assumes that all execution units of the processor are available, and that certain instructions may executein
paralel. For cases where the cycle count is equal for the PowerPC Compiler Writer’s Guide sequence and
the MPC7450 sequence, the MPC7450 sequenceis recommended becauseit is more likely to do well when
dynamic scheduling occurs.

The tables that follow give the standard recommended code sequence for each operation, along with a
MPC7450-specific recommended sequence, where applicable. The standard recommended code sequences
were taken from the Compiler Writer’s Guide and are located in the columnstitled Compiler Writer’s Guide
code. For each code sequence, theinput variables are allocated to registersr3, r4, and possibly r5, depending
on the number of arguments. The highest-numbered register used is allocated to the result. All registers
between those used for the arguments and the results hold temporary values.

The future designs mentioned in this document refer to future high performance designs that implement the
PowerPC architecture. The statements may not apply to all future designs.

5.1 Signed Division Sequences

Theentriesin Table 5-1 originally come from Section 3.2.3.5 of the Power PC Compiler Writer’sGuide. The
argument is assumed to bein r3.

Table 5-1. Signed Division Sequences

Operation Compiler Writer’s MPC7450 Code Comments
Guide code (If Different)
Signed divide by 2 |srawi r4,r3,1 srwi r4,r3,31 The MPC7450 sequence takes 4 cycles to
addze r4,r4 add r5,r4,r3 complete, but the GPR result in r6 is available
srawi r6,r5,1 after 3 cycles. As itis the only part of the result
that is used, the sequence is assumed to take

Cycles: 5 Cycles: 3 3 cycles.

Signed divide by 4 | srawi r4,r3,2 srawi r4,r3,k k = any constant between 1 and 3. The

addze r4,r4 srwi r5,r4,30 purpose of the first srawi is to provide a

add r6,r5,r3 duplicate copy of the sign bit, so any amount
srawi r7,r6,2 of shifting that results in at least 2 copies of the
sign bit will suffice.

Cycles: 5 Cycles: 4 The MPC7450 sequence avoids execution
serialization and is more likely to run well on
future designs.

MOTOROLA MPC7450 RISC Microprocessor Family Software Optimization Guide 53

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Comparisons and Comparisons Against Zero

5.2 Comparisons and Comparisons Against Zero

Table 5-2 shows the code sequences from Section D.1 of the Power PC Compiler Writer’s Guide. In each
example, vO islocated in r3 and vl islocated in r4.

Table 5-2. Comparisons and Comparisons Against Zero

MPC7450 Code
(If Different)

Compiler Writer’s

Guide Code Comments

Operation

eq subf r5,r3,r4
r=(v0==v1l) cntlzw r6,r5
Ssrwi r7,r6,5
Cycles: 3
ne subf r5,r3,r4 subf r5,r3,r4 The MPC7450
r=(v0!=vl) addic r6,r5,-1 subf r6,r4,r3 sequence avoids the
subfe r7,r6,r5 orr7,r6,rs5 execution-serializing
srwirg8,r7,31 addic and subfe
pair. Additionally, the
Cycles: 5 Cycles: 3 first 2 instructions
may execute in
parallel in the 2
integer units.
les/ges srwi r5,r3,31 srawi r6,r4,31 The MPC7450

(r = (signed_word) v0 <= (signed_word) v1)
(r = (signed_word) v1>= (signed_word) v0)

srawi r6,r4,31
subfc r7,r3,r4
adde r8,r6,r5

subfc r7,r3,r4
srwi r5,r3,31
adde r8,r6,r5

sequence reorders
the instructions to
increase the
likelihood of better

Cycles: 5 Cycles: 5 performance in
real-world scenarios
and on future
processors.

leu/geu lir6,-1 subfr5,r3,r4 With good scheduling

subfc r5,r3,r4 orc r7,r4,r3 and register
r = (unsigned_word) vO <= (unsigned_word) v1 | subfze r7,r6 Srwi ré,r5,1 allocation, the
subf r8,r6,r7 MPC7450 sequence
r = (unsigned_word) v1 >= (unsigned_word) vO0; srwi r9,r8,31 is more likely to
perform well on future
Cycles: 4 Cycles: 4 processors. If
instruction cache
usage or register
usageis anissue, the
PowerPC Compiler
Writer's Guide
sequence is
preferred.
Its/gts subfc r5,r4,r3 xor r5,r4,r3
eqv r6,r4,r3 srawi r6,r5,31
r = (signed_word) vO < (signed_word) v; srwi r7,r6,31 orr7,r6,r3
addze r8,r7 subf r8,r4,r7
r = (signed_word) v1 > (signed_word) vO; rlwinm r9,r8,0,31,31 | srwi r9,r8,31
Cycles: 6 Cycles: 5
54 MPC7450 RISC Microprocessor Family Software Optimization Guide MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Negated Comparisons and Negated Comparisons Against Zero

Table 5-2. Comparisons and Comparisons Against Zero (continued)

Compiler Writer’s

MPC7450 Code

Operation Guide Code (f Different) Comments
ltu/gtu subfc r5,r4,r3 Xxor r5,r4,r3
subfe r6,r6,ré cntlzw r6,r5
r = (unsigned_word) vO < (unsigned_word) vl |neg r7,r6 slw r7,r4,r6
srwi r8,r7,31
r = (unsigned_word) v1 > (unsigned_word) vO;
Cycles: 5 Cycles: 4
eq0 subfic r4,r3,0 cntlzw r4,r3 Both sequences are
adde r5,r4,r3 srwi r5,r4,5 listed in the PowerPC
r=(v0==0); Compiler Writer's
Cycles: 4 Cycles: 2 Guide, with the
subfic and adde
sequence being first.
The cntlzw and srwi
sequence is
preferred.
ne0 addic r4,r3,-1 neg r4,r3
subfe r5,r4,r3 orr5,r4,r3
r=(v0!=0); srwi r6,r5,31
Cycles: 4 Cycles: 3
lesO neg r4,r3 lird,1
orcr5,r3,r4 cntlzw r5,r3
r = (signed_word) vO <=0 srwi r6,r5,31 rlwnm r6,r4,r5,31,31
Cycles: 3 Cycles: 2
gesO srwi r4,r3,31
xori r5,r4,1
r = (signed_word) vO >= 0;
Cycles: 2
I1tsO srwir4,r3,31
r = (signed_word) vO < O; Cycles: 1
gts0 neg r4,r3
andc r5,r4,r3
r = (signed_word) vO > O; srwi r6,r5,31
Cycles: 3

5.3 Negated Comparisons and Negated Comparisons

Against Zero

Table 5-3 shows the code sequences from Section D.2 of the Power PC Compiler Writer’s Guide. In each
example, vOislocated in r3 and vl islocated in r4.

