Freescale Semiconductor, Inc.

JPEG2000 Arithmetic Encoding
on the StarCore SC140

Application Note

by
Sue Twelves
and Mike Wu

AN2121/D
Rev 1.0, 10/2001

@ MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty,
representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters which may be provided in Motorola data sheets and/or specifications can
and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must
be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent
rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended to support life, or for any other application in which the
failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use
Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers,
employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or
unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.

Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.
All other tradenames, trademarks, and registered trademarks are the property of their respective owners.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado, 80217.
1-303-675-2140 or 1-800-441-2447

JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center, 3—20-1, Minami—Azabu, Minato—ku,
Tokyo 106—8573 Japan. 81-3-3440-3569

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd., Silicon Harbour Centre, 2 Dai King Street,
Tai Po Industrial Estate, Tai Po, N.T., Hong Kong. 852—-26668334

Technical Information Center: 1-800-521-6274

HOME PAGE: http://www.motorola.com/semiconductors/ © Copyright Motorola, Inc., 2001

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Abstract and Contents

This application note describes how the advanced features of the StarCore processor can be used to
implement the arithmetic coding algorithm employed in the JPEG2000 image compression standard. Both
C code and optimized assembler listings are presented, as well as areview of the basic principles of
arithmetic encoding.

1 INtrodUCTION . 1
2 Background Theory e e e 2
21 HUffman Coding. e 2
211 The Huffman Coding Algorithm e 2
212 Limitationsof Huffman Coding i i 3
21.2.1 Minimum Obtainable CodingRate. i 4
21.2.2 Varying Probability. 4
21.2.3 Practical Implementation i e 4
2.2 Arthmetic Codingot e e e 4
23 Binary ArithmeticCoding i e 8
231 BACENCOING o et e e e e 9
2.3.2 BAC DECOOING . . . oot 10
24 JPEG2000 ArithmeticCodingcov it e e e 11
24.1 Removing Multiplication e e 12
24.2 Conditional Exchangeof MPSSense.t 12
24.2.1 LIPS s, . ottt 12
24.2.2 M PSS CaSE . . .ottt e 13
2.4.3 An Adaptive BAC: Probability Estimation Process.coovu... 13
244 FiNite PreCiSiONo e 14
245 Carry Propagation.coi i e 14
2.4.6 Software Versus Custom Hardware Implementation. 16
3 Implementation e 17
31 StarCorelmplementationinCcode.couiiiiii i, 17
311 Encoder Initialization e 17
3.1.2 Flushingthe Encoder e e e 17
313 StarCore Parformance.ot 19
3.2 StarCorelmplementationin Assembler i 20
321 AddressS REgISIErS oo 20
3211 Address Register Arithmetic. ... e 20
3212 Multiple Address Registers. oo it e e e 21
3.2.2 Change-of-FIow INStructionst e e e 21
@ MOTOROLA |||

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

3.23 [f-Then-Else DECISIONS. oottt e e e e i 21
3.24 RESUILS. 22
4 SUMMAIY ot e e e e e 23
5 RE I BN CES . . . 24

Appendix A

Arithmetic Encoder: CCode............. i 25
Appendix B
Arithmetic Encoder: Assembly Code i 35
Appendix C
EXcerpts from FDIS 41
iv JPEG2000 Arithmetic Encoding on StarCore SC140 @ MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

1 Introduction

This application note is the second in a series of notes that describe how the advanced features of the
StarCore processor can be used to implement the algorithms associated with the image compression
standard JPEG2000. The first application note in this series [1] which described the wavel et transform
included a brief overview of the JPEG2000 standard. In this application note, arithmetic coding is
explained in conjunction with the specific arithmetic encoder used in the JPEG2000 standard. StarCore
implementation in both C code and optimized assembler are also provided.

Although the StarCore processor is a general-purpose DSP, it has many features that make it possible to
perform image compression algorithms quickly and efficiently. The performance of StarCorein processing
the JPEG2000 arithmetic encoder is discussed with results of performance tests being provided. Although
the arithmetic encoder is primarily a sequential engine, it is shown that some of StarCore's parallel features
can still be used to good effect.

@ MOTOROLA Introduction . 1
For More Information On This Product,

Go to: www.freescale.com

8 Freescale Semiconductor, Inc.
ackground Theory

2 Background Theory

This section presents alook at some of the theory behind symbol coding, including the well-known
Huffman coder, general arithmetic coding, and binary arithmetic coding, which is employed by the
JPEG2000 standard.

Arithmetic coding isaform of statistical coding, which compresses data by encoding more probable
symbols with shorter code words than less probable symbols. The ideas behind compressing the
information associated with a sequence of random variables in order to transmit them over a
communication link can be traced back to Shannon’s ground breaking 1948 paper [2], in which he defined
the entropy of arandom variable, X, with a discrete aphabet, e.g. {Xg, X1, . . ., X} &S

HOO = - 2 fy()logafx(x) Eqn. 1

where fy(x;) isthe probability that x; occurs. The entropy of arandom variable can be thought of as how
much information it holds. As an extreme example, when it isknown in advance that one particular symbol
will bereceived, e.g. an a, then its probability is 1 and its entropy is 0 because it holds no new information.
At the other extreme, if all the symbolsin a particular alphabet are equally likely, then thiswill give
maximum entropy because each new received symbol is totally unpredictable. Shannon also proved that
for a stationary process, entropy is equal to the minimum average number of bits per symbol required to
represent the information source. The significance of arithmetic coding is that it can be made to approach
this theoretical limit.

As an introduction to arithmetic encoding, let us examine the simpler approach of Huffman coding, which
isused in the baseline JPEG standard.

NOTE:

The following discussions assume that a perfect communication channel is
present so that there are no errors associated with the code stream.

2.1 Huffman Coding

One way of coding symbolsin an information stream is to alocate a unique code word for each symbol.
One such coding scheme, Huffman coding, is aform of prefix coding, meaning that each prefix in agiven
set of code words is unique. This fact simplifies the decoding process because the decoder simply
continues to receive binary digits until a new code word has been obtained.

2.1.1 The Huffman Coding Algorithm

The significance of the Huffman coder isthat it uses an algorithm which ensures that

i:zofx(xi)li Eqgn. 2

is minimized, where |; is the length of the code word associated with x;. A simple example can serve to
explain the algorithm. Consider an alphabet which consists of four possible symbals, {c, d, e, o}, with
respective probabilities of 1/2, 1/4, 1/8, and 1/8. The encoding algorithm, illustrated in Figure 1, consists of
the following steps:

« Sort the symbols from least probable symbol to most probable symbol.

e Group the two least probable symbols together to form aroot to the two separate symbols, which
become the leaves.

2 JPEG2000 Arithmetic Encoding on the StarCore SC140 @ MOTOROLA
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc. ’ _
uffman Coding

» Iteratethefirst two steps until the symbols are arranged in abinary tree in which only two branches
extend from each root.

e Assign‘l’ toonebranch from each root, and ‘0’ to the other branch to obtain the code words. Inthe
example, the left-hand branches are all 1's, and the right-hand branches are 0's.

o (1/8) e (1/8) d (1/4) c (112)
oe (2/8) d(L/4) c (112)
o (1/8) e (1/8)
1 0

oed (1/2) ¢ (1/2)
1 0
oe'(1/4) d (1/8)
1 0
o (1/8) e (1/8)

Figure 1. Binary Tree for Huffman Coding Example

It isevident in the final step that the code words are not unique; however, the length of the code word
associated with each symbol is always the same.

Table 1 lists the code words obtained from the example in Figure 1, aswell as the probability for each
symbol expressed as a binary fraction. In binary fractions, 0.1 represent 21 001 represents 22 etc. In
other words, the exponent associated with the negative power of two is equal to the number of places after

the binary point.
Table 1. Example of Huffman Coding

@ MOTOROLA

Symbol ZLOI?»?:;LI;/)), Code Word
c 0.1 0
d 0.01 10
e 0.001 110
o] 0.001 111

Background Theo

For More Information On

r
1)‘\is Product,

Go to: www.freescale.com

8 Freescale Semiconductor, Inc.
ackground Theory

2.1.2 Limitations of Huffman Coding

In the above example, the code rate and the entropy are the same value, 1.75, because the probability for
each symbol is equal to 27 where, as before, |; is equal to the length of the ith symbol. In most cases,
however, thisis not true, and the limitations of Huffman coding become evident.

2.1.2.1 Minimum Obtainable Coding Rate

In Huffman coding, each code word must consist of at least one bit, which resultsin an average coding rate
of at least one bit per symbol. However, the theoretical minimum or entropy of a system can be less than
one bit per symbol, so in some cases it will be impossible for Huffman coding to attain the theoretical
minimum.

2.1.2.2 Varying Probability

In the exampl e, it has been assumed that the probabilities of the various symbols are fixed. In many cases,
however, the probability varies, so the average number of bits per symbol in a Huffman coding scheme
could be much larger than the entropy. For instance, if symbol e in the above example actually occurred
with a probability of say 0.5, but still had 3 bitsin its code word, the output bit stream would average 3 bits
for half of the time rather than an eighth of the time as expected. Therefore, it would be preferable to be
able to adapt the coding system to update the probabilities in real-time, which requires some sort of
statistical estimation process. However, implementing the Huffman algorithm is a computationally
intensive process, so modifying the code words adaptively could be prohibitively expensive from a
computational point of view.

2.1.2.3 Practical Implementation

In practical implementations of the Huffman coder, alookup table is usually used. The number of table
entries must be 2, where L is the maximum length of the code words. In the above example, the maximum
length is 3, so the lookup table must contain 8 entries to account for all unused combinations of 3 digits
containing the relevant symbol with a shorter prefix. The bit stream in this case is examined 3 bits at a
time, with these bits providing the addressing to the table. For example, the table entry for 100 would be ¢
(treating the right hand bit as the next input, i.e. the code stream input is read from right to left). In this
case, only one digit (the right-hand 0) is required to specify a particular code word, so only that digitis
dropped, and the next bit in the bit stream is concatenated to the remaining 10 to form the next lookup table
entry (which in this particular case, would be ¢ again.) The problem here lies in the fact that because the
Huffman algorithm does not limit the length of the code words, the table can grow very large.

These problems are partially addressed with the use of arithmetic coding.

2.2 Arithmetic Coding

For simplicity, the following discussion of arithmetic coding assumes a sequence of symbolsin a
stationary random process with independent elements. In this case, arithmetic coding produces arate
which approaches the entropy of the sequence, but also applies to correlated sequences if the process
remains stationary. This discussion does not describe how arithmetic coding adapts to changing statistics
in the bit stream because the adaptive nature of the coding is mainly determined by the coefficient bit
model er within the JPEG2000 standard. A good tutorial on arithmetic coding can be found in reference[3].

4 JPEG2000 Arithmetic Encoding on the StarCore SC140 @ MOTOROLA
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc. . . _
rithmetic Coding

Whereas Huffman coding involves transmitting separate code words for each symbol in a sequence,
arithmetic coding requires transmitting only the information needed to allow a decoder to determine the
particular fractional interval between 0 and 1 to which the sequence is mapped. This information includes
afractional code word, C, which points to the lower bound of the interval, and the interval width, A, as
illustrated in Figure 2.

“rr
Figure 2. Mapping a Sequence to a Fractional Interval

NOTE:

The convention for expressing aninterval employed in this discussion uses
abracket for an inclusive bound, and a parenthesis for an exclusive bound.
Thus, [0,1) represents a range including zero but not including 1.

Each time anew symbol isreceived by the encoder, asmaller interval is chosen within the current interval.
Thisinterval represents the whole sequence of symbols up to and including the new symbol. The length of
the updated interval isthe probability associated with this sequence of symbols, as shown in Figure 3. The
position of the probability interval associated with a particular symbol is always fixed in relation to the
intervals of the other symbols. (Note that in arithmetic encoding, the position of the fractional interval isas
important as the length.) In theory, this process can continue indefinitely until al symbols have been
received. In practice, finite precision problems restrict the size of the shortest possible interval that can be
represented. When the length of the probability interval falls below a certain minimum size, the interval
must be renormalized to lengthen it above the minimum. The renormalization processis explained in more
detail in Section 2.4.4 on page 14.