MOTOROLA MPC7450 RISC Microprocessor Family Software Optimization Guide

For More Information On This Product,
Go to: www.freescale.com

55

Freescale Semiconductor, Inc.
Negated Comparisons and Negated Comparisons Against Zero

Table 5-3. Negative Comparisons and Negative Comparisons Against Zero

Operation Comp_ilerWriter’s MPC7_450 Code Comments
Guide Code (If Different)
neq subfr5,r4,r3 subfr5,r3,r4 The MPC7450
addic r6,r5,-1 subf r6,r4,r3 sequence takes 4
r=-(v0==vl) subfe r7,r7,r7 nor r7,r6,r5 cycles to complete, but
srawi r8,r7,31 the GPR resultin r8 is
available after 3 cycles.
Cycles: 5 Cycles: 3 As this is the only part
of the result that is
used, the sequence is
assumed to take 3
cycles.
nne subf r5,r4,r3 subf r5,r3,r4 The MPC7450
subfic r6,r5,0 subfr6,r4,r3 sequence takes 4
r=-(vo!=v1) subfe r7,r7,r7 or r7,ré,rs cycles to complete, but
srawi r8,r7,31 the GPR resultin r8 is
available after 3 cycles.
Cycles: 5 Cycles: 3 As this is the only part
of the result that is
used, the sequence is
assumed to take 3
cycles.
nles/nges xoris r5,r3,0x8000
subf r6,r3,r4
r = -((signed_word) vO <= (signed_word) v1) addc r7,r6,r5
subfe r8,r8,r8
r = -((signed_word)v1 >= (signed_word) v0)
Cycles: 5
nleu/ngeu subfc r5,r3,r4
addze r6,r3
r = -((unsigned_word) vO <= (unsigned_word) v1) |subf r7,r6,r3
r = -((unsigned_word) v1 >= (unsigned_word) v0) | Cycles: 5
nlts/ngts subfc r5,r4,r3
srwi r6,r4,31
r = -((signed_word) vO < (signed_word) v1); srwi r7,r3,31
subfe r8,r7,ré
r = -((signed_word) v1 > (signed_word) v0)
Cycles: 4
nitu/ngtu subfc r5,r3,r3
subfe r6,r6,r6
r = -((unsigned_word) vO < (unsigned_word) v1)
Cycles: 4
r = -((unsigned_word) v1 > (unsigned_word) v0)
neq0 addic r4,r3,-1 cntlzw r4,r3
subfe r5,r5,r5 srwi r5,r4,5
r=-(v0==0) neg r6,r5
Cycles: 4 Cycles: 3
56 MPC7450 RISC Microprocessor Family Software Optimization Guide MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Comparisons with Addition

Table 5-3. Negative Comparisons and Negative Comparisons Against Zero (continued)

Operation

Compiler Writer's

MPC7450 Code

Comments

r = -((signed_word) vO <= 0);

subfze r6,r5

srawi r6,r5,31

Guide Code (If Different)
nne0 subfic r4,r3,0 neg r4,r3 The MPC7450
subfe r5,r5,r5 orr5,r4,r3 sequence takes 4
r=-(v0!'=0) srawi r6,r5,31 cycles to complete, but
the GPR result in r6 is
Cycles: 4 Cycles: 3 available after 3 cycles.
As this is the only part
of the result that is
used, the sequence is
assumed to take 3
cycles.
nles0O addic r4,r3,-1 neg r4,r3 The MPC7450
srwi r5,r3,31 orcr5,r3,r4 sequence takes 4

cycles to complete, but
the GPR resultin r6 is

Cycles: 4 Cycles: 3 available after 3 cycles.
As this is the only part
of the result that is
used, the sequence is
assumed to take 3
cycles.

ngesO srwir4,r3,31

addi r5,r4,-1

r = -((signed_word) v1 >= 0);

Cycles: 2

nltsO srawi r4,r3,31 The srawi produces a
GPR resultin 1 cycle,

r = -((signed_word) vO < 0) Cycles: 1 even though the
instruction does not
complete and produces
a carry until after 2
cycles. As the carry is
not used, the
instruction is assumed
to complete in 1 cycle.

ngts0 subfic r4,r3,0 neg r4,r3 The MPC7450

srwi r5,r3,31 andc r5,r4,r3 sequence takes 4

r = -((signed_word) vO > 0) addme r6,r5 srawi r6,r5,31 cycles to complete, but
the GPR resultin r6 is

Cycles: 4 Cycles: 3 available after 3 cycles.

As this is the only part
of the result that is
used, the sequence is
assumed to take 3
cycles.

5.4 Comparisons with Addition

Table 5-4 shows the code sequences from Section D.5 of the PowerPC Compiler Writer’'s Guide. It is
assumed that there are three arguments for each operation. The v0O and v1 are the two arguments that are
used in the comparison and v2 is added depending on the result of the comparison. The register assumptions

MOTOROLA MPC7450 RISC Microprocessor Family Software Optimization Guide

For More Information On This Product,
Go to: www.freescale.com

57

Freescale Semiconductor, Inc.

Comparisons with Addition

arev0inr3, vlinr4, v2inr5. For the cases where the second operand is assumed to be 0 such as eq0+,
assume that vO isin r3 and v2 isin r4. The argument v1 is assumed to be O for these cases and does not

require aregister.

Table 5-4. Comparisons with Addition

Operation Compiler Writer’s MPC7450 Code Comments
P Guide Code (If Different)
eq+ subf r6,r3,r4 Xxor r6,r3,r4
subfic r7,r6,0 cntlzw r6,r6
r=(v0==vl) +v2; addze r8,r5 rlwinm r6,r6,27,31,31
add r7,r5,r6
Cycles: 5 Cycles: 4
ne+ subf r6,r3,r4
addic r7,r6,-1
r=(v0!=vl) +v2; addze r8,r5
Cycles: 5
les+/ges+ Xxoris r6,r3,0x8000
xoris r7,r4,0x8000
r = ((signed_word) vO <= (signed_word) v1) + v2; subfc r8,r6,r7
addze r9,r5
r = (signed_word) v1 >= (signed_word) v0) + v2;
Cycles: 5
leu+/geu+ subfc r6,r3,r4
addze r7,r5
r = ((unsigned_word) vO <= (unsigned_word) v1) + v2;
Cycles: 4
r = (unsigned_word) v1 >= (unsigned_word) v0) + v2;
Its+/gts+ subfr6,r4,r3
xoris r7,r4,0x8000
r = ((signed_word) vO < (signed_word) v1) + v2; addc r8,r7,r6
addze r9.r5
r = (signed_word) v1 > (signed_word) v0) + v2;
Cycles: 5
Itu+/gtu+ subfc r6,r4,r3
subfze r7,r5
r = ((unsigned_word) vO < (unsigned_word) v1) + v2; |neg r8,r7
r = (unsigned_word) v1 > (unsigned_word) v0) + v2; Cycles: 5
eqO0+ subfic r5,r3,0 cntlzw r5,r3
addze r6,r4 Srwi r6,r5,5
r=(v0==0)+vl; add r7,r6,r4
Cycles: 4 Cycles: 3
ne0+ addic r5,r3,-1 neg r5,r3
addze r6,r4 or r6,r5,r3
r=(v0!=0)+vl srwi r7,r6,31
add r8,r7,r4
Cycles: 4 Cycles: 4
58 MPC7450 RISC Microprocessor Family Software Optimization Guide MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Comparisons with Addition

Table 5-4. Comparisons with Addition (continued)

Compiler Writer’'s

MPC7450 Code

Operation Guide Code (f Different) Comments
lesO+ subfic r5,r3,0 cntlzw r6,r3
srwi r6,r3,31 lir5,1
r = ((signed_word) v0 <= 0) + v1 adde r7,r6,r4 Srw r7,r5,ré
add r8,r7,r4
Cycles: 4 Cycles: 3
gesO+ addi r5,r4,1 srwi r6,r3,31 The MPC7450
srwi r6,r3,31 addi r5,r4,1 sequence
r = ((signed_word) v0 >= 0) + v1 subf r7,r6,r5 subf r7,r6,r5 simply
reorders the
Cycles: 2 Cycles: 2 first 2
instructions.
This is likely to
result in better
performance
on future
processors.
ItsO+ srwi r5,r3,31
add r6,r5,r4
r = ((signed_word) vO < 0) + v1
Cycles: 2
gtsO+ neg r5,r3 neg r5,r3
srawi r6,r5,31 andc r6,r5,r3
r = ((signed_word) vO > 0) + v1 addze r7,r4 Srwi r7,r6,31
add r8,r7,r4
Cycles: 6 Cycles: 4
MOTOROLA MPC7450 RISC Microprocessor Family Software Optimization Guide 59

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
MPC7450 Execution Latencies

Appendix A
MPC7450 Execution Latencies

This appendix lists the MPC750, MPC7400, and MPC7450 instruction execution latencies. Instructions are
sorted by mnemonic, primary, extend, form, unit, and cycle.

A high level summary of execution latenciesis given in Table A-1. In particular, note that MPC7450 |oad
latencies are 1-2 cycles longer than MPC750/MPC7400 latencies. The MPC7450 has higher clock
frequencies than the MPC750 and MPC7400. Also, the execution latencies for the FPU and VPU are
significantly longer.

Table A-1. Execution Latency in Processor Clock Cycle

Instruction MPC750 MPC7400 MPC7450
Add, shift, rotate, logical 1 1 1
Multiply (32-bit) 6 6 4
Divide 19 19 23
Load int
Load float
Load vector —
Floating-point single (add, mul, madd) 3 3 5
Floating-point single (divide) 17 17 21
Floating-point double (add)
Floating-point double (mul, madd) 3 5
Floating-point double (divide) 31 31 35
Vector simple — 1 1
Vector permute — 1 2
Vector complex — 3 4
Vector floating-point — 4 4

NOTE

Some unit assignments have changed between designs. The reorgani zation
of the assignments of SRU/IUL/IUZ2 inthe MPC750/MPC7400to IU1/1U2
in the MPC7450 is a magjor change. Some MPC7400 vector instructions
executed by theV SIU of the VALU have also moved for the MPC7450: vdl
and vsr are now executed by the VPU, and mfvscr, mtvscr, vempbfp,
vempegfp, vempgefp, vempgtfp, vmaxfp, and vminfp are now executed by
the VFPU. Note that on the MPC7450, the single field form of mtcrf is
executed by the 1U1 and is no longer serialized, which should make it
much more useful.

Thefollowing tables specify unit assignments, |atencies/throughput, and serialization issuesfor each branch
instruction. Note the following:

» Pipelined load/store and floating-point instructions are shown with cycles of total latency and
throughput cycles separated by a colon (3:2 means 3-cycle latency with throughput of 1 every 2
cycles). Floating-point instructions with a single entry in the cycles column are not pipelined.

60 MPC7450 RISC Microprocessor Family Software Optimization Guide MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

The variable ‘b’ represents the processor/system-bus clock ratio.

Freescale Semiconductor, Inc.

The term ‘broadcast’ indicates a bus broadcast that has a minimum vaue of 3*b.

Additional cycles dueto serialization are indicated in the cycles column with the following:

— ¢ (completion serialization)
— s(store serialization)

— Yy (sync serialization)
— e (execution seriaization)
— r (refetch serialization)

Table A-2. Branch Operation Execution Latencies

Mnemonic Unit Cycles
b[l][a] BPU 1t
be[l][a] BPU 11
bectr[l] BPU 1!
belr[l] BPU 1,21

1 Branches that do not modify the LR or CTR can
be folded and not dispatched. Branches that are

dispatched go only to the CQ.

NOTE

Branch execution takes at least 1 cycle, but if a branch executes before
reaching the dispatch point, it appears to execute in 0 cycles. On the
MPC7450, a conditional bclr instruction takes 2 cycles to execute.

Table A-3 lists system operation instruction latencies.

Table A-3. System Operation Instruction Execution Latencies

MPC750 MPC7400 MPC7450
Mnemonic

Unit Cycles Unit Cycles Unit Cycles
eieio SRU 1 LSU 2:3*b {y} LSU 3:5 {s}
isync SRU 2{c,n} SRU 2 {c,n} —1 o{r}
mfmsr SRU 1 SRU 1 164 3-2
mfspr (DBATS) SRU 3{e} SRU 3{e} U2 4:3{e}
mfspr (IBATS) SRU 3 SRU 3 U2 4:3
mfspr (MSS) -NA - -NA - -NA - -NA - U2 5{e}?
mfspr (other) SRU 1{e} SRU 1{e} U2 3{e}
mfspr (Time Base) SRU 1 SRU 1 U2 5{e}
mfspr (VRSAVE) -NA - -NA - SRU 1{e} U2 3:2
mfsr SRU 3 SRU 3 164 4:3
mfsrin SRU 3{e} SRU 3{e} U2 4:3

MOTOROLA MPC7450 RISC Microprocessor Family Software Optimization Guide

For More Information On This Product,
Go to: www.freescale.com

MPC7450 Execution Latencies

61

Freescale Semiconductor, Inc.
MPC7450 Execution Latencies

Table A-3. System Operation Instruction Execution Latencies (continued)

MPC750 MPC7400 MPC7450
Mnemonic

Unit Cycles Unit Cycles Unit Cycles
mftb SRU 1 SRU 1 U2 5{e}
mtmsr SRU 1{e} SRU 1{e} U2 2{e}
mtspr (DBATS) SRU 2 {e} SRU 2 {e} U2 2{e}
mtspr (IBATS) SRU 2 {e} SRU 2 {e} U2 2{e}
mtspr (MSS) - NA - -NA - - NA - -NA - U2 5{e}
mtspr (other) SRU 2 {e} SRU 2 {e} U2 2{e}
mtspr (XER) SRU 1{e} SRU 1{e} U2 2{e,n}t
mtsr SRU 2 {e} SRU 2 {e} U2 2{e}
mtsrin SRU 2 {e} SRU 3{e} U2 2{e}
mttb SRU 1{e} SRU 1{e} U2 5{e}
rfi SRU 2{c.r} SRU 2{c.r} —1 o{r}
sc SRU 2{c.r} SRU 2{c.r} -1 o{r}
sync SRU 3 LSU | 8+broadcast{y} | LSU 35 3e,s}
tlbsync NULL — LSU 8+broadcast {y} LSU 3:5{s}

1 Refetch serialized instructions (if marked with a 0-cycle execution time) do not have an execute
stage, and all refetch serialized instructions have 1 cycle between the time they are completed and
the time the target/sequential instruction enters the fetchl stage.

2 Memory subsystem SPRs are implementation specific and are described in the MPC7450 RISC
Microprocessor Family User's Manual.

3 Assuming a 5:1 processor to clock ratio.

Table A-4 lists condition register logical instruction latencies.

62

Table A-4. Condition Register Logical Execution Latencies

MPC750,MPC7400 MPC7450
Mnemonic

Unit Cycles Unit Cycles
crand SRU 1{e} U2 2{e}
crandc SRU 1{e} U2 2{e}
creqv SRU 1{e} U2 2{e}
crnand SRU 1{e} U2 2{e}
crnor SRU 1{e} U2 2{e}
cror SRU 1{e} U2 2{e}
crorc SRU 1{e} U2 2{e}
crxor SRU 1{e} U2 2{e}
mcrf SRU 1{e} U2 2{e}

MPC7450 RISC Microprocessor Family Software Optimization Guide

For More Information On This Product,

Go to: www.freescale.com

MOTOROLA

Freescale Semiconductor, Inc.
MPC7450 Execution Latencies

Table A-4. Condition Register Logical Execution Latencies (continued)

MPC750,MPC7400 MPC7450
Mnemonic
Unit Cycles Unit Cycles
mcrxr SRU 1{e} U2 2{e}
mfcr SRU 1{e} U2 2{e}
mtcrf SRU 1{e} u2/1U1 2{ey1 !

1 mtcrfofa single field is executed by an IU1 in a single cycle and is not

serialized.

NOTE

The single field mtcrf executes significantly faster on the MPC7450 than
on previous designs. If asmall number of fields (2 or 3) need to be moved,
it is often advantageous to issue two or three single field moves rather than
one multi-field move. With three instruction-wide dispatch/compl ete and
three IU1s, even performing eight single-field moves may sometimes be a
win over the execution of a serialized multi-field move.