‘!— Interval associated with 4,.

symbol x1
‘ ' Interval length = 1
0 | | probability of x1
| 1 ! |
v v Interval associated with 1
0 | | symbol stream {x1,x2}
| |
v Interval associated with 1
0 | | symbol stream {x1,x2,x3}

Final probability interval = !
probability of receiving
codestream {x1, x2, x3}

Figure 3. Arithmetic Coding Process

Figure 4 illustrates how arithmetic coding is used to derive the fractional numbers which represent the
position and width of theinterval on [0,1) which can be decoded as the sequence code. This example uses
the same symbol set and probabilities asin the previous example (see Table 1 on page 3). Thetop linein
the diagram isthe [0,1) interval. Thisline is subdivided into smaller intervals whose widths are directly

@ MOTOROLA Background Theo_P“_
For More Information On is Product,

Go to: www.freescale.com

8 Freescale Semiconductor, Inc.
ackground Theory

proportional to the probability associated with each symbol. For example, the symbol ¢ is mapped to an
interval of width 1/2 at position [3/8, 7/8).Note that for arithmetic coding the ordering of the intervalsis
arbitrary, whereas in Huffman coding the ordering depends on the probabilities of the symbols.

L 3 e
: 8 8 8 |
o | S ° 3 —e < * S E
— \
e \
P \
P A
- \
- 7 9 13
6 L~ g 16 16 16 \J 14
16! ce cd * cc - % o 11—
- |
- |
T |
05 - — 107 111 :
~ 128 128 128
104, - — |112
128" coe /’ cod - — coc *— oo 1128
/ T~
/ T~
/ T~
/ — ~—
420 421 423 427
51 512 512 512~ —
L ~ | 428
—Code © codd ¢ codc ¢ —odo 1512
Figure 4. Arithmetic Encoding Example with Probabilities Restricted to 2l
The algorithm for coding the sequence ‘code’ isasfollows:
1. InitidizeAg=1and Cy=0
2. Update code word, C, using the equation
Ch = Cpg + (Apog X Px(Xp)) Eqgn. 3
where Py (x,) is the cumulative probability of x, and is equal to
n-1
Px(xn) = 2 fx(x)) Eqn. 4

where, as before, fy () is the probability of symbol x; occurring.

For example, for the first symbol, ¢, n =1 and Py (c) = fx (€) + f (d) because symbolse and d lie to the
left of ¢ ontheinterval [0,1). Therefore, the cumulative probability entails adding up the probabilities
associ ated with these two symbols. This cumulative probability is then multiplied by A, the current
interval for the first symbol, whichis 1.

For c, thefirst symbol in Figure 4, the code word becomes

Cy=Co+ (Ag x (fx (e) + Ty (a)))
=0+ (1 (1/4 + 1/8)) = 3/8

6 JPEG2000 Arithmetic Encoding on the StarCore SC140 @ MOTOROLA
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc. . . _
rithmetic Coding

In binary fraction format,
C,=0.01+0.001=0.011

3. Updatetheinterval, A, using the equation
An = An_g x Fx(xp) Eqn. 5
For the first symbol in the example, fy (c) = 1/2, so
Aj=1x12=1/2
In binary fraction format,
A;=1x01=0.1

Thus, the 'c’ symbol is mapped to an interval of width 1/2 at position [3/8, 7/8), as shown in the top line of
Figure 4.

4. Repeat steps 2 and 3 until the entire symbol sequence is mapped to an interval.

The procedure for mapping the rest of the symbols in the sequence code as shown in Figure 4 follows.
Binary fractional representations are included to show how a code word is derived in a practical
application.

For sequenceco
Cy=Cy+ (A x (fx (e) + fx (d) + fx (c)))
SRR RN
Az =Ap x Ty (0)
1.1 _1

278 "16
In binary fraction format,
C, =0.011 + 0.0111 = 0.1101

A,=0.1x0.001=0.0001

For sequencecod
C3=Co+ (A x (fx (e))
=10+ (57 5) =12
Ag= A, x fy (d)
1.1 _1

~16°2 " &
In binary fraction format,
C3=0.1011 + 0.0000001 = 0.1011001

A3=0.0001 x 0.01 = 0.000001

For sequence code

Cq=Cz+ (A3 x (fx (0))

=1m+(gx@)=cq

@ MOTOROLA Background Theo_P“_
For More Information On is Product,
Go to: www.freescale.com

8 Freescale Semiconductor, Inc.
ackground Theory

Ay=Azx(fx (e)
1.1 1

“64°8 T 12
In binary fraction format,
C, = 0.1011001

A, =0.000001 % 0.01 = 0.00000001

Therefore, any fraction received at the decoder between the interval of 420/512 and 421/512 will represent
the sequence of transmitted symbolscode.

In general, it turns out that it is only necessary to transmit the most significant - 0g,A,, bitsin the binary
fractional representation of C,, to uniquely define the encoded interval. Thisis because C,, will never reach
the value of C,, + A, regardless of the number of 1s concatenated to C,, in the decoder. In the example, if
there are - 0g,A,, bits representing n symbols, then the average code rate is

—10g,A, _ 9 _ Eqn. 6
— 0 Ta- 2.25 a
This shows that in the example, the average code rate for four symbolsis higher than the entropy lower
bound. However, as n tends to infinity, the average number of bits per symbol does converge to the
entropy. Thisis because

Hog,A —Z10gf x(x)

n n no o —E[log, fx (X)] = H(X) Eqn. 7

where the E[X] operator denotes the expectation of x.

Again, this exampleis only intended to show the relationship between entropy and Huffman coding.
Arithmetic encoding can be equally effective with symbols whose probabilities are not rational fractions of
2' wherei is an integer.

2.3 Binary Arithmetic Coding

In binary arithmetic coding (BAC), symbolsin a code stream are classified as either Most Probable
Symbol (MPS) or Least Probable Symbol (LPS). Theinterval A (see Figure 2 on page 5) has two
divisions, one each for MPS and L PS. The width of each division is determined by the probability for each
symbol. Theinterval associated with the LPS should always be less than that associated with the MPS. The
events received by the encoder can either be MPS:True (‘T') or MPS:False (‘F').

The JPEG2000 literature has adopted the convention of referring to the probability for the LPS as Q. and
the corresponding probability for the MPSis (1 — Q). In this document, the probability for the MPSis
denoted by Pe.

Figure 5illustrates the BAC process. In this example, the message ‘TFTT' iscoded where T denotes the
MPS and F the LPS (MPS:False). The probabilities are Q. = ¥aand P = 1 — Q. = %2 and are represented as
two non-overlapping subintervals. The convention adopted here is that the Qg subinterval aways precedes
the P, subinterval. As before, theinitial interval is [0, 1). Again, the notation has been given in both
fractional and binary fraction format. When a symbol occurs, the subinterval associated with that symbol
becomes the new interval. For example, the initial interval [0, 1) has two subintervals [0, 0.01) and

[0.01, 1) associated with ‘F and ‘T’ respectively. When ‘T’ occurs, the subinterval [0.01, 1.0) becomes the
new interval. The code word C in this example always points to the | eft point (lower bound) of theinterval
and A denotesits width.

8 JPEG2000 Arithmetic Encoding on the StarCore SC140 @ MOTOROLA
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, '“%‘.nary Arithmetic Coding

_To
T
Y

3 1 _ 3 3.3 _09 v
€C=001 3 X2 715 00111 27 T 16 1
=0.0011 =0.1001
-] .
F (occurs) | T
\ 3,1 .3 3,3_9
0.01 16~ 4 64 C =0.010011 16° 4 64 0.0111
=0.000011 =0.001001
-
F | T (occurs) |

Figure 5. BAC Process

2.3.1 BAC Encoding

The encoding steps for the BAC can be summarized as follows:
1. InitidizeAg=1and Cy=0
2. Determine the event values (MPS:True or MPS:False), code register C, Q,, and Pe.
3. Update the code word and/or interval depending on the event values
If MPS:True:T

a) Update the code word to point at the lower bound of the interval
C=C+(QexA)

b) Update the interval width
A=A—-(QexA)
If MPS:False: F Leave the code word as it is aready pointing to the lower bound
a) Updatetheinterval width
A=QgxA
The new interval becomes [C, C+A) with subintervals [C, C+(AxQg)) and [C+(AxQy), C+A)
The following paragraphs describe the application of these stepsto the first three symbols in the example.
Initialization
C=0andA =10.

@ MOTOROLA Background Theo_P“_
For More Information On is Product,

Go to: www.freescale.com

8 Freescale Semiconductor, Inc.
ackground Theory

Encoding thefirst symbol
Given: A =0, 1) with subintervals
[C,C+(AxQy) = [0,0.01) and [C+(AxQg), C+A) = [0.01, 1):
‘T’ occurs
Qe*xA =0.01x1.0=0.01
C=C+(QexA)=0+0.01=0.01
A=A-(Q.xA)=10-0.01=0.11

Subinterval [C, C+A) = [0.01, 1.0) becomesthe new interval.

Encoding the second symbol

Given: A =[0.01, 1) with subintervals[0.01, 0.0111) and [0.0111, 1)
‘F occurs
Qe XA =0.01x0.11=0.0011

C = 0.01 (unchanged)

A =Qgx A =0.0011
Subinterval [0.01, 0.0111) becomes the new interval.
Encoding the third symbol

Given: A =[0.01, 0.0111) with subintervals[0.01, 0.010011) and [0.010011, 0.0111)
‘T’ occurs
Qe x A =0.01 x 0.0011 = 0.000011

C=C+ (QgxA) = 0.01 + 0.000011 = 0.010011
A=A —(Qgx A) = 0.0011 — 0.000011 = 0.001001

Subinterval [0.010011, 0.0111) becomes the new interval.
Encoding the fourth symbol continues ...

Note that at any given stage, C is constrained within all preceding intervals. For example, when the third
symbol is encoded, the preceding intervals are [0.01, 1), [0.01, 0.0111) and [0.010011, 0.0111). After
encoding, the new value of Cis0.010011, which falls within all three intervals. Further, the next C code
word will still be constrained within [0.010011, 0.0111) regardless of which symbol is encoded next. In
other words, as the encoding continues, the dynamic range of C becomes progressively smaller whileits
precision gets progressively higher. Any value of C within the range [0.010011, 0.0111) will decode the
symbol stream beginningwith ‘T F T’

2.3.2 BAC Decoding

When the decoder receives a code word C, it simply reverses the encoding operation by keeping the same
interval (i.e., A) asthe encoder and using the same probability distribution.

The decoder also starts with the initial interval [0, 1.0), A = 1.0, Q¢ = 0.01 and P, = 0.11.
Decoding the first symbol

Given: interval [0, 1) with subintervals [0, 0.01) and [0.01, 1)
Since C = 0.010011 lieswithin [0.01, 1), the first symbol must be ‘T".

Subinterval [0.01, 1) becomes the new interval.
Decoding the second symbol

Given: interval [0.01, 1) with subintervals[0.01, 0.0111) and [0.0111, 1)
Since C = 0.010011 lieswithin [0.01, 0.0111), the second symbol must be ‘F'.

10 JPEG2000 Arithmetic Encoding on the StarCore SC140 @ MOTOROLA
For More Information On This Product,

Go to: www.freescale.com

Freescale semiconduc':or’ !IBI&?ZOOO Arithmetic Coding

Subinterval [0.01, 0.0111) becomes the new interval
Decoding the third symbol

Given: interval [0.01, 0.0111) with subintervals[0.01, 0.010011) and [0.010011, 0.0111)
Since C = 0.010011 lieswithin [0.010011, 0.0111), the third symbol must be ‘ T".

Subinterval [0.010011, 0.0111) becomes the new interval.

When the lower bound of theinterval is equal to C, the end of the symbol stream for the code word has
been reached.

There are several practical issues which must be resolved before making use of arithmetic coding. All of
these issues have been addressed by the JPEG2000 arithmetic coder.

2.4 JPEG2000 Arithmetic Coding

The JPEG2000 standard utilizes a specific type of efficient, statistical binary arithmetic coding (BAC)
which has been adapted from the so called Q-Coder [5]. It deals with the following issues that arise when
trying to implement a practical BAC:

» removing the multiplication operations required for each symbol encoding/decoding

» dealing with conditional exchange of the MPS sense, which arises when the resulting interval for
an LPS exceeds that of the corresponding MPS

» making the arithmetic coder adaptive

» dealing with finite precision

» problems associated with the growing length of the code word and carry propagation
» software versus hardware implementation.

JPEG2000 has 19 possible contexts. The JPEG2000 BAC can be thought of as 19 independent coders that
produce intermixed output. The contexts input to the BAC are used to choose between these coders by
indexing different Qg valuesin the state machine defined in Table C-2. The 19 coders use the same state
machine but move among the various states in different ways.

Asan aid to understanding the following discussion, certain figures from the JPEG 2000 Part 1 Final Draft
International Standard [4] are reproduced in Appendix C. The diagramsin Appendix C describe the
operation of the encoder. Note the figure labels correspond to those in the FDIS.

Figure C-1 shows the arithmetic coder inputs, the context (CX) and data (D) pairs which are provided by
the coefficient bit modeler. In the example provided in Appendix A, these pairs are stored in an input array.
The output from the arithmetic coder is a stream of compressed data (CD).

Figure C-2 isatop level flow diagram for the encoder. It includes an initialization and a flushing
procedure, which are described in detail in Section 3.1.1 and Section 3.1.2 respectively.

The encoder has separate procedures for coding 0 and 1 datainputs. It must first be established whether the
input data symbol isan MPS or an LPS. The datavalues for an MPS for each context are stored in an array
which is simply looked up for each input. If the datais an MPS, then CODEMPS (Figure C-7) is used;
otherwise CODELPS (Figure C-6) is used.

Figure C-8 shows the renormalization procedure, and Figure C-9 shows how a byte is output to the bit
stream.

@ MOTOROLA Background Theo_P“_
For More Information On is Product,
Go to: www.freescale.com

11

8 Freescale Semiconductor, Inc.
ackground Theory

2.4.1 Removing Multiplication

The JPEG 2000 BAC maintainstheinterval A intherange[0.75, 1.5) by a process of renormalization (see
Section 2.4.4). This means that the interva is aways approximately equal to 1, if rounding to one
significant figure. Therefore, (Qg X A) = Q,, and the following approximations can be made to the
encoding operations outlined in the BAC stepsin Section 2.3:

If MPS:TrueT

a) Update the code word to point to the lower bound of the interval
C=C+Q

b) Update the interval width
A=A-Q

If MPS:FaseF

a) Leavethecodeword asis(itisalready pointing to the lower bound)

b) Update the interval width
A=Qe

Thus, al the multiplication operations have been removed, simplifying implementation.

2.4.2 Conditional Exchange of MPS Sense

If continuous M PS symbols are received, the interval length A isrepeatedly updated asA = A — Qg
(Section 2.4.1); eventually, A will be diminished to the point where A — Qg < Q.. At this point, the interval
associated with the probability of an L PS exceed that of an MPS, so the sense of the MPS must be inverted.
Similar circumstances arise when continuous LPS symbols are received.

The following discussion describes how the JPEG2000 arithmetic encoder ensures that the interval for an
LPSisaways less than that of an MPS. For convenience, the discussion assumesthat ‘0’ isthe MPS and
‘1’ the LPSfor a particular context CX. In this context, the coder expects ‘0’ to happen more often than
‘1.

24.2.1 LPS Case

For an input of (CX, ‘1"), the ENCODER procedure (see Figure C-3 on page 42) selects the CODE1
procedure. Because ‘1’ isthe LPS, the CODEL procedure (see Figure C-4 on page 42) interprets the value
of MPS(CX) tobe ‘0", so it selects the CODELPS procedure. In the CODEL PS procedure (see Figure C-6
on page 43) it can be seen that when an LPS symbol occurs, the length of the interval (A) is updated to the
value Qg, while the code word (C) remains unchanged. It appearsthat if symbol ‘1’ were to occur with the
context CX many times, Q. would become progressively larger (see Table C-2 on page 50) so that
eventualy (A — Q) would become less than Q,, i.e., the portion of the probability interval A which
representsthe LPS, (‘1' in the case of context CX) would become greater than the portion allocated to the
LPS, symbol ‘0. However, this does not happen because the CODEL PS procedure initially tests for this
condition, and swaps the intervals associated with ‘1’ and ‘0" if the condition is detected, so that ‘1’ is till
associated with the smaller portion of interval A. In addition, A is updated to (A — Qg), and C is updated to
(C + Qg), pointing to the lower bound of the subinterval now associated with the LPS, ‘1.

If LPS‘1's continue to be received by the encoder with context CX, the NLPSfield in Table C-2 causes
the system to converge to one of two possible indices (6 or 14) which inverts the sense of the MPS. The
MPS(CX) isnow ‘1" instead of ‘0" and thus the encoder expectsa ‘1’ to occur more often than a‘ 0’ with
context CX, sothenexttimea‘1’ isreceived with CX the procedure CODEMPS iscalled. This
arrangement allows the decoder to detect the change and decode the symbol correctly. Note that the switch
is controlled by the CODELPS loop only.

12 JPEG2000 Arithmetic Encoding on the StarCore SC140 @ MOTOROLA
For More Information On This Product,

Go to: www.freescale.com

Freescale semiconduc':or’ !IBI&?ZOOO Arithmetic Coding

2.4.2.2 MPS Case

If an MPS (‘0" for context CX) is received, the CODEMPS procedure (see Figure C-7 on page 42) is
called. When symbol ‘0" (MPSfor CX) occurs, normally the length of the interval A isupdated to (A — Q)
and Cisupdated to (C + Q). Theinterval A becomes progressively smaller as the encoding proceeds. The
value of A isaways checked after it has been updated to determineif it has fallen below 0.75, thus
requiring arenormalization. If it does, it could also mean that stage (A — Q) has fallen below the value of
Qe, meaning that the subinterval associated with symbol ‘0" (MPS for CX) is smaller than the subinterval
associated with symbol ‘1’ (LPS for CX). However, it should be noted that this does not indicate that
symbol ‘1’ is necessarily more likely to happen than symbol ‘0" on receipt of context CX, because the
encoder isstill receiving ‘0’swith CX. It just means that the MPS must be assigned to the larger
subinterval of A. When the subinterval representing MPS falls below that of the LPS, A is set to Q,, the
larger of the two subintervals, and C remains unchanged (it is already pointing to the lower bound of the
LPS subinterval). A renormalization then occurs to ensure that A remains greater than 0.75. This
arrangement allows the decoder to detect the change and decode the symbol correctly. Setting A to the
larger subinterval generally reduces the number of renormalization operations required. This slows the
growth of the encoded bit stream (i.e., improves data compression) because its growth varies with the
frequency of renormalization.

2.4.3 An Adaptive BAC: Probability Estimation Process

Again, aprimary advantage of the JFJEG2000 BAC isthat the probabilities associated with the LPS and
MPS can be adapted. In order for a coder to be adaptive, a statistical model of the input data symbolsis
required to update the probabilities associated with the MPS and LPS. The model must also determine
whether each incoming event isan MPS or an LPS.

In JPEG2000, the coefficient bit modeler performs the statistical modelling by providing the BAC with
context/data pairs. The context is calculated from the properties of up to 8 of the wavelet coefficient’s
nearest neighbors. This context is used to index into Table C-2 (page 50), which contains the LPS
probability values (Qg). In addition, for each possible context, thereisa‘sense’ associated with the MPS,
i.e., for each context the MPS has previously been declared as either a1 or a 0. Thus, for example, if the
datainput from the coefficient bit modeler isa'l', and the MPS 'sense’ isalso a'1', then thisinput is treated
as an MPS; otherwise, it istreated asan LPS.

The JPEG2000 arithmetic coder has adopted the practice of updating the probabilities associated with the
MPS and LPS only when renormalization has occurred. This practice was first introduced in the Q-coder
[5]. A probability model is needed for both the encoder and decoder. This probability model can be viewed
as afinite-state machine. In practice, the various states are stored in the indexed table of Q. probabilities
presented in Table C-2. These probabilities have been derived through an extensive optimization
procedure which includes both theoretical modelling and coding of actual data.

Table C-2 also includes associated next states (i.e., new table positions) for each type of renormalization.
For convenience, a portion of thistableisreproduced in Table 2. In this table, the index represents the
current state, the NLPS (Next LPS) represents the next state to go to if an LPS occurs, the NMPS (Next
MPS) represents the next state to go to if an MPS occurs, and the SWITCH value indicates if the sense of
the MPS must be inverted.

@ MOTOROLA Background Theo_P“_
For More Information On is Product,
Go to: www.freescale.com

13

8 Freescale Semiconductor, Inc.
ackground Theory

Table 2. A Portion Table C-2 From the JPEG2000 FDIS

Index Q. Value NMPS NLPS SWITCH
Hexadecimal Binary Decimal
29 $1101 0001 0001 0000 0001 0.099 634 30 27 0
30 $0AC1 0000 1010 1100 0001 0.063 012 31 28 0
31 $09C1 0000 1001 1100 0001 0.057 153 32 29 0
32 $08A1 0000 1000 1010 0001 0.050 561 33 30 0
33 $0521 0000 0101 0010 0001 0.030 053 34 31 0

In principle, the probability model counts the frequencies of LPS and MPS to adaptively estimate Q. and
Pe. The model always expects an MPS to occur. The state machine is designed so that when an L PS occurs,
the machine transfers to a new state with alarger Q,, and arenormalization is performed. When an MPS
occurs and the interval length A becomes less than 0.75, the state machine transfers to a new state with a
smaller Q.. Thus, the change in state occurs only when the arithmetic coder interval register is
renormalized. In other words, if an MPS occurs, then the probability associated with the MPS, (1 —Qy), is
increased slightly because it has taken place once again, i.e. this means that the LPS is even less likely to
occur so the Qg is correspondingly reduced. Similarly, if an LPS occurs, then its probability of occurrence
(i.e, Qo) must beincreased slightly.

For example, when the model is at state 31 (index 31), Q¢ = 0.057153. If an LPS occurs, the model
transfers to state 29 where Qg = 0.099634, which is greater than 0.057153. Renormalization then follows.
If an MPS then occurs, a state transition may or may not occur, depending on the value of interval length
A. If A <0.75, the model transfers to state 30 where Qg = 0.063012 (smaller than 0.099634).
Renormalization then follows. Otherwise, no state transition, hence no renormalization occurs.

2.4.4 Finite Precision

To solve the growing precision problem, coding operations are carried out using fixed precision integer
arithmetic. The hexadecimal value $8000, which normally represents the decimal value 0.5, represents the
decimal value 0.75 in the JPEG2000. With this representation, if the integer $8000 is | eft-shifted once, the
decimal value becomes 1.5; if it isright-shifted once, the decimal value becomes 0.375. Theinterval length
A isrenormalized whenever the integer value falls below $8000, and is kept in the range [0.75, 1.5) by a
left shift.

To maintain consistent scaling between C and A, C isleft-shifted whenever A isrenormalized. This scaling
would require aregister of unlimited length in which to store the value of C. To avoid thisimpossible
reguirement, an external data buffer or ‘B register’ is attached to the high order bits of the C register. A
byte of datais shifted from the high order bits of the C register to this buffer whenever the C register isfull.
Each output byte effectively refines the code word, resulting in incremental code word transmission.

2.4.5 Carry Propagation

Whenever an MPS occurs, the C value isincremented by the value of the LPS interval, which can generate
acarry. However, if the carry bit propagates into the data buffer, thus altering its contents, the incremental
transmission isinvalid. The B register described in Section 2.4.4 also serves to resolve the carry problem.

14 JPEG2000 Arithmetic Encoding on the StarCore SC140 @ MOTOROLA
For More Information On This Product,

Go to: www.freescale.com

Freescale semiconduc':or’ !IBI&?ZOOO Arithmetic Coding

By buffering the compl eted bytes from the C register, the B register always keeps a byte just removed from
the C register before the byte is sent to the output code stream. A shift counter, CT, counts the number of
shiftsin the C register. When CT counts down to zero, the byte currently stored in the B register is moved
to the output code stream, then a byte from the C register is moved to the B register. This processis
illustrated in Figure 6.