Table A-5 lists integer unit instruction latencies.

Table A-5. Integer Unit Execution Latencies

MPC750/MPC7400 MPC7450
Mnemonic
Unit Cycles Unit Cycles
addc[o][] U1/1U2 1 U1 1
adde[o][.] IU1/1U2 1{e} U1 1{e}
addi IU1/1U2 1 U1 1
addic IU1/1U2 1 U1 1
addic. IU1/1U2 1 U1 1
addis IU1/1U2 1 U1 1
addmelo][.] IU1/1U2 1{e} U1 1{e}
addze[o][.] IU1/1U2 1{e} U1 1{e}
add[o][] U1/1U2 1 U1 1
andcl[] U1/1U2 1 U1 1
andi. IU1/1U2 1 U1 1
andis. IU1/1U2 1 U1 1
and[.] U1/1U2 1 U1 1
cmp IU1/1U2 1 U1 1
cmpi IU1/1U2 1 U1 1
cmpl IU1/1U2 1 U1 1
cmpli IU1/1U2 1 U1 1
MOTOROLA MPC7450 RISC Microprocessor Family Software Optimization Guide 63

For More Information On This Product,
Go to: www.freescale.com

64

Freescale Semiconductor, Inc.
MPC7450 Execution Latencies

Table A-5. Integer Unit Execution Latencies (continued)

MPC750/MPC7400 MPC7450
Mnemonic
Unit Cycles Unit Cycles
cntlzw[] U1/1U2 1 U1 1
divwu[o][] U2 19 U2 23
divw[o][.] U2 19 U2 23
eqv[.] U1/1U2 1 U1 1
extsb[] U1/1U2 1 U1 11
extsh[] U1/1u2 1 U1 11
mulhwul.] U1 2,3,4,5,6 u2 4:22
mulhw[.] U1 2,345 U2 4:272
mulli U1 2,3 U2 31
mull[o][.] U1 2,3,4,5 U2 4:22
nandl[.] U1/1U2 1 U1 1
neg[o][.] IU1/1u2 1 U1 1
nor[.] U1/1U2 1 U1 1
orc[] U1/1U2 1 U1 1
ori U1/1U2 1 U1 1
oris U1/1U2 1 U1 1
or[] U1/1U2 1 U1 1
rlwimi[.] 1u1/1U2 1 U1 1!
riwinml[.] 1u1/1U2 1 U1 11
riwnm[.] 1u1/1U2 1 U1 11
siw[] U1/1U2 1 U1 11
srawi[.] 1U1/1U2 U1 23
srawl[] U1/1U2 1 U1 23
srwl.] 1u1/1U2 1 U1 1t
subfc[o][.] U1/1U2 1 U1 1
subfe[o][.] 1U1/1U2 1{e} U1 1(e}
subfic U1/1U2 1 U1 1
subfme[o][.] 1U1/1U2 1{e} U1 1(e}
subfze[o][.] 1U1/1U2 1{e} U1 1(e}
subf[] U1/1U2 1 U1 1
tw U1/1U2 2 U1 2
twi U1/1U2 2 U1 2

MPC7450 RISC Microprocessor Family Software Optimization Guide

For More Information On This Product,
Go to: www.freescale.com

MOTOROLA

Freescale Semiconductor, Inc.
MPC7450 Execution Latencies

Table A-5. Integer Unit Execution Latencies (continued)

MPC750/MPC7400 MPC7450
Mnemonic
Unit Cycles Unit Cycles
Xori IU1/1u2 1 U1l 1
Xoris IU1/1u2 1 U1l 1
xor[.] U1/1u2 1 U1 1

1 If the record bit is set, the GPR result is available in 1 cycle while the CR result is

available in the second cycle.

32*32-bit multiplication has an early exit condition. If the 15 most-significant bits
of the B operand are either all set or all cleared, the multiply finishes with a
latency of 3 and a throughput of 1.

srawi[.] and sraw[.] produce a GPR result in 1 cycle, but the full results,
including the CA, OV, CR results, are available in 2 cycles.

2

Table A-6 shows latencies for FPU instructions. I nstructionswith asingle entry in the cycles column are not
pipelined; all FPU stages are busy for the full duration of instruction execution and are unavailable to
subseguent instructions. Floating-point arithmetic instructions execute in the FPU; floating-point loads and
stores execute in the LSU.

For pipelined instructions, two numbers are shown separated by a colon. The first shows the number of
cycles required to fill the pipeline. The second is the throughput once the pipeline is full. For example,
fabg[.] passes through five stages with a 1-cycle throughpui.

Table A-6. Floating-Point Unit (FPU) Execution Latencies

MPC750 MPC7400 MPC7450
Mnemonic
Unit | Cycles | Unit | Cycles | Unit | Cycles
fabsl.] FPU 311 FPU 31 FPU 5:1
faddsl[.] FPU 311 FPU 31 FPU 5:1
fadd[.] FPU 311 FPU 31 FPU 5:1
fcmpo FPU 31 FPU 31 FPU 5:1
fcmpu FPU 31 FPU 31 FPU 5:1
fctiwz[.] FPU 311 FPU 31 FPU 5:1
fetiw[.] FPU 311 FPU 31 FPU 51
fdivs[.] FPU 17 FPU 17 FPU 21
fdiv[.] FPU 31 FPU 31 FPU 35
fmadds].] FPU 4:2 FPU 31 FPU 5:1
fmaddl[.] FPU 31 FPU 31 FPU 5:1
fmr[.] FPU 311 FPU 31 FPU 5:1
fmsubs[.] FPU 4:2 FPU 31 FPU 51
fmsubl.] FPU 311 FPU 31 FPU 5:1
fmulsl[.] FPU 4:2 FPU 31 FPU 5:1
fmul[.] FPU 31 FPU 31 FPU 5:1
MOTOROLA MPC7450 RISC Microprocessor Family Software Optimization Guide 65

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
MPC7450 Execution Latencies

Table A-6. Floating-Point Unit (FPU) Execution Latencies (continued)

MPC750 MPC7400 MPC7450
Mnemonic
Unit | Cycles | Unit | Cycles | Unit | Cycles
fnabsl.] FPU 31 FPU 31 FPU 5:1
fnegl[.] FPU 31 FPU 31 FPU 5:1
fnmaddsl.] FPU 4:2 FPU 31 FPU 5:1
fnmadd[.] FPU 31 FPU 31 FPU 5:1
fnmsubs|.] FPU 4:2 FPU 31 FPU 5:1
fnmsubl.] FPU 311 FPU 31 FPU 5:1
fres[.] FPU 10 FPU 10 FPU 14
frsp[.] FPU 31 FPU 31 FPU 5:1
frsqrte[.] FPU 31 FPU 31 FPU 51
fsell.] FPU 31 FPU 31 FPU 5:1
fsubs[.] FPU 311 FPU 31 FPU 5:1
fsubl[.] FPU 311 FPU 31 FPU 5:1
mcrfs FPU 3{e} FPU 3:1{e} FPU 5{e}
mffs[.] FPU 3{e} FPU 3{e} FPU 5{e}
mtfsb0[.] FPU 3 FPU 3{e} FPU 5{e}
mtfsb1[] FPU 3 FPU 3{e} FPU 5{e}
mtfsfi[.] FPU 3 FPU 3{e} FPU 5{e}
mtfsf[.] FPU 3 FPU 3{e} FPU 5{e}

Table A-7 shows load and store instruction latencies. Load/store multiple and string instruction cycles are
represented as a fixed number of cycles plus a variable number of cycles, where n = the number of words
accessed by the instruction. Pipelined load/store instructions are shown with total latency and throughput
separated by a colon.

Table A-7. Store Unit (LSU) Instruction Latencies

MPC750 MPC7400 MPC7450
Mnemonic Class

Unit Cycles Unit Cycles Unit | Cycles
dcba -NA- | -NA- | -NA- | LSU | 23{s} | LSU | 3:1{s}
dcbf -NA- | LSU 35{e} | LSU | 2:3*b{s} | LSU | 3:11{s}
dcbi -NA- | LSU 3:3 LSU | 2:3*b{s} | LSU | 3:11{s}
dchbst -NA- | LSU 35{e} | LSU | 2:3*b{s} | LSU | 3:11{s}

dcbt -NA - LSU 2:1 LSU 2:1 LSU 31

dcbtst -NA - LSU 2:1 LSU 2:1 LSU 31
dcbz -NA- | LSU | 3:6(M=0) | LSU | 2:3{s} | LSU | 3:1{s}

dss -NA- | -NA- - NA - LSU 2:1 LSU 31

66 MPC7450 RISC Microprocessor Family Software Optimization Guide MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
MPC7450 Execution Latencies

Table A-7. Store Unit (LSU) Instruction Latencies (continued)

MPC750 MPC7400 MPC7450
Mnemonic | Class
Unit Cycles Unit Cycles Unit | Cycles
dssall - NA - - NA - - NA - LSU 2:1 LSU 31
dsts[t] -NA- | -NA- -NA- LSU 2:2 LSU 31
dst[t] -NA- | -NA- -NA- LSU 2:2 LSU 31
eciwx - NA - LSU 2:1 LSU 2:1 LSU 311
icbi -NA- | LSU 2:1 LSU | 2:11{s} | LSU | 3:1fs}
lbz -NA- | LSU 34 LSU | 2:3*b{s} | LSU 31
Ibzu GPR LSU 2:1 LSU 2:1 LSU 311
Ibzux GPR LSU 2:1 LSU 2:1 LSU 311
Ibzx GPR LSU 2:1 LSU 2:1 LSU 311
Ifd Float LSU 2:1 LSU 2:1 LSU 4:1
Ifdu Float LSU 2:1 LSU 2:1 LSU 4:1
Ifdux Float LSU 2:1 LSU 2:1 LSU 4:1
Ifdx Float LSU 2:1 LSU 2:1 LSU 4:1
Ifs Float LSU 2:1 LSU 2:1 LSU 4:1
Ifsu Float LSU 2:1 LSU 2:1 LSU 4:1
Ifsux Float LSU 2:1 LSU 2:1 LSU 4:1
Ifsx Float LSU 2:1 LSU 2:1 LSU 4:1
lha GPR LSU 2:1 LSU 2:1 LSU 31
lhau GPR LSU 2:1 LSU 2:1 LSU 31
Ihaux GPR LSU 2:1 LSU 2:1 LSU 311
lhax GPR LSU 2:1 LSU 2:1 LSU 31
lhbrx GPR LSU 2:1 LSU 2:1 LSU 31
lhz GPR LSU 2:1 LSU 2:1 LSU 31
lhzu GPR LSU 2:1 LSU 2:1 LSU 311
lhzux GPR LSU 2:1 LSU 2:1 LSU 311
lhzx GPR LSU 2:1 LSU 2:1 LSU 311
Imw GPR LSU 2+n{c,e} | LSU | 2+n{c,e} | LSU 3+n
Iswi GPR LSU 2+n{c,e} | LSU | 2+n{c,e} | LSU 3+n
Iswx GPR LSU 2+n{c,e} | LSU | 2+n{c,e} | LSU 3+n
Ivebx Vector | - NA - - NA - LSU 2:1 LSU 311
Ivehx Vector | - NA - - NA - LSU 2:1 LSU 311
Ivewx Vector | - NA - - NA - LSU 2:1 LSU 311
MOTOROLA MPC7450 RISC Microprocessor Family Software Optimization Guide 67

For More Information On This Product,
Go to: www.freescale.com

68

Freescale Semiconductor, Inc.
MPC7450 Execution Latencies

Table A-7. Store Unit (LSU) Instruction Latencies (continued)

MPC750 MPC7400 MPC7450
Mnemonic Class

Unit Cycles Unit Cycles Unit | Cycles
Ivsl Vector | - NA- - NA - LSU 2:1 LSU 311
Ivsr Vector | - NA- - NA - LSU 2:1 LSU 311
Ivx Vector | - NA - - NA - LSU 2:1 LSU 31
Ivxl Vector | - NA - - NA - LSU 2:1 LSU 31
Iwarx GPR LSU 3:1{e} LSU 3:3 {e} LSU 3{e}
Iwbrx GPR LSU 2:1 LSU 2:1 LSU 31
lwz GPR LSU 2:1 LSU 2:1 LSU 31
lwzu GPR LSU 2:1 LSU 2:1 LSU 31
lwzux GPR LSU 2:1 LSU 2:1 LSU 31
lwzx GPR LSU 2:1 LSU 2:1 LSU 31
stb GPR LSU 2:1 LSU | 2:11{s} | LSU | 3:1{s}
stbu GPR LSU 2:1 LSU 2:1 {s} LSU 3:1{s}
stbux GPR LSU 2:1 LSU 2:1 {s} LSU 3:1{s}
sthx GPR LSU 2:1 LSU | 2:11{s} | LSU | 3:1fs}
stfd Float | LSU 2:1 LSU 2:17 LSU | 3:3{s}?
stfdu Float | LSU 2:1 LSU 2:17 LSU | 3:3{s}?
stfdux Float | LSU 2:1 LSU | 2:1{s} | LSU | 3:3{s}?
stfdx Float | LSU 2:1 LSU | 2:1{s} | LSU | 3:3{s}?
stfiwx Float LSU 2:1 LSU 2:1{s} LSU 3:1{s}
stfs Float LSU 2:1 LSU 2:1 72 LSU | 3:3{s}?
stfsu Float | LSU 2:1 LSU 2:17 LSU | 3:3{s}?
stfsux Float | LSU 2:1 LSU | 2:1{s} | LSU | 3:3{s}?
stfsx Float | LSU 2:1 LSU | 2:1{s} | LSU | 3:3{s}?
sth GPR LSU 2:1 LSU | 2:11{s} | LSU | 3:1{s}
sthbrx GPR LSU 2:1 LSU | 2:11{s} | LSU | 3:1{s}
sthu GPR LSU 2:1 LSU | 2:11{s} | LSU | 3:1fs}
sthux GPR LSU 2:1 LSU 2:1{s} LSU 3:1{s}
sthx GPR LSU 2:1 LSU | 2:1{s} | LSU | 3:1{s}
stmw - NA - LSU 2+n {e} LSU 2+n {e} LSU | 3 +n{s}
stswi GPR LSU 2+n {e} LSU 2+n {e} LSU | 3+n{s}
stswx GPR LSU 2+n {e} LSU 2+n {e} LSU | 3 +n{s}
stvebx Vector | - NA- - NA - LSU 2:1 LSU 3:1{s}

MPC7450 RISC Microprocessor Family Software Optimization Guide

For More Information On This Product,

Go to: www.freescale.com

MOTOROLA

Freescale Semiconductor, Inc.
MPC7450 Execution Latencies

Table A-7. Store Unit (LSU) Instruction Latencies (continued)

MPC750 MPC7400 MPC7450
Mnemonic | Class

Unit Cycles Unit Cycles Unit | Cycles
stvehx Vector | - NA - - NA - LSU 2:1 LSU 3:1{s}
stvewx Vector | - NA - - NA - LSU 2:1 LSU 3:1{s}
stvx Vector | - NA - - NA - LSU 2:1 LSU 3:1{s}
stvx| Vector | - NA - - NA - LSU 2:1{s} LSU 3:1{s}
stw GPR LSU 2:1 LSU | 2:1{s} | LSU | 3:1{s}
stwbrx GPR LSU 2:1 LSU 2:1 {s} LSU 3:1{s}
stwcx. GPR LSU 8:8 {e} LSU 5:5 {s} LSU 3:1{s}
stwu GPR LSU 2:1 LSU 2:1 {s} LSU 3:1{s}
stwux GPR LSU 2:1 LSU 2:1 {s} LSU 3:1{s}
stwx GPR LSU 2:1 LSU 2:1 {s} LSU 3:1{s}
tibie - NA - LSU 34 LSU | 2:3*b{s} | LSU 3:1{s}
tibld -NA- | -NA- -NA- -NA -NA - LSU 3{e}
tibli -NA- | -NA- -NA - -NA -NA - LSU 3{e}

1 For cache operations, the first number indicates the latency for finishing a single

instruction and the second number indicates the throughput for a large number of
back-to-back cache operations. The throughput cycle may be larger than the initial
latency because more cycles may be needed for the data to reach the cache. If the

cache remains busy, subsequent cache operations cannot execute.