The C register in Figure 6 is partitioned as follows:

CRegister 0000cbbbbbbbbsssXXXX XXXX/XXXX XXXX

The‘x’ bits are the fractional bits which are directly incremented by the value of Q.

The ‘b’ bitsindicate the bit positions from which a complete byte of the datais removed from the
C register.

The'‘c bitisthe carry hit.

The's' bitsare spacer bitswhich provide auseful buffer for acarry, sothat it takeslonger for acarry
to be propagated from the 'x' bitsto the 'c' bit.

31 28 24 20 19 16 12 8 4 0

v

B Register

‘

Output Code Stream

Figure 6. C Register Partitions and Encoder Output

The operation of moving datato or from the B register must adhere to the following so-called * bit-stuffing’
rules (refer to the BY TEOUT procedure in Figure C-9 on page 46).

1

(M) moToroLa Background Theo

If B # $FF and the carry bit (‘c’) isclear:
a) thebyteinthe B register is moved directly into the output code stream
b) bits 19 through 26 in the C register are moved into B

¢) CrTissetto 8 sothat the next byteisoutput when bit 18 is shifted to bit 26. The current
byte output is complete.

If B = $FF, abit must be ‘stuffed’:
a) thebyteinthe B register isagain moved directly to the output code stream.
b) bits20to 27 in the C register are moved into B to include the carry hit.

¢) CrTissetto 7 sothat the next byteisoutput when bit 19, which has not yet been output,
is shifted to bit 26. The current byte output is complete.

If B # $FF and the carry bit (‘C’) is set, the byte in the B register cannot be moved directly
into the output code stream; the carry bit must be propagated into B:

a) incrementB by 1
b) clear bit‘c'.
c) If B #$FF, follow rule 1; otherwise, follow rule 2.

r 15
For More Information On 1)‘\is Product,
Go to: www.freescale.com

8 Freescale Semiconductor, Inc.
ackground Theory

The decoder checks the bit following any $FF byte. If the bit is set, the decoder knows that a carry has
occurred.

2.4.6 Software Versus Custom Hardware Implementation

In the binary arithmetic coding scheme described here, both the interval (A) and the code word (C) are
atered whenever the encoder receives an MPS, which is most of thetime. Thisis not of significant concern
in hardware because the updatesto A and C can be done in parallel. However, in a software
implementation it is hot generally desirable to perform more operations on the more probabl e path. A good
discussion of this can be found in [6]. One remedy to this situation is to have C point to the right-hand end
of the current interval instead of the left-hand end, as shown in Figure 7.

In this configuration, the code word is updated by subtracting P, only when an LPS occurs. For
comparison, the hardware-preferred method for updating C as described in the FDIS[4] is also shown (i.e.,
C pointsto the |eft side of the interval and is only updated when an MPS isreceived). By definition, an
MPS occurs more often than an LPS, so the software version updates the code word |ess often than the
hardware version because it only does so when an LPS isreceived. The resulting code words from the
hardware and software conventions always result in code words that differ from one another by the current
interval. It should also be noted that the process of subtraction for the software convention can result in a
borrow propagation, as opposed to acarry propagation when using the hardware convention. The FDIS for
JPEG2000 makes allowances for software implementations which are discussed in annex J of [4].

c éL.O
hw sw
Qe | Pe

| I

I LPS ! MPS (occurs) l

‘ 1

___________________ I

1 1
Chw Cow

I I i

In hardware version, [|
I LPS (occurs) MPS I

codeword (Cpy,)
changes on MPS.] r———- " - -"-"-"-"— - - — — —

| | In software version,
LPS MPS (occurs) | codeword (CSW)
; | changes on LPS.

Figure 7. Codeword (C) Changes: Software vs. Hardware Implementation

Note however that the StarCore processor makes it possible for a software implementation to update A and
Cinpardlél, just asin hardware. Thisis why the example provided in this application note follows the
hardware convention for updating A and C.

16 JPEG2000 Arithmetic Encoding on the StarCore SC140 @ MOTOROLA
For More Information On This Product,

Go to: www.freescale.com

Freescale semlconduc%?arrtolrgﬁn'pIementation in C Code

3 Implementation

This section describes the software written for a StarCore implementation of the JPEG2000 arithmetic
coder. Appendix A isalisting of the C code, and Appendix B lists the assembly code. All variablesin the
following descriptions refer to the actual variables used in the code.

3.1 StarCore Implementation in C Code

The code given in Appendix A is adirect implementation of the JPEG2000 arithmetic encoder as
presented in Section 2.4, and is based on the flow diagrams provided in the FDIS [4] which have been
produced for ease of referencein Appendix C. A brief description of these diagrams can be found on page
11

The pseudo code for the encoder software in Appendix A islisted in Code Example 1.

Code Example 1. JPEG2000 Arithmetic Encoder Pseudo Code

/* pre-set Ato Pe interval
A=A-C
if symbol == MPS
if A<0.75
if A<
/* if Pe < @, encode the current synbol as LPS */
A=

/* encode the current synbol as MPS */
C=C+ @

el se

end
/* update Qe */
transfer to new state
/* scale A and C */
renormalize

el se
/* encode the current synbol as MPS */
C=C+

end

el se /* synbol == LPS */

IFa<qE
/* IF pE < gE, encode the current synbol as MPS.
the switch to invert the sense of MPS will be on */
C=C+

el se
/* encode the current synbol as LPS */

A=
end

/* the switch is on when @ > 0.5 in this state */
if switch == 1
[* if switchis on for this state,
i nvert the sense of MPS */
MPS = 1 — MPS
end
/* update Q */
transfer to new state
/* scale A and C */
renormal i ze
end

@ MOTOROLA Implementation_ _ 17
For More Information On This Product,
Go to: www.freescale.com

| : Freescale Semiconductor, Inc.
mplementation

3.1.1 Encoder Initialization

The encoder initialization isillustrated in Figure C-10 on page 47. The coder isinitialized to the following
conditions:

* Theinterva lengthisset to A = $8000, equivalent to 0.75 in decimal.
» The code word points to the lower bound of the given interval, C = 0.
e Theshift counter isset to CT = 12 (if B # $FF) or CT = 13 (if B = $FF).

The shift counter is set to alarger number than 8 or 7 to accommodate the 3 spacer bitsin the C register
(refer to Figure 6), which initially do not contain valid data. The first byte usually requires 12
normalizations to shift the values updated by the addition of Q. through to the b and c bits. After the first
byte has been output, the spacer bits contain valid data, so only 7 or 8 renormalization shift |lefts are
required before outputting the next byte. The first byte requires 13 left-shiftsif the previous byte was $FF
because this causes an extra hit to be spuriously stuffed into the register when BY TEOUT is called for the
first time. Thus, an extra renormalization (shift left) must occur to ensure that the leading bit is not lost
during the BY TEOUT procedure, that is, when the next value of B becomes equal to C>>20.

3.1.2 Flushing the Encoder

When the encoding is complete, the bitsin the C register must be moved to the B register and then to the
output code stream before a terminating marker is generated. Thistask is performed by the FLUSH
procedure shown in Figure C-11 on page 48.

18 JPEG2000 Arithmetic Encoding on the StarCore SC140 @ MOTOROLA
For More Information On This Product,

Go to: www.freescale.com

Freescale semlconduc%?arrtolrgﬁn'pIementation in C Code

The marker code has a prefix of $FF which can be made to overlap the final bits of the compressed data by
ensuring that the final bits of the C register are also $FF. This means that any marker code at the end of the
compressed image datais recognized and interpreted before decoding is complete because the marker and
last image data for the arithmetic decoder are the same. Therefore, the final $FF in the C register can be
discarded, thus reducing the length of the output stream. This overlapping of compressed data and marker
code is achieved by setting as many bitsin the C register as possible. Thisis determined as follows:

At the end of encoding, C pointsto the lower bound of the given interval. The upper bound of the interval
isequal to C + A. The process of renormalization ensures that A = $8000, hence (C + A) = (C + $8000).
Therefore, when A = $8000the 15 least significant bits of the C register cannot increment the code word,
C, beyond the interval evenif they areall set. If A > $8000, thisistrue for the 16 |east significant bits of
the C register. Setting the correct number of bitsis performed by the SETBITS procedureillustrated in
Figure C-12 on page 49, which consists of the following steps:

1. Setbits0to 15inthe C register.

2. Compare the result to the upper bound of A to determine if C still points to the given
interval.

3. If Cistoolarge(i.e., A == $8000), clear bit 15.

This procedure guarantees that C points to the required final interval with the lowest 16 or 15 bits set, and
the original symbol can be decoded correctly.

After the SETBITS procedure is called, the last of the compressed data bits in the C register are moved to
the output code stream viathe B register. The final $FF byte can be discarded.

3.1.3 StarCore Performance

Benchmark tests of several images were run on the StarCore processor with the C code listed in
Appendix A, using level 2 optimization with 4 parallel multiply accumulator modules. Figure 8 shows a
typical image used in the benchmark tests.

Figure 8. Test Image for Arithmetic Encoder

Thisimageis 128 x 128 pixelswith 12 bits/pixel. After the coefficient bit modeler had produced the
corresponding context/data pairs, the number of clock cycles required to encode this image was
extrapolated to determine the performance figures in seconds for a 1 megapixel color image with 12 bits
per pixel, assuming a 300M Hz clock speed and multiplying by 2 to represent a'Y UV:422 format. For
comparison purposes, the experiments were repeated for a constant grey scale image, which should yield
the fastest possible execution times and the greatest compression. The results are summarized in Table 3
on page 20.

The results for the constant grey scale image are two orders of magnitude faster than the typical image.
Thisis because the encoder receives amost constant MPS's, which yields a considerably more compressed
bit stream. In addition to this, the coefficient bit modeller only produces context/data pairs for the LL
subband at the lowest level of decomposition. Consequently, none of the other subbands have any
context/data pairs associated with them.

@ MOTOROLA Implementation_ _ 19
For More Information On This Product,

Go to: www.freescale.com

| : Freescale Semiconductor, Inc.
mplementation

Table 3. Processing Time for C Version of Arithmetic Encoder

Clock Cycles Time (ms)
(128 x 128) (1 Megapixel, Color)
Typical image 46 M 1960
Constant grey scale 31,787 14

For comparison, the arithmetic coder was tested on Motorola's DSP56307 with the constant grey scale
image, where it was cal culated that an equivalent 1M pixel color image with 12 bits/pixel would take 69ms
to execute, about five times dlower than StarCore. The code used on the DSP56307 was C code with
optimized in-line assembler functions. In addition, it is assumed that the DSP56307 runsat 100 MHz rather
than StarCore's 300 MHz.

3.2 StarCore Implementation in Assembler

This section explains how specific StarCore features improve the performance of the arithmetic encoder.
An optimized assembly version of the arithmetic coder is provided in Appendix B.

Although the arithmetic coder is primarily a sequential operator, several parallel features of StarCore can
be used to increase processing speed. In addition to the four MAC unitsto parallel process many
instructions, StarCore offers numerous and flexible address registers, delayed jump instructions, and
single-instruction if-then-else decisions.

3.2.1 Address Registers

StarCore' s address registers can be used to great advantage to access the arithmetic encoder 1ook-up tables.
The assembly code in Appendix B shows two ways in which the look-up tables can be organized using
StarCore.

There are two main look-up tables associated with the arithmetic encoder, one for Q. values and one for
the context data. The Q. table in Appendix B, which is the same as Table C-2 in the FDIS, retains all
values in one look-up table to highlight the use of address register arithmetic. The context table, on the
other hand, has been separated into two look-up tables to illustrate the use of StarCore’s multiple address
registers.

3.2.1.1 Address Register Arithmetic

Address register arithmetic is used extensively to access the Q. table. Features such as post increment and
offset arithmetic allow access to the other 'columns' in the table without incurring many extra cycles.

Code Example 2. Address Register Arithmetic

nmove. w(r3+n0),d9 cnpgt dO, d7

In Code Example 2, the Q. table entry for the SWITCH variable is accessed without moving the pointer,
r3, from the NMPS index. (A comparison between two data registersis performed simultaneously.)