Floating-point stores may take as many as 24 additional cycles if the value being
stored is a denormalized number.

Table A-8 lists vector simpleinteger instruction latencies. Thissimpleinterger unitiscalled theVSIU inthe
MPC7400, and the VIU1 in the MPC7450.

Table A-8. AltiVec Operations—Vector Simple Integer Unit

MPC7400 MPC7450
Mnemonic
Unit Cycles Unit Cycles
vaddcuw VALU-VSIU 1 ViUl 1
vaddsbs VALU-VSIU 1 ViUl 1
vaddshs VALU-VSIU 1 ViUl 1
vaddsws VALU-VSIU 1 ViUl 1
vaddubm VALU-VSIU 1 ViUl 1
vaddubs VALU-VSIU 1 ViUl 1
vadduhm VALU-VSIU 1 ViUl 1
vadduhs VALU-VSIU 1 ViUl 1
vadduwm VALU-VSIU 1 ViUl 1
vadduws VALU-VSIU 1 ViUl 1

For More Information On This Product,
Go to: www.freescale.com

MOTOROLA MPC7450 RISC Microprocessor Family Software Optimization Guide

69

70

Freescale Semiconductor, Inc.
MPC7450 Execution Latencies

Table A-8. AltiVec Operations—Vector Simple Integer Unit (continued)

MPC7400 MPC7450
Mnemonic
Unit Cycles Unit Cycles
vand VALU-VSIU 1 ViUl 1
vandc VALU-VSIU 1 ViUl 1
vavgshb VALU-VSIU 1 ViUl 1
vavgsh VALU-VSIU 1 ViUl 1
vavgsw VALU-VSIU 1 ViUl 1
vavgub VALU-VSIU 1 ViUl 1
vavguh VALU-VSIU 1 ViUl 1
vavguw VALU-VSIU 1 ViUl 1
vcmpequbl.] VALU-VSIU 1 ViUl 1
vempequhl[] VALU-VSIU 1 ViUl 1
vempequwl[.] VALU-VSIU 1 ViUl 1
vempgtsb[.] VALU-VSIU 1 ViUl 1
vempgtsh[.] VALU-VSIU 1 ViUl 1
vempgtswl.] VALU-VSIU 1 ViUl 1
vempgtubl[.] VALU-VSIU 1 ViUl 1
vempgtuh[.] VALU-VSIU 1 ViUl 1
vempgtuwl.] VALU-VSIU 1 ViUl 1
vmaxsh VALU-VSIU 1 ViUl 1
vmaxsh VALU-VSIU 1 ViUl 1
vmaxsw VALU-VSIU 1 ViUl 1
vmaxub VALU-VSIU 1 ViUl 1
vmaxuh VALU-VSIU 1 ViUl 1
vmaxuw VALU-VSIU 1 ViUl 1
vminsb VALU-VSIU 1 ViUl 1
vminsh VALU-VSIU 1 ViUl 1
vminsw VALU-VSIU 1 ViUl 1
vminub VALU-VSIU 1 ViUl 1
vminuh VALU-VSIU 1 ViUl 1
vminuw VALU-VSIU 1 ViUl 1
vnor VALU-VSIU 1 ViUl 1
vor VALU-VSIU 1 ViUl 1
vrlb VALU-VSIU 1 ViUl 1
vrlh VALU-VSIU 1 ViUl 1
vriw VALU-VSIU 1 ViUl 1
vsel VALU-VSIU 1 ViUl 1

MPC7450 RISC Microprocessor Family Software Optimization Guide

For More Information On This Product,
Go to: www.freescale.com

MOTOROLA

Freescale Semiconductor, Inc.
MPC7450 Execution Latencies

Table A-8. AltiVec Operations—Vector Simple Integer Unit (continued)

MPC7400 MPC7450
Mnemonic
Unit Cycles Unit Cycles
vslb VALU-VSIU 1 ViUl 1
vslh VALU-VSIU 1 ViUl 1
vslw VALU-VSIU 1 ViUl 1
vsrab VALU-VSIU 1 ViUl 1
vsrah VALU-VSIU 1 ViUl 1
vsraw VALU-VSIU 1 ViUl 1
vsrb VALU-VSIU 1 ViUl 1
vsrh VALU-VSIU 1 ViUl 1
VSrw VALU-VSIU 1 ViUl 1
vsubcuw VALU-VSIU 1 ViUl 1
vsubsbs VALU-VSIU 1 VIU1l 1
vsubshs VALU-VSIU 1 ViUl 1
vsubsws VALU-VSIU 1 Viul 1
vsububm VALU-VSIU 1 ViUl 1
vsububs VALU-VSIU 1 ViUl 1
vsubuhm VALU-VSIU 1 ViUl 1
vsubuhs VALU-VSIU 1 ViUl 1
vsubuwm VALU-VSIU 1 ViUl 1
vsubuws VALU-VSIU 1 ViUl 1
vxor VALU-VSIU 1 ViUl 1

Table A-9 lists vector complex integer instruction latencies. This complex integer unit iscalled theVCIU in
the MPC7400, and the VIU2 in the MPC7450.

Table A-9. AltiVec Operations—Vector Complex Interger Unit

MPC7400 MPC7450
Mnemonic
Unit Cycles Unit Cycles
vmhaddshs VALU-VCIU 31 VIU2 4:1
vmhraddshs VALU-VCIU 31 VIiU2 4:1
vmladduhm VALU-VCIU 31 VIU2 4:1
vmsummbm VALU-VCIU 311 VIU2 4:1
vmsumshm VALU-VCIU 311 VIu2 4:1
vmsumshs VALU-VCIU 311 VIu2 4:1
vmsumubm VALU-VCIU 311 VIU2 4:1
vmsumuhm VALU-VCIU 311 VIu2 4:1
vmsumuhs VALU-VCIU 311 VIiu2 4:1

For More Information On This Product,
Go to: www.freescale.com

MOTOROLA MPC7450 RISC Microprocessor Family Software Optimization Guide

71

Table A-10 lists vector floating-point (VFPU) instruction latencies.

72

Freescale Semiconductor, Inc.
MPC7450 Execution Latencies

Table A-9. AltiVec Operations—Vector Complex Interger Unit (continued)

MPC7400 MPC7450
Mnemonic
Unit Cycles Unit Cycles
vmulesb VALU-VCIU 311 VIiu2 4:1
vmulesh VALU-VCIU 311 VIiu2 4:1
vmuleub VALU-VCIU 31 VIU2 4:1
vmuleuh VALU-VCIU 311 VIu2 4:1
vmulosb VALU-VCIU 31 VIiu2 4:1
vmulosh VALU-VCIU 31 VIU2 4:1
vmuloub VALU-VCIU 311 VIiu2 4:1
vmulouh VALU-VCIU 311 VIu2 4:1
vsum2sws VALU-VCIU 311 VIiu2 4:1
vsumdsbs VALU-VCIU 311 VIu2 4:1
vsumd4shs VALU-VCIU 31 VIiUu2 4:1
vsum4ubs VALU-VCIU 311 VIiu2 4:1
VsSumsws VALU-VCIU 311 VIu2 4:1

Table A-10. AltiVec Operations—Vector Floating-Point Unit

MPC7400 MPC7450
Mnemonic
Unit Cycles Unit Cycles
mfvscr VALU-VSIU 1 {e} VFPU 2 {e}
mtvscr VALU-VSIU 1{e} VFPU 2 {e}
vaddfp VALU-VFPU 411 VFPU 4:1
vempbfpl[.] VALU-VSIU 1 VFPU 2:1
vempeqfp[.] VALU-VSIU 1 VFPU 2:1
vempgefp[.] VALU-VSIU 1 VFPU 2:1
vempgtfp[.] VALU-VSIU 1 VFPU 2.1
vcfsx VALU-VFPU 4:11 VFPU 4:1
vcfux VALU-VFPU 4:11 VFPU 4:1
vctsxs VALU-VFPU 4:11 VFPU 4:1
vctuxs VALU-VFPU 4:11 VFPU 4:1
vexptefp VALU-VFPU 4:11 VFPU 4:1
viogefp VALU-VFPU 4:11 VFPU 4:1
vmaddfp VALU-VFPU 4:11 VFPU 4:1
vmaxfp VALU-VSIU 1 VFPU 2:1
vminfp VALU-VSIU 1 VFPU 2:1

For More Information On This Product,

Go to: www.freescale.com

MPC7450 RISC Microprocessor Family Software Optimization Guide

MOTOROLA

Freescale Semiconductor, Inc.
MPC7450 Execution Latencies

Table A-10. AltiVec Operations—Vector Floating-Point Unit (continued)

MPC7400 MPC7450
Mnemonic
Unit Cycles Unit Cycles
vnmsubfp VALU-VFPU 4:11 VFPU 4:1
vrefp VALU-VFPU 4:11 VFPU 4:1
vrfim VALU-VFPU 4:11 VFPU 4:1
vrfin VALU-VFPU 4:11 VFPU 4:1
vrfip VALU-VFPU 4:11 VFPU 4:1
vrfiz VALU-VFPU 4:11 VFPU 4:1
vrsgrtefp VALU-VFPU 4:11 VFPU 4:1
vsubfp VALU-VFPU 4:11 VFPU 4:1

1 InJava mode, MPC7400 VFPU instructions need a fifth cycle of

execution (5:1) but data dependencies are still forwarded from the end

of the fourth cycle as in non-Java mode.

Table A-11 lists vector permute (V PU) instruction latencies.

Table A-11. AltiVec Operations—Vector Permute Unit

MPC7400 MPC7450
Mnemonic
Unit Cycles Unit Cycles
vmrghb VPU 1 VPU 2:1
vmrghh VPU 1 VPU 2:1
vmrghw VPU 1 VPU 2:1
vmrglb VPU 1 VPU 2:1
vmrglh VPU 1 VPU 2:1
vmrglw VPU 1 VPU 2:1
vperm VPU 1 VPU 2:1
vpkpx VPU 1 VPU 211
vpkshss VPU 1 VPU 2:1
vpkshus VPU 1 VPU 2:1
vpkswss VPU 1 VPU 2:1
vpkswus VPU 1 VPU 2:1
vpkuhum VPU 1 VPU 2:1
vpkuhus VPU 1 VPU 2:1
vpkuwum VPU 1 VPU 2:1
vpkuwus VPU 1 VPU 2:1
vsl VALU-VSIU 1 VPU 2:1
vsldoi VPU 1 VPU 2:1
vslo VPU 1 VPU 21
vspltb VPU 1 VPU 2:1

For More Information On This Product,
Go to: www.freescale.com

MOTOROLA MPC7450 RISC Microprocessor Family Software Optimization Guide

73

74

Freescale Semiconductor, Inc.
MPC7450 Execution Latencies

Table A-11. AltiVec Operations—Vector Permute Unit (continued)

MPC7400 MPC7450
Mnemonic
Unit Cycles Unit Cycles
vsplth VPU 1 VPU 2:1
vspltisb VPU 1 VPU 2:1
vspltish VPU 1 VPU 2:1
vspltisw VPU 1 VPU 2:1
vspltw VPU 1 VPU 2:1
vsr VALU-VSIU 1 VPU 2:1
VSro VPU 1 VPU 2:1
vupkhpx VPU 1 VPU 2:1
vupkhsb VPU 1 VPU 2:1
vupkhsh VPU 1 VPU 2:1
vupklpx VPU 1 VPU 2:1
vupklsb VPU 1 VPU 2:1
vupklsh VPU 1 VPU 2:1

MPC7450 RISC Microprocessor Family Software Optimization Guide

For More Information On This Product,
Go to: www.freescale.com

MOTOROLA

Freescale Semiconductor, Inc.

Revision History

Appendix B
Revision History

Table B-1 provides arevision history for this hardware specification.

Table B-1. Revision History

Rev. No. Substantive Change(s)
0 Initial release, 11/01.
1 In Section 3.1.4, third sentence in the third paragraph, “MPC7400” is replaced with “MPC7450.”

MOTOROLA MPC7450 RISC Microprocessor Family Software Optimization Guide

For More Information On This Product,
Go to: www.freescale.com

75

Freescale Semiconductor, Inc.

HOW TO REACH US:
USA/EUROPE/LOCATIONS NOT LISTED:

Motorola Literature Distribution;
P.O. Box 5405, Denver, Colorado 80217
1-303-675-2140 or 1-800-441-2447

JAPAN:

Motorola Japan Ltd.;

SPS, Technical Information Center,
3-20-1, Minami-Azabu Minato-ku,
Tokyo 106-8573 Japan
81-3-3440-3569

ASIA/PACIFIC:

Motorola Semiconductors H.K. Ltd.;

Silicon Harbour Centre, 2 Dai King Street,

Tai Po Industrial Estate, Tai Po, N.T., Hong Kong
852-26668334

TECHNICAL INFORMATION CENTER:
1-800-521-6274

HOME PAGE:
http://www.motorola.com/semiconductors
DOCUMENT COMMENTS:

FAX (512) 933-2625,
Attn: RISC Applications Engineering

Information in this document is provided solely to enable system and software implementers to use
Motorola products. There are no express or implied copyright licenses granted hereunder to design
or fabricate any integrated circuits or integrated circuits based on the information in this document.

Motorola reserves the right to make changes without further notice to any products herein.
Motorola makes no warranty, representation or guarantee regarding the suitability of its products
for any particular purpose, nor does Motorola assume any liability arising out of the application or
use of any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters which may be provided in
Motorola data sheets and/or specifications can and do vary in different applications and actual
performance may vary over time. All operating parameters, including “Typicals” must be validated
for each customer application by customer’s technical experts. Motorola does not convey any
license under its patent rights nor the rights of others. Motorola products are not designed,
intended, or authorized for use as components in systems intended for surgical implant into the
body, or other applications intended to support or sustain life, or for any other application in which
the failure of the Motorola product could create a situation where personal injury or death may
occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized
application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was

negligent regarding the design or manufacture of the part.