NOTE:

In order for this particular format of lookup table to be used, it was
necessary to multiply al the original indicesin FDIS Table C-2 by 8. This
reflects the fact that there are four entries associated with each index and
each entry isaword, not abyte.

20 JPEG2000 Arithmetic Encoding on the StarCore SC140 @ MOTOROLA
For More Information On This Product,

Go to: www.freescale.com

Freescale semlcond%%'r:(?orrb Fnl’l‘p‘l%'mentation in Assembler

3.2.1.2 Multiple Address Registers

The context table is split into two separate look-up tables in Appendix B—one for the indices and one for
the MPS associated with each context— to highlight the advantage of StarCore's numerous address
registers. Address register r2 is assigned the base address of the context table entries for the indices
whereas r4 is assigned to the base address of the MPS values. Because there are up to 16 address registers
available, there is no need to load the address registers repeatedly with the base addresses; they can retain
the base addresses for the duration of the program. In addition, two different address registers hold the
index offsetsinto the two separate context tables when a new context is received at the input. This allows
the address arithmetic which cal cul ates the new position for both the Q. and context tablesto be carried out
in paralel, as shown in Code Example 3.

Code Example 3. Multiple Address Registers

; r5is index into OONTXT: MPS t abl e
adda r2,r6 adda r4,r5 ; ré6 is index into GONTXT:index table

In fact, there are enough registers available to split the Q. table into four separate tables, as is done to the
context table. Thereis amost no difference in processing speed between the two approaches.

3.2.2 Change-of-Flow Instructions

The assembler implementation of the JPEG2000 arithmetic coder requires severa change-of-flow
instructions.These instructions generally require more cycles to execute than other instructions because
they disrupt the pipeline. StarCore allows a delayed version of most jump instructions which enables the
execution of an extrainstruction set while the pipelineisfilled, thereby saving one or more cyclesin
processing time. In addition, StarCore allows jump instructions to be combined with decisions based on
whether or not the T bit is set in the status register, asillustrated in Code Example 4.

Code Example 4. Jump Instruction Using Delay and the T Bit

jtd CCDEMPS nove. w (r3) +, d7
sub d7, do, do

In this example, ajump to the label CODEMPS is executed if the T bit is set. However, the nove. w
instruction occursin parallel with this operation and the sub command executes in the delay cycle. Thus,
athough jump and branch instructions are normally costly in terms of cycletime, StarCore allows other
instructions to be executed at the same time, increasing overall execution speed.

3.2.3 If-Then-Else Decisions

StarCore enables an ‘if-then-else’ decision, which depends on the state of the T bit, to be made in one
instruction. Thisis extremely useful in the JPEG2000 arithmetic encoder, in which severa such decisions
aremade. The T bit in the status register determines which value to load into a variable.

Code Example 5. T Bit Selects a Value

ift nove. w #13, d4 iff nove. w #12, d4

In Code Example5, if the T bit is set, d4 is loaded with #13; otherwise it is loaded with #12.

There are several instructions whose execution depends on the state of the T hit.

@ MOTOROLA Implementation_ _ 21
For More Information On This Product,

Go to: www.freescale.com

| : Freescale Semiconductor, Inc.
mplementation

Code Example 6. T Bit Selects an Instruction
tfrt d7,do i ff add d7,d1,d1

In Code Example 6, if the T bit is set, d7 is transferred to dO; otherwise d7 is added to d1.

3.24 Results

Table 4 compares the results for the optimized assembler version of the arithmetic coder with the results
for the C version for both atypical image and a constant grey scale image. The time required for a 1M
pixel color image in assembler was derived by extrapol ating the results obtained with asingle 128 x 128
grey scaletile, asit was done for C code.

Table 4. Comparison of Results for Assembly with C Versions of Arithmetic Encoder

Assembly C Code
Image ' .
Clock Cycles Time (ms) Time (ms)
(128 x 128) (1 Megapixel, Color) (1 Megapixel, Color)
Typical image 15M 640 1960
Constant grey 9586 4 14
scale

The optimized assembler completes the task in less than a third of the time required by the C code. For the
constant grey scale image, the assembler version is about 17 times faster than the C version run on the
DSP56307 with in-line optimized assembler functions (see Section 3.1.3). Note that this result assumes
that the DSP56307 runs at 100 MHz while StarCore operates at 300 MHz.

22 JPEG2000 Arithmetic Encoding on the StarCore SC140 @ MOTOROLA
For More Information On This Product,

Go to: www.freescale.com

Freescale semlcond%%'r:(?orrb Fnl’l‘p‘l%'mentation in Assembler

4 Summary

The arithmetic encoder C code given in Appendix A takes 4.6M cyclesto complete one typical 128 x 128
pixel grey scale image, which corresponds to a processing time of 2 seconds to complete a color

1 megapixel image. This processing time has been measured with the assumption that the pixels are all

12 hitsin size. In addition, it has been assumed that the StarCore processor is operating at a clock speed of
300 MHz. While the C code in Appendix A isANSI C compliant, it was fully optimized by the StarCore
compiler to produce the given performance figures.

An optimized assembler version of the encoder codes the same grey scale image in less than one third of
the time taken by the C version. Thisincrease in speed is due primarily to the arithmetic and multiplicity of
the address registers. StarCore’s parallel decision instructions and delayed change of flow instructions also
contributed to the improvement.

The DSP56307 (running at 100 MHZz) encoded a constant grey scale image about 17 times more slowly
than the optimized assembler version using StarCore (running at 300 MHz).

Modifying the code to work with any image size should befairly straightforward. All results were obtained
using the Beta 1.1 version of the StarCore software.

@ MOTOROLA Su m-rnary .
For More Information On This Product,
Go to: www.freescale.com

23

R Freescale Semiconductor, Inc.
eferences

5 References
[1] S. Twelves, A. White, M. Wu, JPEG2000 Wavelet Transform Using SarCore, Maotorola application
note, order number AN2089/D.

[2] C. Shannon, A Mathematical Theory of Communication, Bell System Technical Journal, Vol. 27, pp.
379423, July 1948.

[3] G. G. Langdon Jr., An Introduction to Arithmetic Coding, IBM Journal of Research and Development,
Vol.28, No.2, March 1984.

[4] JPEG 2000 Image Coding System, JPEG 2000 Part 1 Final Draft International Standard, FDIS
15444-1, 18th Aug. 2000.

[5] W.B. Pennebaker, J.L. Mitchell, Probability Estimation for the Q-Coder, IBM Journa of Research and
Development, Vol. 32, p. 737, 1988

[6] J.L. Mitchell, W.B. Pennebaker, Software I mplementations of the Q-Coder, IBM Journal of Research
and Development, Vol. 32, No. 6, Nov. 1988

Acknowledgement

The authors would like to acknowledge the work Dr. Matthew L editschke undertook to write the C code
implementation of the arithmetic encoder.

24 JPEG2000 Arithmetic Encoding on the StarCore SC140 @ MOTOROLA
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

Appendix A
Arithmetic Encoder: C Code

Arithenc.c

/*
An inpl ementation of the MQ arithretic encoder described in
Annex C of the JPE&R000 FDI S, [4].

Al data types converted to uint32.
Cont ext vari abl es made gl obal, rather than access via pointers.
Manual |y inlined the CodeMPS and CodelLPS functi ons.
aut hor Matthew Ledit schke
version $Revision: 1.1 $
*
/

#i ncl ude <stdio. h>

#i ncl ude <stdlib. h>
#i ncl ude "arithEnc. h"
#include "filel Qh"

/*
* Set thistoinline to nake all internal functions inline.
*/

#define inline

/* The informati on associ ated with a context state */
typedef struct

uint32 1; /*< The index into Table G2 (values in the range 0..46) */
uint32 MPS; /*< The nost probabl e synbol (either 0 or 1) */
} ArithEncCont ext;

/*
* The state infornation required by the arithnetic encoder.
*/

/* The | ower bound of the current probability interval */
static uint32 C

/* The size of the current probability interval */
static uint32 A

/* Counts the nunber of shifts that have been perforned */
static uint32 CT,

/* The byte that is currently being assenbled */
static uint8 B,

[* 1 if the current byte is the first output byte, otherwise 0 */
static int firstByte;

/* The array of allowable context states */
#def i ne MAXQONTEXT 18
static ArithEncContext contexts[MMXOONTEXT+]] ;

@ MOTOROLA Appendix A. Arithmetic Encoder: C Code 25
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

/* */
/* Define these inputs to have different data types */

static uint32 Q[47] =

{

0x5601UL, 0x3401UL, O0x1801WL, OxOaclWUL, O0x0521UL, 0x0221UL, 0x5601UL,
0x5401UL, 0x4801UL, O0x3801UL, Ox3001WL, O0x2401UL, Ox1cO01UL, Ox1601WL,
0x5601UL, O0x5401UL, O0x5101UL, O0x4801UL, O0x3801WL, 0x3401UL, 0x3001WL,
0x2801WL, 0x2401UL, O0x2201WL, Ox1cO1WL, O0x1801WL, 0x1601UL, O0x1401WL,
0x1201UL, 0x1101UL, OxOaclUL, Ox09clUL, 0x08allL, O0x0521UL, 0x0441uL,
0x02allL, 0x0221UL, 0x0141UL, Ox0111UL, Ox0085UL, 0x0049UL, 0x0025WUL,
0x0015WL, 0x0009UL, O0x0005UL, Ox0001WL, Ox5601UL

h

static uint32 SWTCH 47] =

{
1, 0, 0, 0, 0, 0,
1, 0, 0, 0, 0, 0, 0, 0,
1, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0

h

static uint32 NWS 47] =

{
1] 2 H 3] 4 3y 5 y 38 y
7, 8 9 , 10 , 12 , 12 , 13 , 29
5 , 16 , 17 , 18 , 19 , 20 , 22 , 22
23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 ,
3T , 3 , 388 , 34 , 3% , 36 , 37 , 38
39 , 40 , 41 , 42 , 43 , 44 , 45 | 45 |
46

H

static uint32 NLPY 47] =

{
1, 6 9 , 12 , 29 , 33 ,
6 , 14 , 14 , 14 , 17 , 18 , 20 , 21 ,
4 , 14 , 15 , 16 , 17 , 18 , 19 , 19
2 , 22 , 22 , 23 , 24 , 25 , 26 , 27
28 , 29 , 3 , 31 , 32 , 38 , 34 , 3B ,
6 , 3 , 38 , 39 , 40 , 41 , 42 , 43
46

h

/* */

/*

Initialize the arithnetic encoder.

See Section C 2.8 and Figure G 10.

param file - The file to wite the output bytes to.
*/

void ArithEnclnit()
{

x8000u;
/* Assume that the byte prior to startingis 0 */
firstByte

/* Initialize all of the contexts (see Table G 6) */

26 JPEG2000 Arithmetic Encoding on the StarCore SC140 @ MOTOROLA
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

for (i =0; i <= MAXOONTEXT; i++)
{

contexts[i].l = 0;
contexts[i].MPS = 0;
}
contexts| UN FCRM CX] . | = 46;
cont ext s| RLN_EI\GTH CX] I = 3;
contexts[0].l = 4;

} /* ArithEnclnit */

/* */
/*

Performthe bottomright box of Figure G9.

*/

static inline void ByteQutR ght (voi d)

if ('firstByte)
Transni t Byt e(B);
el se
firstByte = 0,
B = (ui nt8)((C >> 20) & OxFF);
C = C & OxFFFFF
:7'
} /* ByteQutR ght */

9

/* */

/*
Performthe bottomleft box of Figure G9.
*/

static inline void ByteQutLeft(void)

if ('firstByte)
Transni t Byt e(B);

el se
firstByte = 0;
B = (uint8)((C>> 19) & OxFF);
C = C & OX7FFFF;
CT = 8§;
} /* ByteQutlLeft */
/* */

/*
Wite out bytes, allow ng for OxFF stuffing.
See Section C 2.7 and Figure GO9.

*/
static inline void ByteQut(void)
{
/* This test sequence m ght speed up process */
if (B!= OxFF)
i f (C < 0x8000000)
Byt eQut Left();
el se
{
B += 1;
if (B!= OxFF)
ByteQut Left ();
el se
{
C = C & OX7FFFFFF;
@ MOTOROLA Appendix A. Arithmetic Encoder: C Cade 27
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

Byt eQut R ght () ;
}

el se
Byt eQut R ght () ;
} /* ByteQut */

/* */
/*

Renornal i ze the lower bound and size of the probability range.

See Section C 2.6 and Figure G8. This function ensures that the range (A
is at least 0.75

*/
static inline void Renorne(void)
{
do
{
[* Check that there will be no overflowwi th these shifts */
A <<= 1;
C <<= 1,
Cr-=1,;
if (CT == 0)
Byt eQut ();

}
while (A <= 0x8000);
} /* Renorme */
/* */
/*
Encode a bit using the given context.
Qutput bits will be witten to the file given to ArithEnclnit().
See Section C 2.2 and B.2.3
param D - The bit to encode, either 0 or 1.
param CX - The nunber of the context to use.
*/

voi d ArithEncEncode(uint8 D, uintl1l6 CX)

{
ArithEncCont ext* pCX;
uint32 I;
uint32 Cel;
ui nt 32 MPS;

pCX = & contexts[CX]);

/* Put the current context into globals, and wite themback later */
I = pCX->I;

MPS = pCX- >MPS;

Ql = Qe[l];

i{f (pCX->MPS == D)

/* CodeMPS */
A-=el;

/* Doing this test first mght speed up process */
if (A >= 0x8000u)
I*if ((A & 0x8000) !'= 0)*/

C += Qel;

el se

/* Doing this test first nmght speed up process */

28 JPEG2000 Arithmetic Encoding on the StarCore SC140 @ MOTOROLA
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

if (A>= Ql)
C += Qel;
el se
A= el;
I = NWS1];
Renor ne() ;
}/**/
}
el se
{
/* CodeLPS */
A-= Cel;
/* Doing this test first nmght speed up process */
if (A>= Ql)
A= Cel;
el se
C += Qel;
if (SWTCH])
MPS =1 - MS
I = NPH[I];
Renor ne() ;
}
pCX->1 = 1I;

pCX->MPS = MPS;
} /* ArithEncEncode */

/*

/*

Fl ush the output of the arithmetic encodi ng process.

This nust be called once all of the data bits have been sent through the
encoder .

See Section C 2.9 and Figure G 11.

*/

voi d ArithEncFl ush(voi d)

{
ui nt 32 tenpC

/* SETBITS (Figure G12) */
tempC = C + A
C | = OXFFFF;
if (C>= tenpQ
C - = 0x8000;

C <<= CT;
Byt eQut ();

C <<= CT;
Byt eQut ();

if (B!= OxFF)
Transni t Byt e(B);

ArithEnclnit();
} /* ArithEncFl ush */

/*

@ MOTOROLA Appendix A. Arithmetic Encoder: C Code
For More Information On This Product,

Go to: www.freescale.com

*/

*/

29

Freescale Semiconductor, Inc.

Encoder . c

/*

A test harness for the M) arithneti c encoder described in
Annex C of JPEG000.

This main programperforns arithneti c encodi ng, given context-bit
pairs stored in arrayln[].

aut hor Matt hew Ledi t schke
version $Revision: 1.3 $
*/

#i ncl ude <stdio. h>

#i ncl ude <stdlib. h>
#i ncl ude "arithEnc. h"
#include "filel Qh"

/* Oreate arrayln and arrayQut for testing */
#include "til e5-synbol s. h"

voi d nai n()
int i,j,k;
uint16 CX
uint8 D
i nt nunBl ocks, nunPairs, bl ockldx;
ArithEnclnit();

nunBl ocks = arrayl n[0] ;

*/

bl ockl dx = 1;
for (i=0; i<nunBlocks; i++)
{
nunPai rs = arrayl n[bl ockl dx] ;
bl ockl dx += (1+nunPairs<<1);
for (j=0, k=2; j<nunPairs; j++ k=k+2)
{
CX = arrayln[k];
D = arrayl n[k+1];
ArithEncEncode(D, CX);
}
ArithEncFl ush();
/* }
Wien including "til e5-synbols.h", the
correct results in arrayQut[] should be
11 50 54 af
*/
} /* nain */
/*
FilelQc
/*

Handl e the input and output of bytes.

aut hor Mat t hew Ledi t schke
version $Revision: 1.3 $
*
/

#i ncl ude <stdio. h>

30 JPEG2000 Arithmetic Encoding on the StarCore SC140
For More Information On This Product,

Go to: www.freescale.com

@ MOTOROLA

Freescale Semiconductor, Inc.

#i ncl ude <stdlib. h>

#i ncl ude "types. h"
#include "filelQh"

/* Store the encoded bytes for testing */
extern uint8 arrayQut[];

/* Keep track of the total nunmber of bytes witten */
static uint32 bytesWitten = 0;

/* This wites out bits as text, 'O’ for a O bit and '1" for a 1 bit */
#undef WRI TE BI TS

/* This wites bytes out as binary bytes */
#defi ne WRI TE_BYTES

/* This doesn’t wite out anything - only counts */
#undef NO WR TE

/* */

/* brief Wite a byte of data.
For this testing code, this function just prints out the binary pattern
for the bytes (most significant bit first) to standard out put.
parameter: byte - The byte to wite out.
*/

voi d Transm t Byt e(ui nt 8 byte)

{
#ifdef WRITE BI TS
int bit =1 <<7;

while (bit)
putc((byte & bit) 2’1 : "0, outFile);
bit >>= 1;
}
#endi f

#i f def WR TE_BYTES
arrayQut [bytesWitten++] = byte;
#endi f

} /* TransmtByte */

/* */
/*

Read a byte of data.

*/

ui nt 8 Recei veByte(FILE* inFile)
uint8 byte = 0;

#ifdef WRITE BI TS
int i;

for (i =0; i <8; i++)
{
byte <<= 1;
if (getc(inFile) =="1")
byte | = 0x01;
/* 1f reading past the end of the file, read in 1 bits */

@ MOTOROLA Appendix A. Arithmetic Encoder: C Code 31
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

if (feof(inFile))
byte | = 0x01;

#endi f

#i f def WRI TE BYTES
byte = getc(inFile);
if (feof(inFile))
byte = OxFF;
#endi f

#ifdef NOWR TE
fprintf(stderr, "Nothing was witten, so there is nothing to read.\n");
exit (EXIT_FA LURE);

#endi f
return byte;

} /* TransmtByte */

/*

ArithEnc. h
/*
The decl aration of functions that perform M) arithnetic encodi ng
as defined in Annex C of JPE&O000.
aut hor Matt hew Ledit schke
version $Revision: 1.1 $

*/

*/

#i fndef _ARITH ENC H
#define AR TH ENC H

#i ncl ude "types. h"

void ArithEnclnit();
void ArithEncEncode(uint8 D uint16 CX);
voi d ArithEncF ush(void);

/* Special context |abels */
#def 1 ne RUNLENGTH_CX 17
#defi ne UN FCRM CX 18

#endif /* AR THENC H */
/* J|

FilelO.h

/*

Handl e the input and output of bytes.

aut hor Matthew Ledit schke

version $Revision: 1.2 $
*/
#ifndef FLEIOH
#define FILEIOH
voi d Transm t Byte(uint8 byte);
ui nt 8 Recei veByte(FILE* inFile);
#endif /* FILEIOH */
/* */

types.h

/*
Define some data types that represent different precisions.
aut hor Matthew Ledi t schke
version $Revision: 1.2 $

*/

#i fndef _TYPES H

#define TYPES H

32 JPEG2000 Arithmetic Encoding on the StarCore SC140 @ MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

*/

Freescale Semiconductor, Inc.
expect ed nunber of bytes = 4 */

TYPES H */

t ypedef unsi gned char uint8;

#endi f /*

/*

/* An unsigned 32 bit integer */
t ypedef unsigned | ong int uint32;
/* An unsigned 24 bit integer */
typedef unsigned | ong int uint24;
/* An unsigned 16 bit integer */
typedef unsigned short int uintl6;
/* An unsigned 8 bit integer */

til eb-synbol s. h
/* Store the output,
uint8 arrayQut[4];

©OLN OO WOLN O OMEO WO O OO
R e e e e e e e e e e e i Ea ke
QLLLLLLLLLLLLLLLL

LN (OO WOLNWO O O MO W WO WO OO
e e e e e e e e e e i Ea ke
LLLLLLLLLLLLLLLLL

OO NOOVONOVOVOOWOVWWOWVOW
Ard A A A A A A AAAAAAAA

0 s.h */
81

y16656665666666666
Ard A A A A A A AAAAAAA A

el

SQQQQQQQQQQQQQQQQ
e DT
C O LN WO WO WOLN WO WO QO W W W©WOWOW©O©
Sy AT AT A A A A A A A A
— A A A A A A A A A A A A A A A
r]
m%%&zzz&zzzzzzzzzz
0CHO0O0OO0O0O0OO000000000O0O
N

— LN OO WO LO WO WO WO LHM W WO WO WO WO O

33

Appendix A. Arithmetic Encoder: C Code
For More Information On This Product,
Go to: www.freescale.com

@ MOTOROLA

34

Freescale Semiconductor, Inc.

JPEG2000 Arithmetic Encoding on the StarCore SC140
For More Information On This Product,

Go to: www.freescale.com

@ MOTOROLA

Freescale Semiconductor, Inc.

Appendix B
Arithmetic Encoder: Assembly Code

IR RS SRR R R R RS R E R R RS E R EEE RS R R EEEEEEEEREEEEEEEREEEEEEEEEEREE

Arithnetic Encoder - Assenbly Code

ckkkkkhkkhhkhhkhhkhhkhhkhhkhkhhkhhkhhkhhhhhhhkdhhhhhdhhhhhhhhdhhhhhhhkhhhdhdhdhdhdhhdhdhhhdrdhrdhrdixx

FI LENAME : arith_enc.asm
PREPARED BY MOTCRCLA Australia Research Centre, 8 January 2001
AUTHCR : Sue Twel ves
IR SRS SRS EEEEEEEEEEEEEEEEEEE RS EE S
ALCCR THV : JPE&R000 Arithmetic Encoder

IR E RS SRS EE R R R RS R RS E R R R R EEEEEEEEEEEEEREEEEEEEREEEEEEEEEEEEE N

Constants Used: ’

RENCRM THRESH Wien the interval, A drops bel owthe threshol d of
$8000, renor mal i sati on occurs

QUTPUT: Qutput to the bitstreamis initally to |location $950

CARRYOVER If the Cregister spills into |ocation $8000000, then
a carry has occurred requiring bitstuffing to take
pl ace

I nput/ Qut put | ocation:

Input initial address is at $2d0
Qutput initial address is at $950

regi sters used:
rO through to r7 and nO

rOis the base address of the g, table G2, FO S

rlis the base address of the input context/data pairs

r2 is the base address of the context table for the indices
r3is the offset intothe @ table, i.e. it starts with | (CX
r4 is the base address of the context table for the MPS val ues

r5is the offset into the context table for the MPS val ues, i.e. it is CX
to start with
ré is the offset into the context table for the Indices, i.e. it is CX

to start with
r7is BP, i.e. the output bitstreampointer fromthe arithmetic coder
n0 is used as an offset into the @ table to access the SWTCH entri es.

assunpti ons:

Oly 1 block of input data is dealt with by this code. In this case, this
nmeans that the output CX/ D pairs fromthe coefficient bit nodel | er when
1 tile of 128x128 has been processed.

IR RS SRR R R RS R E R R R RS R R R EEEEEEEEREEEEEEEREEEEEEEEEEREE

RENCRM THRESH equ $8000
QUTPUT equ $950
CARRYOVER equ $8000000

; Input data
org p: $0
j mp $1000

org p: $100

; Table G2, FDI'S - @ values, NWS, NLPS, switch

ge: dcw $5601, $0008, $0008, $0001, $3401, $0010, $0030, $0000
dcw $1801, $0018, $0048, $0000, $0acl, $0020, $0060, $0000
dcw $0521, $0028, $00e8, $0000, $0221, $0130, $0108, $0000
dcw $5601, $0038, $0030, $0001, $5401, $0040, $0070, $0000

@ MOTOROLA Appendix B. Arithmetic Encoder: Assembly Code 35
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

dcw $4801, $0048, $0070, $0000, $3801, $0050, $0070, $0000
dcw $3001, $0058, $0088, $0000, $2401, $0060, $0090, $0000
dcw $1c01, $0068, $00a0, $0000, $1601, $00e8, $00a8, $0000
dcw $5601, $0078, $0070, $0001, $5401, $0080, $0070, $0000
dcw $5101, $0088, $0078, $0000, $4801, $0090, $0080, $0000
dcw $3801, $0098, $0088, $0000, $3401, $00a0, $0090, $0000
dcw $3001, $00a8, $0098, $0000, $2801, $00b0, $0098, $0000
dcw $2401, $00b8, $00a0, $0000, $2201, $00c0, $00a8, $0000
dcw $1c01, $00c8, $00b0, $0000, $1801, $00d0, $00b8, $0000
dcw $1601, $00d8, $00c0, $0000, $1401, $00e0, $00c8, $0000
dcw $1201, $00e8, $00d0, $0000, $1101, $00f 0, $00d8, $0000
dcw $0acl, $00f 8, $00e0, $0000, $09c1, $0100, $00e8, $0000
dcw $08al, $0108, $00f 0, $0000, $0521, $0110, $00f 8, $0000
dcw $0441, $0118, $0100, $0000, $02al, $0120, $0108, $0000
dew $0221, $0128, $0110, $0000, $0141, $0130, $0118, $0000
dcw $0111, $0138, $0120, $0000, $0085, $0140, $0128, $0000
dcw $0049, $0148, $0130, $0000, $0025, $0150, $0138, $0000
dcw $0015, $0158, $0140, $0000, $0009, $0160, $0148, $0000
dcw $0005, $0168, $0150, $0000, $0001, $0168, $0158, $0000
dcw $5601, $0170, $0170, $0000

org p: $280
Context table: indices and MPS val ues

ctxt _idx: dew $0020, $0000, $0000, $0000, $0000, $0000, $0000, $0000
decw $0000, $0000, $0000, $0000, $0000, $0000, $0000, $0000
dew $0018, $0170

ctxt _nps: dcb $00, $00, $00, $00, $00, $00, $00, $00
dcb $00, $00, $00, $00, $00, $00, $00, $00
dcb $00, $00

org p: $2d0

I nput context/data pairs - this corresponds to tile5-synbols.h fromthe C
; version of the code
; The output using this input should be: 11 50 54 af, as before

i p: dcw $0001, $0202,
dcb $11, $01, $12, $00, $12, $00, $0c, $01, $03, $01, $0d, $00, $03, $01, $0d, $00
dcb $03, $01, $0d, $00, $06, $01, $0f , $00, $07, $01, $10, $00, $07, $01, $10, $00
dcb $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00
dcb $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00
dcb $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00
dcb $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00
dcb $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00
dcb $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00
dcb $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00
dcb $07, $01, $10, $00, $03, $01, $0d, $00, $03, $01, $0d, $00, $03, $01, $0d, $00
dcb $03, $01, $0d, $00, $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00
dcb $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00
dcb $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00
dcb $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00
dcb $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00
dcb $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00
dcb $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00
dcb $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00
dcb $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00
dcb $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00
dcb $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00
dcb $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00
dcb $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00
dcb $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00
dcb $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00

36 JPEG2000 Arithmetic Encoding on the StarCore SC140 @ MOTOROLA
For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

dcb $07, $01, $10, $00, $03, $01, $0d, $00, $03, $01, $0d, $00, $03, $01, $0d, $00
dcb $03, $01, $0d, $00, $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00
dcb $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00
dcb $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00
dcb $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00
dcb $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00
dcb $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00
dcb $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00
dcb $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00
dcb $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00
dcb $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00
dcb $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00
dcb $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00
dcb $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00
dcb $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00
dcb $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00
dcb $07, $01, $10, $00, $06, $01, $0f, $00, $07, $01, $10, $00, $07, $01, $10, $00
dcb $07, $01, $10, $00, $06, $01, $0f, $00, $07, $01, $10, $00, $07, $01, $10, $00
dcb $07, $01, $10, $00, $06, $01, $0f, $00, $07, $01, $10, $00, $07, $01, $10, $00
dcb $07, $01, $10, $00, $06, $01, $0f, $00, $07, $01, $10, $00, $07, $01, $10, $00
dcb $07, $01, $10, $00, $06, $01, $0f , $00, $07, $01, $10, $00, $07, $01, $10, $00
dcb $07, $01, $10, $00, $06, $01, $0f , $00, $07, $01, $10, $00, $07, $01, $10, $00
dcb $07, $01, $10, $00, $06, $01, $0f, $00, $07, $01, $10, $00, $07, $01, $10, $00
dcb $07, $01, $10, $00, $06, $01, $0f, $00, $07, $01, $10, $00, $07, $01, $10, $00
dcb $07, $01, $10, $00, $06, $01, $0f , $00, $07, $01, $10, $00, $07, $01, $10, $00
dcb $07, $01, $10, $00, $06, $01, $0f, $00, $07, $01, $10, $00, $07, $01, $10, $00
dcb $07, $01, $10, $00, $06, $01, $0f, $00, $07, $01, $10, $00, $07, $01, $10, $00
dcb $07, $01, $10, $00, $06, $01, $0f , $00, $07, $01, $10, $00, $07, $01, $10, $00
dcb $07, $01, $10, $00, $06, $01, $0f, $00, $07, $01, $10, $00, $07, $01, $10, $00
dcb $07, $01, $10, $00, $06, $01, $0f , $00, $07, $01, $10, $00, $07, $01, $10, $00
dcb $07, $01, $10, $00, $03, $01, $0d, $00, $03, $01, $0d, $00, $03, $01, $0d, $00
dcb $03, $01, $0d, $00, $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00
dcb $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00
dcb $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00
dcb $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00
dcb $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00
dcb $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00
dcb $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00
dcb $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00, $07, $01, $10, $00
dcb $07, $01, $10, $00

org p: $1000

Initialize the address registers of the various |ook-up tables.
; Also set up clock

init:

nove. | #$80030003, PCTLO ; Ensure clock speed is 300Mtz

nove. | #ctxt _idx,r2 ; r2 is the base address of the context
; tabl e:index

nove. | #ctxt _nps,r4 ; r4 is the base address of the context
; table:MPS

nmove. | #ip,rl deca r2 rl points to the input bitstream of

context/data pairs

decrement r2 so when add context frombitstream points to right index

nove. | #qge, r0 ; 10 is the base address of ge table
nove. w #0, d1 adda #2,r1 ; C=0, assune one bl ock for now so

skip the input bl ock nunbers

nove.w (rl1)+,d3 noveu.w #REI\D?M_TI—RE’SI-L d13.1 ; Nunber of context/data
; pairs. Renormthreshol d used agai n

inarithnetic |ater

nove. | #CARRYOVER d10 deca r4 This is the constant to check whet her

; the c register has overflowed into carry bit.

@ MOTOROLA Appendix B. Arithmetic Encoder: Assembly Code

For More Information On This Product,
Go to: www.freescale.com

37

Freescale Semiconductor, Inc.

; Need CX-1 because context table:MPS starts at O.

Initialize the arithnetic encoder - Fig G 10

I N TENC
noveu. w #RENCRM THRESH dO. | nove. w #OQUTPUT,r7 ; A = 0x8000 (in do0.1)
; BP=BPST-1 i.e. r7is BP
; output conpressed bitstream (BP in FDO S)
; This is BPST-1, i.e. the first byte will be output to r7+1
; Assign this to BP
nove. | #$00010000, PCTLl adda #1,r1 ; Ensure clock speed is
; 300MHz; rest of input data in bytes, so byte alignrl
nmove. b (r7)+, d2 nmove. w #2, n0 ; get previous byte from
; output stream i.e. B pointed to by BP
bntsts #$ff, d2. | nove.b (rl1)+,r6 ; read CX, Dpair intor6
; and db.
; CXis an index into CONTXT table of indices; B = OxFF?
nove. b (rl)+ d5 deca r2 ; data in d5, need to have

; CX-1 because OONTXT:index table address starts at O

; if Bnot equal OxFF, CT = 12 else CT = 13
ift nmove.w #13, d4 i ff nmove. w #12, d4
asla r6 tfrar6,r5 ; need to multiply CX by 2 because stored indi ces
; as words in table
; r5 points to CX MPS of bytes
adda r2,r6 adda r4,r5 ; r2 and r4 are the base addresses of the CONTXT
; tables for indices and MPS val ues respectively, so to access
; correct index and MPS need to of fset by base addresses
doset up0 BLOK
doen0 d3 ; set up loop through cx,d pairs in one bl ock
(assurred only 1 block in this exanple)

BLOCK
| oopstartO
falign
nmove.w (re6),r3 nmove. w (r5), d6 ; d6 = MPS i.e. MPS(CX) ; r3 = index
e 1(CX
cnpeq d5, d6 ; D= MPS(CX)?
adda r0,r3 ;. r3 -> NWS
; nowpointing at Q in table entry for this index as rO is
; base address for e table
now code | ps or nps
jtd CCDEMPS nove. w (r3)+,d7 ; fromD = MPS(CX)? test, d7 = (g,
sub d7, dO, dO ; in either MPS or LPS case, first stepis A=A- @
QCDELPS:
nmove. w (r3+n0), d9 cnpgt d0,d7 ; d9 = SWTCH A< Q(I(CX))~?
adda #2,r3 7 13 -> NLPS(1 (CX)
ift add d7,d1,d1 ; if A<Qe true, C=C+ Q@(1(CX)
bmsts #$0001, d9. | tfrf d7,d0 ; SWTCHI(CX) = 1?
; if A>Q then A = Q@(1(CX))
nmove. w (r3), d8 i A<Q, 1(CX) = l\LPS(I(O())
i ft brmchg #$0001, dé. | , if SWTCH MPS =1 -
; i.e. if 0 change to 1 and vice versa
; replace new sense of MPS to nmenory and d8 = NLPS(1(CX))
ift rmove.w d6, (r5) ; 1f SWTCH MPS(CX) =1 - MPS(CX)
;always renornali ze on the OCDELPS path
j np RENCRME nmove. w d8, (r6) ; 1(CX) = NLPS(1 (X))
CCDEMPS:
bmsts #$8000, dO. | ; A AND 0x8000 = 17
nmove. w (r3), d8 ; d8 = N\/PS(I(O())
jt norenorm ift add d7, dl di ; |f faI e (i.e. T set)
' + (1(C9)
38 JPEG2000 Arithmetic Encoding on the StarCore SC140 @ MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

; if A>0.75norenornalisationisrequired. i.e. Aand 0x8000 not =0

if A< 0.75 needs renornalisation
the most sigfig nunber is not set
therefore, A has fallen bel ow 0.75 (i.e. 0x8000)

cnpgt do, d7 nmove. w d8, (r6) s A< QE(I(CY)?, r6 ->1(CX),
_ L 1O = NWP(1 (D))
tfrt d7,do i ff add d7,d1,d1 ; i1f true, A= Q@(1(CX),
; else C=C+ Q(1(CX)
; now renornal i ze
RENCRVE:
deceq d4 ; CIT=Cr- 1, Cr =07
asl do, do asl di, d1 i A=z A<] C=Cx<<1],
ift j sr BYTEQUT ; if CT =0, output byte
rentest:
bntsts #$8000, dO. | : A and 0x8000 = 17
j f RENCRME ; if =0 (i.e. T cleared) repeat renornalisation
nor enorm
nmove.b (rl)+r6 ; get next XD pair
nmove. b (rl)+, d5 ; CXis an index into two GONTXT tabl es of
; indices and MPS data in d5,
; need to have CX-1 because
; OONTXT table address starts at 0O
asla r6 tfrar6,r5 ; need to multiply CX by 2 because
; stored indices as words in table r5is index into
; OONTXT: MPS tabl e of bytes
adda r2,r6 ; r2 is the base address of the OONTXT:index table so to
; access correct index need to offset
adda r4,r5 ; r4 is the base address of the OONTXT: MPS table so to
; access correct MPS need to of f set
| oopendO
FLUSH

; termnate the
; sethits - set

coded bitstreamw th the correct narker code
as many of the Cregister bits as possible

SETBI TS:

add di, do, d12 ; TEMPC = C+ A

or #$Ffff,dl.I ; C= COROxffff

cnpeq di2,d1l ; if C>= TEMPC then C = C - 0x8000

ift sub d13,d1,d1

cnpgt di2,d1

ift sub d13,d1,d1
; end SETBI TS

asl| d4,d1 ; C=C<<CT

j sr BYTEQUT ; BYTEQUT

asl| d4,d1 ; C=C<<CT

j sr BYTEQUT ; BYTEQUT

bntsts #$ff,d2.1 ; if B = OxFF then discard B

nop

ift deca r7 ; if Bnot = OxFF then BP = BP + 1

; BP already points to BP + 1, therefore, decrenent r7

test: stop ; finished coding all pairs of input
BYTEQUT:

; byteout procedure

bnists

@ MOTOROLA

#$f f, d2. 1 ; B = OxFF?

Appendix B. Arithmetic Encoder: Assembly Code 39
For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

j fd nobitstuffyet

bitstuff:
tfr di,dil ; dl =dil =C
asrr #20, d11 and #$ffff,dl. | ; C = C AND OxFFFFF
j npd endbyt eout nmove. w #7, d4 ; CT =7

and #$000f, d1. h

nobi t st uf f yet :

cnpgt di, d10 ; C < 0x80000007?

jt outputbyte ; true

inc d2 ; false: B = B+l

bntsts #$ff, d2. | ; B = OxFF?

j f outputbyte ; false

and #$ffff,dl. | ; true: C = C AND Ox7FFFFFF

jnpd bitstuff
and #$07ff, dl. h

out put byt e:

tfr di, dil ; dl =d11 =C
asrr #19, d11 and #$ffff,dl. 1 ; C = C AND Ox7FFFF
and #$0007,d1.h nove.w #8, d4 ; CT =8
endbyt eout :
rtsd tfr dii,d2 ; B=C>>200or B=C>> 19
nove. b d2, (r7)+ ; output B to nenmory BP out
40 JPEG2000 Arithmetic Encoding on the StarCore SC140 @ MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Appendix C

Excerpts from FDIS

This appendix reproduces several flow diagrams and a table from Appendix C of

ISO/IEC FDIS 15444-1 : 2000 (181 August 2000).

D——P

CX———P

ENCODER

—————® CD

Figure C-1. Arithmetic Encoder Inputs and Outputs

(ENCODER)

A

INITENC

|

Y

Read CX, D

A

ENCODE

No

Yes

FLUSH

Y

(

Done

)

Figure C-2. Encoder for the MQ-Coder

@ MOTOROLA “Jpendix C. Excerpts from FDIS
For More Information On This Product,

Go to: www.freescale.com

41

42

Freescale Semiconductor, Inc.

(ENCODE)

No Yes
D =0?

FLUSH FLUSH

A

(Done)

Figure C-3. ENCODE Procedure

(coper)

No Yes
MPS(CX) = 1?

CODELPS CODEMPS

A

(Done)

Figure C-4. CODEL1 Procedure

(cobeo)

No Yes
MPS(CX) = 0?

CODELPS CODEMPS

A

(Done)

Figure C-5. CODEO Procedure

JPEG2000 Arithmetic Encoding on the StarCore SC140
For More Information On This Product,

Go to: www.freescale.com

@ MOTOROLA

Freescale Semiconductor, Inc.

(CODELPS)

\J

Y

C=C+QgI(CX))

A=A -Qe(I(CX))
No Yes
A <Qe(I(CX))?
y
A = Q(I(CX))
Y
Yes
SWITCH(I(CX))
=1?
Y
No
MPS(CX) = 1 - MPS(CX) >

Y
1(CX) = NLPS(I(CX))

Y
RENORME

A

(Done)

Figure C-6. CODELPS Procedure with Conditional MPS/LPS Exchange

@ MOTOROLA %ﬁ)pendix C. Excerpts from FDIS
For Mo

re Information On This Product,
Go to: www.freescale.com

43

44

Freescale Semiconductor, Inc.

(CODEMPS)

A

Y

C=C+QI(CX))

A=A -QeI(CX))
No Yes
A AND $8000 = 0? ¢
No Yes
A < Qe(I(CX))?
\ Y
C=C+Qgl(CX))

A = Qe(I(CX))

i

-¢

\
1(CX) = NMPS(I(CX))

y
RENORME

g
|

Figure C-7.

A

(Done)

JPEG2000 Arithmetic Encoding on the StarCore SC140
For More Information On This Product,

Go to: www.freescale.com

CODEMPS Procedure with Conditional MPS/LPS Exchange

@ MOTOROLA

@ MOTOROLA

Freescale Semiconductor, Inc.

(RENORME)

No

Yes

BYTEOUT

Y

A AND $8000= 07> YES |

No
Y

(Done)

Figure C-8. Encoder Renormalization Procedure

“Jpendix C. Excerpts from FDIS
For More Information On This Product,

Go to: www.freescale.com

45

46

Freescale Semiconductor, Inc.

BYTEOUT

C < $8000000?

Y

B=B+1
No B = $FF?
es
C = C AND $7FFFFFF
A
BP=BP+1
B=C>>19
C = C AND $7FFFFFF
CT=8

C = C AND $7FFFFFF

BP=BP+1
B=C>>19

CT=8

C

Done

)

Figure C-9. Encoder BYTEOUT Procedure

JPEG2000 Arithmetic Encoding on the StarCore SC140
For More Information On This Product,

Go to: www.freescale.com

@ MOTOROLA

@ MOTOROLA

Freescale Semiconductor, Inc.

(INTENC)

Y
A =$8000
Cc=0
BP=BPST-1
CT=12

No B = $FF?

(Done)

Figure C-10. Encoder Initialization

“Jpendix C. Excerpts from FDIS
For More Information On This Product,
Go to: www.freescale.com

47

48

Freescale Semiconductor, Inc.

(FsH)

BYTEOUT

B = $FF? Yes

No

BP=BP+1 Discard B

i

(Done)

Figure C-11. FLUSH Procedure

JPEG2000 Arithmetic Encoding on the StarCore SC140
For More Information On This Product,

Go to: www.freescale.com

@ MOTOROLA

@ MOTOROLA

Freescale Semiconductor, Inc.

(SETBITS)

Y
TEMPC=C+A
C=COR $FFFF

No

Y

Y

(Done)

Figure C-12. Setting the Final Bits in the C Register

“Jpendix C. Excerpts from FDIS
For More Information On This Product,

Go to: www.freescale.com

49

Freescale Semiconductor, Inc.

Table C-2. Q. Values and Probability Estimation

Qe_Value
Index NMPS NLPS SWITCH
Hexadecimal Binary Decimal
0 0x5601 0101 0110 0000 0001 0.503 937 1 1 1
1 0x3401 0011 0100 0000 0001 0.304 715 2 6 0
2 0x1801 0001 1000 0000 0001 0.140 650 3 9 0
3 0x0AC1 0000 1010 1100 0001 0.063 012 4 12 0
4 0x0521 0000 0101 0010 0001 0.030 053 5 29 0
5 0x0221 0000 0010 0010 0001 0.012 474 38 33 0
6 0x5601 0101 0110 0000 0001 0.503 937 7 6 1
7 0x5401 0101 0100 0000 0001 0.492 218 8 14 0
8 0x4801 0100 1000 0000 0001 0.421 904 9 14 0
9 0x3801 0011 1000 0000 0001 0.328 153 10 14 0
10 0x3001 0011 0000 0000 0001 0.281 277 11 17 0
11 0x2401 0010 0100 0000 0001 0.210 964 12 18 0
12 0x1C01 0001 1100 0000 0001 0.164 088 13 20 0
13 0x1601 0001 0110 0000 0001 0.128 931 29 21 0
14 0x5601 0101 0110 0000 0001 0.503 937 15 14 1
15 0x5401 0101 0100 0000 0001 0.492 218 16 14 0
16 0x5101 0101 0001 0000 0001 0.474 640 17 15 0
17 0x4801 0100 1000 0000 0001 0.421 904 18 16 0
18 0x3801 0011 1000 0000 0001 0.328 153 19 17 0
19 0x3401 0011 0100 0000 0001 0.304 715 20 18 0
20 0x3001 0011 0000 0000 0001 0.281 277 21 19 0
21 0x2801 0010 1000 0000 0001 0.234 401 22 19 0
22 0x2401 0010 0100 0000 0001 0.210 964 23 20 0
23 0x2201 0010 0010 0000 0001 0.199 245 24 21 0
24 0x1C01 0001 1100 0000 0001 0.164 088 25 22 0
25 0x1801 0001 1000 0000 0001 0.140 650 26 23 0
26 0x1601 0001 0110 0000 0001 0.128 931 27 24 0
27 0x1401 0001 0100 0000 0001 0.117 212 28 25 0
JPEG2000 Arithmetic Encoding on the StarCore SC140 @ MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Table C-2. Q. Values and Probability Estimation (Continued)

Qe_Value
Index NMPS NLPS SWITCH
Hexadecimal Binary Decimal
28 0x1201 0001 0010 0000 0001 0.105 493 29 26 0
29 0x1101 0001 0001 0000 0001 0.099 634 30 27 0
30 0x0AC1 0000 1010 1100 0001 0.063 012 31 28 0
31 0x09C1 0000 1001 1100 0001 0.057 153 32 29 0
32 0x08A1 0000 1000 1010 0001 0.050 561 33 30 0
33 0x0521 0000 0101 0010 0001 0.030 053 34 31 0
34 0x0441 0000 0100 0100 0001 0.024 926 35 32 0
35 0x02Al 0000 0010 1010 0001 0.015 404 36 33 0
36 0x0221 0000 0010 0010 0001 0.012 474 37 34 0
37 0x0141 0000 0001 0100 0001 0.007 347 38 35 0
38 0x0111 0000 0001 0001 0001 0.006 249 39 36 0
39 0x0085 0000 0000 1000 0101 0.003 044 40 37 0
40 0x0049 0000 0000 0100 1001 0.001 671 41 38 0
41 0x0025 0000 0000 0010 0101 0.000 847 42 39 0
42 0x0015 0000 0000 0001 0101 0.000 481 43 40 0
43 0x0009 0000 0000 0000 1001 0.000 206 44 41 0
44 0x0005 0000 0000 0000 0101 0.000 114 45 42 0
45 0x0001 0000 0000 0000 0001 0.000 023 45 43 0
46 0x5601 0101 0110 0000 0001 0.503 937 46 46 0
@ MOTOROLA 51

Appendix C. Excerpts from FDIS
For I\fd’)3 f

re Information On This Product,

Go to: www.freescale.com

52

Freescale Semiconductor, Inc.

JPEG2000 Arithmetic Encoding on the StarCore SC140
For More Information On This Product,

Go to: www.freescale.com

@ MOTOROLA

	Title Page
	Abstract and Contents
	1 Introduction
	2 Background Theory
	2.1 Huffman Coding
	2.1.1 The Huffman Coding Algorithm
	2.1.2 Limitations of Huffman Coding

	2.2 Arithmetic Coding
	2.3 Binary Arithmetic Coding
	2.3.1 BAC Encoding
	2.3.2 BAC Decoding

	2.4 JPEG2000 Arithmetic Coding
	2.4.1 Removing Multiplication
	2.4.2 Conditional Exchange of MPS Sense
	2.4.3 An Adaptive BAC: Probability Estimation Process
	2.4.4 Finite Precision
	2.4.5 Carry Propagation
	2.4.6 Software Versus Custom Hardware Implementation

	3 Implementation
	3.1 StarCore Implementation in C Code
	3.1.1 Encoder Initialization
	3.1.2 Flushing the Encoder
	3.1.3 StarCore Performance

	3.2 StarCore Implementation in Assembler
	3.2.1 Address Registers
	3.2.2 Change-of-Flow Instructions
	3.2.3 If-Then-Else Decisions
	3.2.4 Results

	4 Summary
	5 References
	Appendix�A Arithmetic Encoder: C Code
	Appendix�B Arithmetic Encoder: Assembly Code
	Appendix�C Excerpts from FDIS