@ MOTOROLA

Motorola and the Stylized M Logo are registered in the U.S. Patent and Trademark Office.
digital dna is a trademark of Motorola, Inc. All other product or service names are the property of
their respective owners. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

© Motorola, Inc. 2002

AN2203/D

For More Information On This Product,

Go to: www.freescale.com

	MPC7450 RISC Microprocessor Family Software Optimization Guide
	Table�1-1. Microarchitecture List
	1.1 Terminology and Conventions
	2.1 High-Level Differences
	Table�2-1. High-Level Differences�

	2.2 Pipeline Differences
	Figure�2-1. MPC750 and MPC7400 Pipeline Diagram
	Table�2-2. MPC750/MPC7400 Pipeline Stages
	Figure�2-2. MPC7450 Pipeline Diagram
	Table�2-3. MPC7450 Pipeline Stages

	2.3 Overview of Target Microprocessors
	2.3.1 MPC750 Microprocessor
	Figure�2-3. MPC750 Microprocessor Block Diagram
	2.3.1.1 Dispatch
	2.3.1.2 Execution
	2.3.1.3 Completion
	2.3.1.4 Branches
	2.3.1.5 MPC750 Compiler Model

	2.3.2 MPC7400 Microprocessor
	2.3.2.1 Vector Unit
	Figure�2-4. MPC7400 Microprocessor Block Diagram

	2.3.2.2 MPC7400 Compiler Model

	2.3.3 MPC7450 Microprocessor
	Figure�2-5. MPC7450 Microprocessor Block Diagram
	2.3.3.1 Dispatch
	2.3.3.2 Issue Queues
	2.3.3.3 General-Purpose Issue Queue
	2.3.3.4 Floating-Point Issue Queue
	2.3.3.5 Vector Issue Queue
	2.3.3.6 Execution
	Table�2-4. MPC750/MPC7400 vs. MPC7450 Integer Unit Breakdown

	2.3.3.7 Completion
	2.3.3.8 Branches
	2.3.3.9 MPC7450 Compiler Model

	3.1 Fetch/Branch Considerations
	3.1.1 Fetching
	3.1.1.1 Fetch Alignment Example
	Table�3-1. MPC7450 Fetch Alignment Example
	Table�3-2. MPC7450 Loop Example—Three Iterations�

	3.1.1.2 Branch-Taken Bubble Example
	Table�3-3. Branch-Taken Bubble Example
	Table�3-4. Eliminating the Branch-Taken Bubble�

	3.1.2 Branch Conditionals
	3.1.2.1 Branch Mispredict Example
	Table�3-5. Misprediction Example

	3.1.2.2 Branch Loop Example
	Table�3-6. Three Iterations of Code Loop�
	Table�3-7. Code Loop Example Using CTR �

	3.1.3 Static Versus Dynamic Prediction Trade-Offs
	3.1.4 Using the Link Register (LR) Versus the Count Register (CTR) for Branch Indirect Instructions
	3.1.4.1 Link Stack Example
	Table�3-8. Link Stack Example�

	3.1.4.2 Position-Independent Code Example
	Table�3-9. Position-Independent Code Example

	3.1.4.3 Computed Branch and Function Pointer Examples

	3.1.5 Branch Folding

	3.2 Dispatch Considerations
	3.2.1 Dispatch Groupings
	3.2.1.1 Dispatch Stall Due to Rename Availability
	Table�3-10. Dispatch Stall Due to Rename Availability

	3.2.2 Dispatching Load/Store Strings and Multiples
	3.2.2.1 Example of Load/Store Multiple Micro-Operation Generation
	Table�3-11. Load/Store Multiple Micro-Operation Generation Example�

	3.3 Issue Queue Considerations
	3.3.1 General Purpose Issue Queue (GIQ)
	Table�3-12. GIQ Timing Example�

	3.3.2 Vector Issue Queue (VIQ)
	Table�3-13. VIQ Timing Example

	3.3.3 Floating-Point Issue Queue (FIQ)

	3.4 Completion Queue
	3.4.1 Reorder Size
	3.4.2 Completion Groupings
	3.4.3 Serialization Effects
	Table�3-14. Serialization Example

	3.5 Numeric Execution Units
	3.5.1 IU1 Considerations
	Table�3-15. IU1 Timing Example

	3.5.2 IU2 Considerations

	3.6 FPU Considerations
	Table�3-16. FPU Timing Example�
	Table�3-17. FPSCR Rename Timing Example��
	3.6.1 Vector Units
	Table�3-18. Vector Execution Latency Summary
	Table�3-19. Vector Unit Example

	3.7 Load/Store Unit (LSU)
	3.7.1 Load Hit Pipeline
	Table�3-20. Load Hit Pipeline Example�

	3.7.2 Store Hit Pipeline
	Table�3-21. Store Hit Pipeline Example
	Table�3-22. Execution of Four stfd Instructions

	3.7.3 Store Gathering and Merging
	3.7.4 Load/Store Interaction
	Table�3-23. Load/Store Interaction (Assuming Full Alias)

	3.7.5 Misalignment Effects
	Table�3-24. Misaligned Load/Store Detection

	3.7.6 Load Miss Pipeline
	Table�3-25. Data Cache Miss, L2 Cache Hit Timing
	Table�3-26. Data Cache Miss, L2 Cache Miss, L3 Cache Hit Timing
	Table�3-27. Load Miss Line Alias Example�
	Table�3-28. Load Miss Line Alias Example With Reordered Code�

	3.7.7 DST Instructions and the Vector Touch Engine (VTE)

	3.8 Memory Subsystem (MSS)
	3.8.1 I/O Access Ordering
	3.8.2 L2 Cache Effects
	3.8.3 L3 Cache Effects
	3.8.4 Hardware Prefetching
	Table�3-29. Timing for Load Miss Line Alias Example�
	Table�3-30. Hardware Prefetching Enable Example�

	4.1 Optimizations to Exploit the MPC7450 Microprocessor
	4.1.1 Instruction Scheduling
	4.1.2 Instruction Form Selection
	4.1.3 Optimal Code Sequences
	4.1.4 Conversion of Control Path into Data Path

	4.2 Optimizations to Exploit the Branch Unit
	4.2.1 Bias Towards CTR for Loops
	4.2.2 Using the Link Register
	4.2.3 Branch Bubbles
	4.2.4 Branch Dependencies

	4.3 Optimizations to Exploit the Memory Hierarchy
	4.3.1 Data Alignment
	4.3.2 Instruction Code Alignment
	4.3.3 Load Hoisting

	4.4 Other Optimizations Worth Investigating
	4.4.1 Software-Controlled Data Prefetching
	4.4.2 Software Pipelining
	4.4.3 Loop Unrolling for Long Pipelines
	Table�4-1. MPC7450 Execution of One—Two Iterations of Code Loop Example�

	4.4.4 Vectorization
	Table�4-2. MPC7450 Execution of 1–2 Iterations of Code Loop Example�

	5.1 Signed Division Sequences
	Table�5-1. Signed Division Sequences

	5.2 Comparisons and Comparisons Against Zero
	Table�5-2. Comparisons and Comparisons Against Zero�

	5.3 Negated Comparisons and Negated Comparisons Against Zero
	Table�5-3. Negative Comparisons�and Negative Comparisons Against Zero�

	5.4 Comparisons with Addition
	Table�5-4. Comparisons with Addition�
	Table�A-1. Execution Latency in Processor Clock Cycle�
	Table�A-2. Branch Operation Execution Latencies�
	Table�A-3. System Operation Instruction Execution Latencies�
	Table�A-4. Condition Register Logical Execution Latencies�
	Table�A-5. Integer Unit Execution Latencies�
	Table�A-6. Floating-Point Unit (FPU) Execution Latencies�
	Table�A-7. Store Unit (LSU) Instruction Latencies�
	Table�A-8. AltiVec Operations—Vector Simple Integer Unit�
	Table�A-9. AltiVec Operations—Vector Complex Interger Unit�
	Table�A-10. AltiVec Operations—Vector Floating-Point Unit�
	Table�A-11. AltiVec Operations—Vector Permute Unit�
	Table�B-1. Revision History�

