
AN2121/D
Rev 1.0, 10/2001

JPEG2000 Arithmetic Encoding
on the StarCore SC140

Application Note

 by
 Sue Twelves
and Mike Wu

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty,
representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters which may be provided in Motorola data sheets and/or specifications can
and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must
be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent
rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended to support life, or for any other application in which the
failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use
Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers,
employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or
unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.
Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.
All other tradenames, trademarks, and registered trademarks are the property of their respective owners.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado, 80217.
1–303–675–2140 or 1–800–441–2447

JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center, 3–20–1, Minami–Azabu, Minato–ku,
Tokyo 106–8573 Japan. 81–3–3440–3569

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd., Silicon Harbour Centre, 2 Dai King Street,
Tai Po Industrial Estate, Tai Po, N.T., Hong Kong. 852–26668334

Technical Information Center: 1–800–521–6274

HOME PAGE: http://www.motorola.com/semiconductors/ © Copyright Motorola, Inc., 2001

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

� iii

This application note describes how the advanced features of the StarCore processor can be used to
implement the arithmetic coding algorithm employed in the JPEG2000 image compression standard. Both
C code and optimized assembler listings are presented, as well as a review of the basic principles of
arithmetic encoding.

1 Introduction . 1

2 Background Theory . 2

2.1 Huffman Coding . 2
2.1.1 The Huffman Coding Algorithm . 2
2.1.2 Limitations of Huffman Coding . 3
2.1.2.1 Minimum Obtainable Coding Rate. 4
2.1.2.2 Varying Probability. 4
2.1.2.3 Practical Implementation . 4
2.2 Arithmetic Coding . 4
2.3 Binary Arithmetic Coding . 8
2.3.1 BAC Encoding . 9
2.3.2 BAC Decoding . 10
2.4 JPEG2000 Arithmetic Coding . 11
2.4.1 Removing Multiplication . 12
2.4.2 Conditional Exchange of MPS Sense . 12
2.4.2.1 LPS Case. 12
2.4.2.2 MPS Case . 13
2.4.3 An Adaptive BAC: Probability Estimation Process . 13
2.4.4 Finite Precision . 14
2.4.5 Carry Propagation . 14
2.4.6 Software Versus Custom Hardware Implementation . 16

3 Implementation . 17

3.1 StarCore Implementation in C code . 17
3.1.1 Encoder Initialization . 17
3.1.2 Flushing the Encoder . 17
3.1.3 StarCore Performance. 19
3.2 StarCore Implementation in Assembler . 20
3.2.1 Address Registers . 20
3.2.1.1 Address Register Arithmetic. 20
3.2.1.2 Multiple Address Registers. 21
3.2.2 Change-of-Flow Instructions . 21

Abstract and Contents

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

iv JPEG2000 Arithmetic Encoding on StarCore SC140 �

3.2.3 If-Then-Else Decisions . 21
3.2.4 Results. 22

4 Summary . 23

5 References . 24

Appendix A
Arithmetic Encoder: C Code. 25

Appendix B
 Arithmetic Encoder: Assembly Code . 35

Appendix C
Excerpts from FDIS . 41

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

� Introduction 1

1 Introduction
This application note is the second in a series of notes that describe how the advanced features of the
StarCore processor can be used to implement the algorithms associated with the image compression
standard JPEG2000. The first application note in this series [1] which described the wavelet transform
included a brief overview of the JPEG2000 standard. In this application note, arithmetic coding is
explained in conjunction with the specific arithmetic encoder used in the JPEG2000 standard. StarCore
implementation in both C code and optimized assembler are also provided.

Although the StarCore processor is a general-purpose DSP, it has many features that make it possible to
perform image compression algorithms quickly and efficiently. The performance of StarCore in processing
the JPEG2000 arithmetic encoder is discussed with results of performance tests being provided. Although
the arithmetic encoder is primarily a sequential engine, it is shown that some of StarCore’s parallel features
can still be used to good effect.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

2 JPEG2000 Arithmetic Encoding on the StarCore SC140 �

Background Theory

2 Background Theory
This section presents a look at some of the theory behind symbol coding, including the well-known
Huffman coder, general arithmetic coding, and binary arithmetic coding, which is employed by the
JPEG2000 standard.

Arithmetic coding is a form of statistical coding, which compresses data by encoding more probable
symbols with shorter code words than less probable symbols. The ideas behind compressing the
information associated with a sequence of random variables in order to transmit them over a
communication link can be traced back to Shannon’s ground breaking 1948 paper [2], in which he defined
the entropy of a random variable, X, with a discrete alphabet, e.g. {x0, x1, . . ., xn} as:

H(X) = – fX(xi)log2fX(xi) Eqn. 1

where fX(xi) is the probability that xi occurs. The entropy of a random variable can be thought of as how
much information it holds. As an extreme example, when it is known in advance that one particular symbol
will be received, e.g. an a, then its probability is 1 and its entropy is 0 because it holds no new information.
At the other extreme, if all the symbols in a particular alphabet are equally likely, then this will give
maximum entropy because each new received symbol is totally unpredictable. Shannon also proved that
for a stationary process, entropy is equal to the minimum average number of bits per symbol required to
represent the information source. The significance of arithmetic coding is that it can be made to approach
this theoretical limit.

As an introduction to arithmetic encoding, let us examine the simpler approach of Huffman coding, which
is used in the baseline JPEG standard.

NOTE:

The following discussions assume that a perfect communication channel is
present so that there are no errors associated with the code stream.

2.1 Huffman Coding
One way of coding symbols in an information stream is to allocate a unique code word for each symbol.
One such coding scheme, Huffman coding, is a form of prefix coding, meaning that each prefix in a given
set of code words is unique. This fact simplifies the decoding process because the decoder simply
continues to receive binary digits until a new code word has been obtained.

2.1.1 The Huffman Coding Algorithm

The significance of the Huffman coder is that it uses an algorithm which ensures that

fX(xi)li Eqn. 2

is minimized, where li is the length of the code word associated with xi. A simple example can serve to
explain the algorithm. Consider an alphabet which consists of four possible symbols, {c, d, e, o}, with
respective probabilities of 1/2, 1/4, 1/8, and 1/8. The encoding algorithm, illustrated in Figure 1, consists of
the following steps:

• Sort the symbols from least probable symbol to most probable symbol.

• Group the two least probable symbols together to form a root to the two separate symbols, which
become the leaves.

Σ
n

i = 0

Σ
n

i = 0

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Huffman Coding

� Background Theory 3

• Iterate the first two steps until the symbols are arranged in a binary tree in which only two branches
extend from each root.

• Assign ‘1’ to one branch from each root, and ‘0’ to the other branch to obtain the code words. In the
example, the left-hand branches are all 1’s, and the right-hand branches are 0’s.

Figure 1. Binary Tree for Huffman Coding Example

It is evident in the final step that the code words are not unique; however, the length of the code word
associated with each symbol is always the same.

Table 1 lists the code words obtained from the example in Figure 1, as well as the probability for each
symbol expressed as a binary fraction. In binary fractions, 0.1 represent 2-1, 0.01 represents 2-2, etc. In
other words, the exponent associated with the negative power of two is equal to the number of places after
the binary point.

Table 1. Example of Huffman Coding

Symbol
Probability
(in Binary)

Code Word

c 0.1 0

d 0.01 10

e 0.001 110

o 0.001 111

o (1/8) e (1/8) d (1/4) c (1/2)

o (1/8)

oe (2/8) d (1/4) c (1/2)

e (1/8)

oe (1/4)

oed (1/2) c (1/2)

d (1/8)

o (1/8) e (1/8)

1

1

1 0

0

0

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

4 JPEG2000 Arithmetic Encoding on the StarCore SC140 �

Background Theory

2.1.2 Limitations of Huffman Coding

In the above example, the code rate and the entropy are the same value, 1.75, because the probability for
each symbol is equal to 2 where, as before, li is equal to the length of the ith symbol. In most cases,
however, this is not true, and the limitations of Huffman coding become evident.

2.1.2.1 Minimum Obtainable Coding Rate

In Huffman coding, each code word must consist of at least one bit, which results in an average coding rate
of at least one bit per symbol. However, the theoretical minimum or entropy of a system can be less than
one bit per symbol, so in some cases it will be impossible for Huffman coding to attain the theoretical
minimum.

2.1.2.2 Varying Probability

In the example, it has been assumed that the probabilities of the various symbols are fixed. In many cases,
however, the probability varies, so the average number of bits per symbol in a Huffman coding scheme
could be much larger than the entropy. For instance, if symbol e in the above example actually occurred
with a probability of say 0.5, but still had 3 bits in its code word, the output bit stream would average 3 bits
for half of the time rather than an eighth of the time as expected. Therefore, it would be preferable to be
able to adapt the coding system to update the probabilities in real-time, which requires some sort of
statistical estimation process. However, implementing the Huffman algorithm is a computationally
intensive process, so modifying the code words adaptively could be prohibitively expensive from a
computational point of view.

2.1.2.3 Practical Implementation

In practical implementations of the Huffman coder, a lookup table is usually used. The number of table
entries must be 2L, where L is the maximum length of the code words. In the above example, the maximum
length is 3, so the lookup table must contain 8 entries to account for all unused combinations of 3 digits
containing the relevant symbol with a shorter prefix. The bit stream in this case is examined 3 bits at a
time, with these bits providing the addressing to the table. For example, the table entry for 100 would be c
(treating the right hand bit as the next input, i.e. the code stream input is read from right to left). In this
case, only one digit (the right-hand 0) is required to specify a particular code word, so only that digit is
dropped, and the next bit in the bit stream is concatenated to the remaining 10 to form the next lookup table
entry (which in this particular case, would be c again.) The problem here lies in the fact that because the
Huffman algorithm does not limit the length of the code words, the table can grow very large.

These problems are partially addressed with the use of arithmetic coding.

2.2 Arithmetic Coding
For simplicity, the following discussion of arithmetic coding assumes a sequence of symbols in a
stationary random process with independent elements. In this case, arithmetic coding produces a rate
which approaches the entropy of the sequence, but also applies to correlated sequences if the process
remains stationary. This discussion does not describe how arithmetic coding adapts to changing statistics
in the bit stream because the adaptive nature of the coding is mainly determined by the coefficient bit
modeler within the JPEG2000 standard. A good tutorial on arithmetic coding can be found in reference [3].

–li

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Arithmetic Coding

� Background Theory 5

Whereas Huffman coding involves transmitting separate code words for each symbol in a sequence,
arithmetic coding requires transmitting only the information needed to allow a decoder to determine the
particular fractional interval between 0 and 1 to which the sequence is mapped. This information includes
a fractional code word, C, which points to the lower bound of the interval, and the interval width, A, as
illustrated in Figure 2.

Figure 2. Mapping a Sequence to a Fractional Interval

NOTE:

The convention for expressing an interval employed in this discussion uses
a bracket for an inclusive bound, and a parenthesis for an exclusive bound.
Thus, [0,1) represents a range including zero but not including 1.

Each time a new symbol is received by the encoder, a smaller interval is chosen within the current interval.
This interval represents the whole sequence of symbols up to and including the new symbol. The length of
the updated interval is the probability associated with this sequence of symbols, as shown in Figure 3. The
position of the probability interval associated with a particular symbol is always fixed in relation to the
intervals of the other symbols. (Note that in arithmetic encoding, the position of the fractional interval is as
important as the length.) In theory, this process can continue indefinitely until all symbols have been
received. In practice, finite precision problems restrict the size of the shortest possible interval that can be
represented. When the length of the probability interval falls below a certain minimum size, the interval
must be renormalized to lengthen it above the minimum. The renormalization process is explained in more
detail in Section 2.4.4 on page 14.

Figure 3. Arithmetic Coding Process

Figure 4 illustrates how arithmetic coding is used to derive the fractional numbers which represent the
position and width of the interval on [0,1) which can be decoded as the sequence code. This example uses
the same symbol set and probabilities as in the previous example (see Table 1 on page 3). The top line in
the diagram is the [0,1) interval. This line is subdivided into smaller intervals whose widths are directly

0 1C

A

0 1

Interval associated with
symbol x1

Interval length =
probability of x1

0 1

0 1

Interval associated with
symbol stream {x1,x2}

Interval associated with
symbol stream {x1,x2,x3}

Final probability interval =
probability of receiving
codestream {x1, x2, x3}

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

6 JPEG2000 Arithmetic Encoding on the StarCore SC140 �

Background Theory

proportional to the probability associated with each symbol. For example, the symbol c is mapped to an
interval of width 1/2 at position [3/8, 7/8).Note that for arithmetic coding the ordering of the intervals is
arbitrary, whereas in Huffman coding the ordering depends on the probabilities of the symbols.

Figure 4. Arithmetic Encoding Example with Probabilities Restricted to 2i

The algorithm for coding the sequence ‘code’ is as follows:

1. Initialize A0 = 1 and C0 = 0

2. Update code word, C, using the equation

Cn = Cn–1 + (An–1 × PX(xn)) Eqn. 3

where PX(xn) is the cumulative probability of xn and is equal to

PX(xn) = fX(xi) Eqn. 4

where, as before, fX (xi) is the probability of symbol xi occurring.

For example, for the first symbol, c, n = 1 and PX (c) = fX (e) + fX (d) because symbols e and d lie to the
left of c on the interval [0,1). Therefore, the cumulative probability entails adding up the probabilities
associated with these two symbols. This cumulative probability is then multiplied by A0, the current
interval for the first symbol, which is 1.

For c, the first symbol in Figure 4, the code word becomes

C1 = C0 + (A0 × (fX (e) + fX (d)))
= 0 + (1 × (1/4 + 1/8)) = 3/8

1
8

3
8

7
8

1
e d c o

7
16

9
16

13
16

ce cd cc co

coe cod coc coo

code codd codc codo

6
16

14
16

104
128

105
128

107
128

111
128

112
128

420
512

421
512

423
512

428
512

0

427
512

Σ
n–1

i = 1

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Arithmetic Coding

� Background Theory 7

In binary fraction format,

C1 = 0.01 + 0.001 = 0.011

3. Update the interval, A, using the equation

An = An–1 × fX(xn) Eqn. 5

For the first symbol in the example, fX (c) = 1/2, so

A1 = 1 × 1/2 = 1/2

In binary fraction format,

A1 = 1 × 0.1 = 0.1

Thus, the ’c’ symbol is mapped to an interval of width 1/2 at position [3/8, 7/8), as shown in the top line of
Figure 4.

4. Repeat steps 2 and 3 until the entire symbol sequence is mapped to an interval.

The procedure for mapping the rest of the symbols in the sequence code as shown in Figure 4 follows.
Binary fractional representations are included to show how a code word is derived in a practical
application.

For sequence co

C2 = C1 + (A1 × (fX (e) + fX (d) + fX (c)))

A2 = A1 × fX (o)

In binary fraction format,

C2 = 0.011 + 0.0111 = 0.1101

A2 = 0.1 × 0.001 = 0.0001

For sequence cod

C3 = C2 + (A2 × (fX (e))

A3 = A2 × fX (d)

In binary fraction format,

C3 = 0.1011 + 0.0000001 = 0.1011001

A3 = 0.0001 × 0.01 = 0.000001

For sequence code

C4 = C3 + (A3 × (fX (0))

= + (× (+ +)) =
3
8

1
2

1
2

1
4

1
8

13
16

= × =
1
2

1
8

1
16

= + (×) =
13
16

1
16

1
8

105
128

= × =
1

16
1
4

1
64

= + (× (0)) = C3
105
128

1
64

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

8 JPEG2000 Arithmetic Encoding on the StarCore SC140 �

Background Theory

A4 = A3 × (fX (e)

In binary fraction format,

C4 = 0.1011001

A4 = 0.000001 × 0.01 = 0.00000001

Therefore, any fraction received at the decoder between the interval of 420/512 and 421/512 will represent
the sequence of transmitted symbols code.

In general, it turns out that it is only necessary to transmit the most significant –log2An bits in the binary
fractional representation of Cn to uniquely define the encoded interval. This is because Cn will never reach
the value of Cn + An regardless of the number of 1s concatenated to Cn in the decoder. In the example, if
there are –log2An bits representing n symbols, then the average code rate is

 Eqn. 6

This shows that in the example, the average code rate for four symbols is higher than the entropy lower
bound. However, as n tends to infinity, the average number of bits per symbol does converge to the
entropy. This is because

 Eqn. 7

where the E[x] operator denotes the expectation of x.

Again, this example is only intended to show the relationship between entropy and Huffman coding.
Arithmetic encoding can be equally effective with symbols whose probabilities are not rational fractions of
2i where i is an integer.

2.3 Binary Arithmetic Coding
In binary arithmetic coding (BAC), symbols in a code stream are classified as either Most Probable
Symbol (MPS) or Least Probable Symbol (LPS). The interval A (see Figure 2 on page 5) has two
divisions, one each for MPS and LPS.The width of each division is determined by the probability for each
symbol. The interval associated with the LPS should always be less than that associated with the MPS. The
events received by the encoder can either be MPS:True (‘T’) or MPS:False (‘F’).

The JPEG2000 literature has adopted the convention of referring to the probability for the LPS as Qe and
the corresponding probability for the MPS is (1 – Qe). In this document, the probability for the MPS is
denoted by Pe.

Figure 5 illustrates the BAC process. In this example, the message ‘TFTT’ is coded where T denotes the
MPS and F the LPS (MPS:False). The probabilities are Qe = ¼ and Pe = 1 – Qe = ¾ and are represented as
two non-overlapping subintervals. The convention adopted here is that the Qe subinterval always precedes
the Pe subinterval. As before, the initial interval is [0, 1). Again, the notation has been given in both
fractional and binary fraction format. When a symbol occurs, the subinterval associated with that symbol
becomes the new interval. For example, the initial interval [0, 1) has two subintervals [0, 0.01) and
[0.01, 1) associated with ‘F and ‘T’ respectively. When ‘T’ occurs, the subinterval [0.01, 1.0) becomes the
new interval. The code word C in this example always points to the left point (lower bound) of the interval
and A denotes its width.

= × =
1
64

1
8

1
512

 = = 2.25
–log2An

n
9
4

–log2A
n =

Σ
i = 1

n

n

log2fX(xi)

n → ∞
–E[log2 fX (X)] = H(X)

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Binary Arithmetic Coding

� Background Theory 9

Figure 5. BAC Process

2.3.1 BAC Encoding

The encoding steps for the BAC can be summarized as follows:

1. Initialize A0 = 1 and C0 = 0

2. Determine the event values (MPS:True or MPS:False), code register C, Qe, and Pe.

3. Update the code word and/or interval depending on the event values

If MPS:True:T

a) Update the code word to point at the lower bound of the interval
C = C + (Qe × A)

b) Update the interval width
A = A – (Qe × A)

If MPS:False: F Leave the code word as it is already pointing to the lower bound

a) Update the interval width
A = Qe × A

The new interval becomes [C, C+A) with subintervals [C, C+(A×Qe)) and [C+(A×Qe), C+A)

The following paragraphs describe the application of these steps to the first three symbols in the example.

Initialization

C = 0 and A = 1.0.

1
4 1≡ 0.01 3

4
≡ 0.11

1
4 1C = 0.01

≡ 0.0011

0.01110.01

F (occurs) T

F T (occurs)

F T (occurs)

Qe Pe

×3
4

= 3
16

C = 0.01

1
4

≡ 0.000011

×3
16

= 3
64 C = 0.010011

3
4

≡ 0.1001

×3
4

= 9
16

0

3
4×3

16
= 9

64
≡ 0.001001

0.0111

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

10 JPEG2000 Arithmetic Encoding on the StarCore SC140 �

Background Theory

Encoding the first symbol

Given: A = [0, 1) with subintervals
[C, C+(A×Qe)) = [0, 0.01) and [C+(A×Qe), C+A) = [0.01, 1):

‘T’ occurs
Qe × A = 0.01 × 1.0 = 0.01
C = C + (Qe × A) = 0 + 0.01 = 0.01
A = A – (Qe × A) = 1.0 – 0.01 = 0.11

Subinterval [C, C+A) = [0.01, 1.0) becomes the new interval.

Encoding the second symbol

Given: A = [0.01, 1) with subintervals [0.01, 0.0111) and [0.0111, 1)
‘F’ occurs
Qe × A = 0.01 × 0.11 = 0.0011
C = 0.01 (unchanged)
A = Qe × A = 0.0011

Subinterval [0.01, 0.0111) becomes the new interval.

Encoding the third symbol

Given: A = [0.01, 0.0111) with subintervals [0.01, 0.010011) and [0.010011, 0.0111)
‘T’ occurs
Qe × A = 0.01 × 0.0011 = 0.000011
C = C + (Qe × A) = 0.01 + 0.000011 = 0.010011
A = A – (Qe × A) = 0.0011 – 0.000011 = 0.001001

Subinterval [0.010011, 0.0111) becomes the new interval.

Encoding the fourth symbol continues …

Note that at any given stage, C is constrained within all preceding intervals. For example, when the third
symbol is encoded, the preceding intervals are [0.01, 1), [0.01, 0.0111) and [0.010011, 0.0111). After
encoding, the new value of C is 0.010011, which falls within all three intervals. Further, the next C code
word will still be constrained within [0.010011, 0.0111) regardless of which symbol is encoded next. In
other words, as the encoding continues, the dynamic range of C becomes progressively smaller while its
precision gets progressively higher. Any value of C within the range [0.010011, 0.0111) will decode the
symbol stream beginning with ‘T F T.’

2.3.2 BAC Decoding

When the decoder receives a code word C, it simply reverses the encoding operation by keeping the same
interval (i.e., A) as the encoder and using the same probability distribution.

The decoder also starts with the initial interval [0, 1.0), A = 1.0, Qe = 0.01 and Pe = 0.11.

Decoding the first symbol

Given: interval [0, 1) with subintervals [0, 0.01) and [0.01, 1)
Since C = 0.010011 lies within [0.01, 1), the first symbol must be ‘T’.

Subinterval [0.01, 1) becomes the new interval.

Decoding the second symbol

Given: interval [0.01, 1) with subintervals [0.01, 0.0111) and [0.0111, 1)
Since C = 0.010011 lies within [0.01, 0.0111), the second symbol must be ‘F’.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

JPEG2000 Arithmetic Coding

� Background Theory 11

Subinterval [0.01, 0.0111) becomes the new interval

Decoding the third symbol

Given: interval [0.01, 0.0111) with subintervals [0.01, 0.010011) and [0.010011, 0.0111)
Since C = 0.010011 lies within [0.010011, 0.0111), the third symbol must be ‘T’.

Subinterval [0.010011, 0.0111) becomes the new interval.

When the lower bound of the interval is equal to C, the end of the symbol stream for the code word has
been reached.

There are several practical issues which must be resolved before making use of arithmetic coding. All of
these issues have been addressed by the JPEG2000 arithmetic coder.

2.4 JPEG2000 Arithmetic Coding
The JPEG2000 standard utilizes a specific type of efficient, statistical binary arithmetic coding (BAC)
which has been adapted from the so called Q-Coder [5]. It deals with the following issues that arise when
trying to implement a practical BAC:

• removing the multiplication operations required for each symbol encoding/decoding

• dealing with conditional exchange of the MPS sense, which arises when the resulting interval for
an LPS exceeds that of the corresponding MPS

• making the arithmetic coder adaptive

• dealing with finite precision

• problems associated with the growing length of the code word and carry propagation

• software versus hardware implementation.

JPEG2000 has 19 possible contexts. The JPEG2000 BAC can be thought of as 19 independent coders that
produce intermixed output. The contexts input to the BAC are used to choose between these coders by
indexing different Qe values in the state machine defined in Table C-2. The 19 coders use the same state
machine but move among the various states in different ways.

As an aid to understanding the following discussion, certain figures from the JPEG 2000 Part 1 Final Draft
International Standard [4] are reproduced in Appendix C. The diagrams in Appendix C describe the
operation of the encoder. Note the figure labels correspond to those in the FDIS.

Figure C-1 shows the arithmetic coder inputs, the context (CX) and data (D) pairs which are provided by
the coefficient bit modeler. In the example provided in Appendix A, these pairs are stored in an input array.
The output from the arithmetic coder is a stream of compressed data (CD).

Figure C-2 is a top level flow diagram for the encoder. It includes an initialization and a flushing
procedure, which are described in detail in Section 3.1.1 and Section 3.1.2 respectively.

The encoder has separate procedures for coding 0 and 1 data inputs. It must first be established whether the
input data symbol is an MPS or an LPS. The data values for an MPS for each context are stored in an array
which is simply looked up for each input. If the data is an MPS, then CODEMPS (Figure C-7) is used;
otherwise CODELPS (Figure C-6) is used.

Figure C-8 shows the renormalization procedure, and Figure C-9 shows how a byte is output to the bit
stream.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

12 JPEG2000 Arithmetic Encoding on the StarCore SC140 �

Background Theory

2.4.1 Removing Multiplication

The JPEG 2000 BAC maintains the interval A in the range [0.75, 1.5) by a process of renormalization (see
Section 2.4.4). This means that the interval is always approximately equal to 1, if rounding to one
significant figure. Therefore, (Qe × A) ≈ Qe, and the following approximations can be made to the
encoding operations outlined in the BAC steps in Section 2.3:

If MPS:True:T

a) Update the code word to point to the lower bound of the interval
C = C + Qe

b) Update the interval width
A = A – Qe

If MPS:False:F

a) Leave the code word as is (it is already pointing to the lower bound)

b) Update the interval width
A = Qe

Thus, all the multiplication operations have been removed, simplifying implementation.

2.4.2 Conditional Exchange of MPS Sense

If continuous MPS symbols are received, the interval length A is repeatedly updated as A = A – Qe
(Section 2.4.1); eventually, A will be diminished to the point where A – Qe < Qe. At this point, the interval
associated with the probability of an LPS exceed that of an MPS, so the sense of the MPS must be inverted.
Similar circumstances arise when continuous LPS symbols are received.

The following discussion describes how the JPEG2000 arithmetic encoder ensures that the interval for an
LPS is always less than that of an MPS. For convenience, the discussion assumes that ‘0’ is the MPS and
‘1’ the LPS for a particular context CX. In this context, the coder expects ‘0’ to happen more often than
‘1’.

2.4.2.1 LPS Case

For an input of (CX, ‘1’), the ENCODER procedure (see Figure C-3 on page 42) selects the CODE1
procedure. Because ‘1’ is the LPS, the CODE1 procedure (see Figure C-4 on page 42) interprets the value
of MPS(CX) to be ‘0’, so it selects the CODELPS procedure. In the CODELPS procedure (see Figure C-6
on page 43) it can be seen that when an LPS symbol occurs, the length of the interval (A) is updated to the
value Qe, while the code word (C) remains unchanged. It appears that if symbol ‘1’ were to occur with the
context CX many times, Qe would become progressively larger (see Table C-2 on page 50) so that
eventually (A – Qe) would become less than Qe, i.e., the portion of the probability interval A which
represents the LPS, (‘1’ in the case of context CX) would become greater than the portion allocated to the
LPS, symbol ‘0’. However, this does not happen because the CODELPS procedure initially tests for this
condition, and swaps the intervals associated with ‘1’ and ‘0’ if the condition is detected, so that ‘1’ is still
associated with the smaller portion of interval A. In addition, A is updated to (A – Qe), and C is updated to
(C + Qe), pointing to the lower bound of the subinterval now associated with the LPS, ‘1’.

If LPS ‘1’s continue to be received by the encoder with context CX, the NLPS field in Table C-2 causes
the system to converge to one of two possible indices (6 or 14) which inverts the sense of the MPS. The
MPS(CX) is now ‘1’ instead of ‘0’ and thus the encoder expects a ‘1’ to occur more often than a ‘0’ with
context CX, so the next time a ‘1’ is received with CX the procedure CODEMPS is called. This
arrangement allows the decoder to detect the change and decode the symbol correctly. Note that the switch
is controlled by the CODELPS loop only.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

JPEG2000 Arithmetic Coding

� Background Theory 13

2.4.2.2 MPS Case

If an MPS (‘0’ for context CX) is received, the CODEMPS procedure (see Figure C-7 on page 42) is
called. When symbol ‘0’ (MPS for CX) occurs, normally the length of the interval A is updated to (A – Qe)
and C is updated to (C + Qe). The interval A becomes progressively smaller as the encoding proceeds. The
value of A is always checked after it has been updated to determine if it has fallen below 0.75, thus
requiring a renormalization. If it does, it could also mean that stage (A – Qe) has fallen below the value of
Qe, meaning that the subinterval associated with symbol ‘0’ (MPS for CX) is smaller than the subinterval
associated with symbol ‘1’ (LPS for CX). However, it should be noted that this does not indicate that
symbol ‘1’ is necessarily more likely to happen than symbol ‘0’ on receipt of context CX, because the
encoder is still receiving ‘0’s with CX. It just means that the MPS must be assigned to the larger
subinterval of A. When the subinterval representing MPS falls below that of the LPS, A is set to Qe, the
larger of the two subintervals, and C remains unchanged (it is already pointing to the lower bound of the
LPS subinterval). A renormalization then occurs to ensure that A remains greater than 0.75. This
arrangement allows the decoder to detect the change and decode the symbol correctly. Setting A to the
larger subinterval generally reduces the number of renormalization operations required. This slows the
growth of the encoded bit stream (i.e., improves data compression) because its growth varies with the
frequency of renormalization.

2.4.3 An Adaptive BAC: Probability Estimation Process

Again, a primary advantage of the JPEG2000 BAC is that the probabilities associated with the LPS and
MPS can be adapted. In order for a coder to be adaptive, a statistical model of the input data symbols is
required to update the probabilities associated with the MPS and LPS. The model must also determine
whether each incoming event is an MPS or an LPS.

In JPEG2000, the coefficient bit modeler performs the statistical modelling by providing the BAC with
context/data pairs. The context is calculated from the properties of up to 8 of the wavelet coefficient’s
nearest neighbors. This context is used to index into Table C-2 (page 50), which contains the LPS
probability values (Qe). In addition, for each possible context, there is a ‘sense’ associated with the MPS,
i.e., for each context the MPS has previously been declared as either a 1 or a 0. Thus, for example, if the
data input from the coefficient bit modeler is a '1', and the MPS 'sense' is also a '1', then this input is treated
as an MPS; otherwise, it is treated as an LPS.

The JPEG2000 arithmetic coder has adopted the practice of updating the probabilities associated with the
MPS and LPS only when renormalization has occurred. This practice was first introduced in the Q-coder
[5]. A probability model is needed for both the encoder and decoder. This probability model can be viewed
as a finite-state machine. In practice, the various states are stored in the indexed table of Qe probabilities
presented in Table C-2. These probabilities have been derived through an extensive optimization
procedure which includes both theoretical modelling and coding of actual data.

Table C-2 also includes associated next states (i.e., new table positions) for each type of renormalization.
For convenience, a portion of this table is reproduced in Table 2. In this table, the index represents the
current state, the NLPS (Next LPS) represents the next state to go to if an LPS occurs, the NMPS (Next
MPS) represents the next state to go to if an MPS occurs, and the SWITCH value indicates if the sense of
the MPS must be inverted.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

14 JPEG2000 Arithmetic Encoding on the StarCore SC140 �

Background Theory

In principle, the probability model counts the frequencies of LPS and MPS to adaptively estimate Qe and
Pe. The model always expects an MPS to occur. The state machine is designed so that when an LPS occurs,
the machine transfers to a new state with a larger Qe, and a renormalization is performed. When an MPS
occurs and the interval length A becomes less than 0.75, the state machine transfers to a new state with a
smaller Qe. Thus, the change in state occurs only when the arithmetic coder interval register is
renormalized. In other words, if an MPS occurs, then the probability associated with the MPS, (1 – Qe), is
increased slightly because it has taken place once again, i.e. this means that the LPS is even less likely to
occur so the Qe is correspondingly reduced. Similarly, if an LPS occurs, then its probability of occurrence
(i.e., Qe) must be increased slightly.

For example, when the model is at state 31 (index 31), Qe = 0.057153. If an LPS occurs, the model
transfers to state 29 where Qe = 0.099634, which is greater than 0.057153. Renormalization then follows.
If an MPS then occurs, a state transition may or may not occur, depending on the value of interval length
A. If A < 0.75, the model transfers to state 30 where Qe = 0.063012 (smaller than 0.099634).
Renormalization then follows. Otherwise, no state transition, hence no renormalization occurs.

2.4.4 Finite Precision

To solve the growing precision problem, coding operations are carried out using fixed precision integer
arithmetic. The hexadecimal value $8000, which normally represents the decimal value 0.5, represents the
decimal value 0.75 in the JPEG2000. With this representation, if the integer $8000 is left-shifted once, the
decimal value becomes 1.5; if it is right-shifted once, the decimal value becomes 0.375. The interval length
A is renormalized whenever the integer value falls below $8000, and is kept in the range [0.75, 1.5) by a
left shift.

To maintain consistent scaling between C and A, C is left-shifted whenever A is renormalized. This scaling
would require a register of unlimited length in which to store the value of C. To avoid this impossible
requirement, an external data buffer or ‘B register’ is attached to the high order bits of the C register. A
byte of data is shifted from the high order bits of the C register to this buffer whenever the C register is full.
Each output byte effectively refines the code word, resulting in incremental code word transmission.

2.4.5 Carry Propagation

Whenever an MPS occurs, the C value is incremented by the value of the LPS interval, which can generate
a carry. However, if the carry bit propagates into the data buffer, thus altering its contents, the incremental
transmission is invalid. The B register described in Section 2.4.4 also serves to resolve the carry problem.

Table 2. A Portion Table C-2 From the JPEG2000 FDIS

Index Qe Value NMPS NLPS SWITCH

Hexadecimal Binary Decimal

29 $1101 0001 0001 0000 0001 0.099 634 30 27 0

30 $0AC1 0000 1010 1100 0001 0.063 012 31 28 0

31 $09C1 0000 1001 1100 0001 0.057 153 32 29 0

32 $08A1 0000 1000 1010 0001 0.050 561 33 30 0

33 $0521 0000 0101 0010 0001 0.030 053 34 31 0

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

JPEG2000 Arithmetic Coding

� Background Theory 15

By buffering the completed bytes from the C register, the B register always keeps a byte just removed from
the C register before the byte is sent to the output code stream. A shift counter, CT, counts the number of
shifts in the C register. When CT counts down to zero, the byte currently stored in the B register is moved
to the output code stream, then a byte from the C register is moved to the B register. This process is
illustrated in Figure 6.

The C register in Figure 6 is partitioned as follows:

• The ‘x’ bits are the fractional bits which are directly incremented by the value of Qe.

• The ‘b’ bits indicate the bit positions from which a complete byte of the data is removed from the
C register.

• The ‘c’ bit is the carry bit.

• The ‘s’ bits are spacer bits which provide a useful buffer for a carry, so that it takes longer for a carry
to be propagated from the 'x' bits to the 'c' bit.

Figure 6. C Register Partitions and Encoder Output

The operation of moving data to or from the B register must adhere to the following so-called ‘bit-stuffing’
rules (refer to the BYTEOUT procedure in Figure C-9 on page 46).

1. If B ≠ $FF and the carry bit (‘c’) is clear:

a) the byte in the B register is moved directly into the output code stream

b) bits 19 through 26 in the C register are moved into B

c) CT is set to 8 so that the next byte is output when bit 18 is shifted to bit 26. The current
byte output is complete.

2. If B = $FF, a bit must be ‘stuffed’:

a) the byte in the B register is again moved directly to the output code stream.

b) bits 20 to 27 in the C register are moved into B to include the carry bit.

c) CT is set to 7 so that the next byte is output when bit 19, which has not yet been output,
is shifted to bit 26. The current byte output is complete.

3. If B ≠ $FF and the carry bit (‘c’) is set, the byte in the B register cannot be moved directly
into the output code stream; the carry bit must be propagated into B:

a) increment B by 1

b) clear bit ‘c’.

c) If B ≠ $FF, follow rule 1; otherwise, follow rule 2.

31 28 24 20 19 16 12 8 4 0

0 0 0 0 c b b b b b b b b s s s x x x x x x x x x x x x x x x x

B Register

C Register

Output Code Stream

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

16 JPEG2000 Arithmetic Encoding on the StarCore SC140 �

Background Theory

The decoder checks the bit following any $FF byte. If the bit is set, the decoder knows that a carry has
occurred.

2.4.6 Software Versus Custom Hardware Implementation

In the binary arithmetic coding scheme described here, both the interval (A) and the code word (C) are
altered whenever the encoder receives an MPS, which is most of the time. This is not of significant concern
in hardware because the updates to A and C can be done in parallel. However, in a software
implementation it is not generally desirable to perform more operations on the more probable path. A good
discussion of this can be found in [6]. One remedy to this situation is to have C point to the right-hand end
of the current interval instead of the left-hand end, as shown in Figure 7.

In this configuration, the code word is updated by subtracting Pe only when an LPS occurs. For
comparison, the hardware-preferred method for updating C as described in the FDIS [4] is also shown (i.e.,
C points to the left side of the interval and is only updated when an MPS is received). By definition, an
MPS occurs more often than an LPS, so the software version updates the code word less often than the
hardware version because it only does so when an LPS is received. The resulting code words from the
hardware and software conventions always result in code words that differ from one another by the current
interval. It should also be noted that the process of subtraction for the software convention can result in a
borrow propagation, as opposed to a carry propagation when using the hardware convention. The FDIS for
JPEG2000 makes allowances for software implementations which are discussed in annex J of [4].

Figure 7. Codeword (C) Changes: Software vs. Hardware Implementation

Note however that the StarCore processor makes it possible for a software implementation to update A and
C in parallel, just as in hardware. This is why the example provided in this application note follows the
hardware convention for updating A and C.

0 1.0

MPS (occurs)

PeQe

LPS

LPS (occurs) MPS

LPS MPS (occurs)

A2

In hardware version,
codeword (Chw)
changes on MPS.

Chw

Chw

Chw

Chw Csw

Csw

Csw

Csw

In software version,
codeword (Csw)
changes on LPS.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

StarCore Implementation in C Code

� Implementation 17

3 Implementation
This section describes the software written for a StarCore implementation of the JPEG2000 arithmetic
coder. Appendix A is a listing of the C code, and Appendix B lists the assembly code. All variables in the
following descriptions refer to the actual variables used in the code.

3.1 StarCore Implementation in C Code
The code given in Appendix A is a direct implementation of the JPEG2000 arithmetic encoder as
presented in Section 2.4, and is based on the flow diagrams provided in the FDIS [4] which have been
produced for ease of reference in Appendix C. A brief description of these diagrams can be found on page
11.

The pseudo code for the encoder software in Appendix A is listed in Code Example 1.

Code Example 1. JPEG2000 Arithmetic Encoder Pseudo Code

/* pre-set A to Pe interval
A = A – Qe
if symbol == MPS

if A < 0.75
if A < Qe

/* if Pe < Qe, encode the current symbol as LPS */
A = Qe

else
/* encode the current symbol as MPS */
C = C + Qe

end
/* update Qe */
transfer to new state
/* scale A and C */
renormalize

else
/* encode the current symbol as MPS */
C = C + Qe

end
else /* symbol == LPS */

IF a < qE
/* IF pE < qE, encode the current symbol as MPS.
the switch to invert the sense of MPS will be on */
C = C + Qe

else
/* encode the current symbol as LPS */
A = Qe

end
/* the switch is on when Qe > 0.5 in this state */
if switch == 1

/* if switch is on for this state,
 invert the sense of MPS */
MPS = 1 – MPS

end
/* update Qe */
transfer to new state

/* scale A and C */
renormalize

end

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

18 JPEG2000 Arithmetic Encoding on the StarCore SC140 �

Implementation

3.1.1 Encoder Initialization

The encoder initialization is illustrated in Figure C-10 on page 47. The coder is initialized to the following
conditions:

• The interval length is set to A = $8000, equivalent to 0.75 in decimal.

• The code word points to the lower bound of the given interval, C = 0.

• The shift counter is set to CT = 12 (if B ≠ $FF) or CT = 13 (if B = $FF).

The shift counter is set to a larger number than 8 or 7 to accommodate the 3 spacer bits in the C register
(refer to Figure 6), which initially do not contain valid data. The first byte usually requires 12
normalizations to shift the values updated by the addition of Qe through to the b and c bits. After the first
byte has been output, the spacer bits contain valid data, so only 7 or 8 renormalization shift lefts are
required before outputting the next byte. The first byte requires 13 left-shifts if the previous byte was $FF
because this causes an extra bit to be spuriously stuffed into the register when BYTEOUT is called for the
first time. Thus, an extra renormalization (shift left) must occur to ensure that the leading bit is not lost
during the BYTEOUT procedure, that is, when the next value of B becomes equal to C>>20.

3.1.2 Flushing the Encoder

When the encoding is complete, the bits in the C register must be moved to the B register and then to the
output code stream before a terminating marker is generated. This task is performed by the FLUSH
procedure shown in Figure C-11 on page 48.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

StarCore Implementation in C Code

� Implementation 19

The marker code has a prefix of $FF which can be made to overlap the final bits of the compressed data by
ensuring that the final bits of the C register are also $FF. This means that any marker code at the end of the
compressed image data is recognized and interpreted before decoding is complete because the marker and
last image data for the arithmetic decoder are the same. Therefore, the final $FF in the C register can be
discarded, thus reducing the length of the output stream. This overlapping of compressed data and marker
code is achieved by setting as many bits in the C register as possible. This is determined as follows:

At the end of encoding, C points to the lower bound of the given interval. The upper bound of the interval
is equal to C + A. The process of renormalization ensures that A ≥ $8000, hence (C + A) ≥ (C + $8000).
Therefore, when A = $8000 the 15 least significant bits of the C register cannot increment the code word,
C, beyond the interval even if they are all set. If A > $8000, this is true for the 16 least significant bits of
the C register. Setting the correct number of bits is performed by the SETBITS procedure illustrated in
Figure C-12 on page 49, which consists of the following steps:

1. Set bits 0 to 15 in the C register.
2. Compare the result to the upper bound of A to determine if C still points to the given

interval.
3. If C is too large (i.e., A == $8000), clear bit 15.

This procedure guarantees that C points to the required final interval with the lowest 16 or 15 bits set, and
the original symbol can be decoded correctly.

After the SETBITS procedure is called, the last of the compressed data bits in the C register are moved to
the output code stream via the B register. The final $FF byte can be discarded.

3.1.3 StarCore Performance

Benchmark tests of several images were run on the StarCore processor with the C code listed in
Appendix A, using level 2 optimization with 4 parallel multiply accumulator modules. Figure 8 shows a
typical image used in the benchmark tests.

Figure 8. Test Image for Arithmetic Encoder

This image is 128 × 128 pixels with 12 bits/pixel. After the coefficient bit modeler had produced the
corresponding context/data pairs, the number of clock cycles required to encode this image was
extrapolated to determine the performance figures in seconds for a 1 megapixel color image with 12 bits
per pixel, assuming a 300MHz clock speed and multiplying by 2 to represent a YUV:422 format. For
comparison purposes, the experiments were repeated for a constant grey scale image, which should yield
the fastest possible execution times and the greatest compression. The results are summarized in Table 3
on page 20.

The results for the constant grey scale image are two orders of magnitude faster than the typical image.
This is because the encoder receives almost constant MPS’s, which yields a considerably more compressed
bit stream. In addition to this, the coefficient bit modeller only produces context/data pairs for the LL
subband at the lowest level of decomposition. Consequently, none of the other subbands have any
context/data pairs associated with them.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

20 JPEG2000 Arithmetic Encoding on the StarCore SC140 �

Implementation

For comparison, the arithmetic coder was tested on Motorola’s DSP56307 with the constant grey scale
image, where it was calculated that an equivalent 1M pixel color image with 12 bits/pixel would take 69ms
to execute, about five times slower than StarCore. The code used on the DSP56307 was C code with
optimized in-line assembler functions. In addition, it is assumed that the DSP56307 runs at 100 MHz rather
than StarCore’s 300 MHz.

3.2 StarCore Implementation in Assembler
This section explains how specific StarCore features improve the performance of the arithmetic encoder.
An optimized assembly version of the arithmetic coder is provided in Appendix B.

Although the arithmetic coder is primarily a sequential operator, several parallel features of StarCore can
be used to increase processing speed. In addition to the four MAC units to parallel process many
instructions, StarCore offers numerous and flexible address registers, delayed jump instructions, and
single-instruction if-then-else decisions.

3.2.1 Address Registers

StarCore’s address registers can be used to great advantage to access the arithmetic encoder look-up tables.
The assembly code in Appendix B shows two ways in which the look-up tables can be organized using
StarCore.

There are two main look-up tables associated with the arithmetic encoder, one for Qe values and one for
the context data. The Qe table in Appendix B, which is the same as Table C-2 in the FDIS, retains all
values in one look-up table to highlight the use of address register arithmetic. The context table, on the
other hand, has been separated into two look-up tables to illustrate the use of StarCore’s multiple address
registers.

3.2.1.1 Address Register Arithmetic

Address register arithmetic is used extensively to access the Qe table. Features such as post increment and
offset arithmetic allow access to the other 'columns' in the table without incurring many extra cycles.

Code Example 2. Address Register Arithmetic

move.w (r3+n0),d9 cmpgt d0,d7

In Code Example 2, the Qe table entry for the SWITCH variable is accessed without moving the pointer,
r3, from the NMPS index. (A comparison between two data registers is performed simultaneously.)

NOTE:

In order for this particular format of lookup table to be used, it was
necessary to multiply all the original indices in FDIS Table C-2 by 8. This
reflects the fact that there are four entries associated with each index and
each entry is a word, not a byte.

Table 3. Processing Time for C Version of Arithmetic Encoder

Clock Cycles
(128 × 128)

Time (ms)
(1 Megapixel, Color)

Typical image 4.6 M 1960

Constant grey scale 31,787 14

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

StarCore Implementation in Assembler

� Implementation 21

3.2.1.2 Multiple Address Registers

The context table is split into two separate look-up tables in Appendix B—one for the indices and one for
the MPS associated with each context— to highlight the advantage of StarCore's numerous address
registers. Address register r2 is assigned the base address of the context table entries for the indices
whereas r4 is assigned to the base address of the MPS values. Because there are up to 16 address registers
available, there is no need to load the address registers repeatedly with the base addresses; they can retain
the base addresses for the duration of the program. In addition, two different address registers hold the
index offsets into the two separate context tables when a new context is received at the input. This allows
the address arithmetic which calculates the new position for both the Qe and context tables to be carried out
in parallel, as shown in Code Example 3.

Code Example 3. Multiple Address Registers

; r5 is index into CONTXT:MPS table
adda r2,r6 adda r4,r5 ; r6 is index into CONTXT:index table

In fact, there are enough registers available to split the Qe table into four separate tables, as is done to the
context table. There is almost no difference in processing speed between the two approaches.

3.2.2 Change-of-Flow Instructions

The assembler implementation of the JPEG2000 arithmetic coder requires several change-of-flow
instructions.These instructions generally require more cycles to execute than other instructions because
they disrupt the pipeline. StarCore allows a delayed version of most jump instructions which enables the
execution of an extra instruction set while the pipeline is filled, thereby saving one or more cycles in
processing time. In addition, StarCore allows jump instructions to be combined with decisions based on
whether or not the T bit is set in the status register, as illustrated in Code Example 4.

Code Example 4. Jump Instruction Using Delay and the T Bit

jtd CODEMPS move.w (r3)+,d7
sub d7,d0,d0

In this example, a jump to the label CODEMPS is executed if the T bit is set. However, the move.w
instruction occurs in parallel with this operation and the sub command executes in the delay cycle. Thus,
although jump and branch instructions are normally costly in terms of cycle time, StarCore allows other
instructions to be executed at the same time, increasing overall execution speed.

3.2.3 If-Then-Else Decisions

StarCore enables an ‘if-then-else’ decision, which depends on the state of the T bit, to be made in one
instruction. This is extremely useful in the JPEG2000 arithmetic encoder, in which several such decisions
are made. The T bit in the status register determines which value to load into a variable.

Code Example 5. T Bit Selects a Value

ift move.w #13,d4 iff move.w #12,d4

In Code Example 5, if the T bit is set, d4 is loaded with #13; otherwise it is loaded with #12.

There are several instructions whose execution depends on the state of the T bit.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

22 JPEG2000 Arithmetic Encoding on the StarCore SC140 �

Implementation

Code Example 6. T Bit Selects an Instruction

tfrt d7,d0 iff add d7,d1,d1

In Code Example 6, if the T bit is set, d7 is transferred to d0; otherwise d7 is added to d1.

3.2.4 Results

Table 4 compares the results for the optimized assembler version of the arithmetic coder with the results
for the C version for both a typical image and a constant grey scale image. The time required for a 1M
pixel color image in assembler was derived by extrapolating the results obtained with a single 128 × 128
grey scale tile, as it was done for C code.

The optimized assembler completes the task in less than a third of the time required by the C code. For the
constant grey scale image, the assembler version is about 17 times faster than the C version run on the
DSP56307 with in-line optimized assembler functions (see Section 3.1.3). Note that this result assumes
that the DSP56307 runs at 100 MHz while StarCore operates at 300 MHz.

Table 4. Comparison of Results for Assembly with C Versions of Arithmetic Encoder

Image

Assembly C Code

Clock Cycles
(128 × 128)

Time (ms)
(1 Megapixel, Color)

Time (ms)
(1 Megapixel, Color)

Typical image 1.5 M 640 1960

Constant grey
scale

9586 4 14

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

StarCore Implementation in Assembler

� Summary 23

4 Summary
The arithmetic encoder C code given in Appendix A takes 4.6M cycles to complete one typical 128 × 128
pixel grey scale image, which corresponds to a processing time of 2 seconds to complete a color
1 megapixel image. This processing time has been measured with the assumption that the pixels are all
12 bits in size. In addition, it has been assumed that the StarCore processor is operating at a clock speed of
300 MHz. While the C code in Appendix A is ANSI C compliant, it was fully optimized by the StarCore
compiler to produce the given performance figures.

An optimized assembler version of the encoder codes the same grey scale image in less than one third of
the time taken by the C version. This increase in speed is due primarily to the arithmetic and multiplicity of
the address registers. StarCore’s parallel decision instructions and delayed change of flow instructions also
contributed to the improvement.

The DSP56307 (running at 100 MHz) encoded a constant grey scale image about 17 times more slowly
than the optimized assembler version using StarCore (running at 300 MHz).

Modifying the code to work with any image size should be fairly straightforward. All results were obtained
using the Beta 1.1 version of the StarCore software.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

24 JPEG2000 Arithmetic Encoding on the StarCore SC140 �

References

5 References
[1] S. Twelves, A. White, M. Wu, JPEG2000 Wavelet Transform Using StarCore, Motorola application
note, order number AN2089/D.

[2] C. Shannon, A Mathematical Theory of Communication, Bell System Technical Journal, Vol. 27, pp.
379–423, July 1948.

[3] G. G. Langdon Jr., An Introduction to Arithmetic Coding, IBM Journal of Research and Development,
Vol.28, No.2, March 1984.

[4] JPEG 2000 Image Coding System, JPEG 2000 Part 1 Final Draft International Standard, FDIS
15444-1, 18th Aug. 2000.

[5] W.B. Pennebaker, J.L. Mitchell, Probability Estimation for the Q-Coder, IBM Journal of Research and
Development, Vol. 32, p. 737, 1988

[6] J.L. Mitchell, W.B. Pennebaker, Software Implementations of the Q-Coder, IBM Journal of Research
and Development, Vol. 32, No. 6, Nov. 1988

Acknowledgement
The authors would like to acknowledge the work Dr. Matthew Leditschke undertook to write the C code
implementation of the arithmetic encoder.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

� Appendix A. Arithmetic Encoder: C Code 25

Appendix A
Arithmetic Encoder: C Code
Arithenc.c
/*
 An implementation of the MQ arithmetic encoder described in
 Annex C of the JPEG2000 FDIS,[4].

 All data types converted to uint32.
 Context variables made global, rather than access via pointers.
 Manually inlined the CodeMPS and CodeLPS functions.
 author Matthew Leditschke
 version $Revision: 1.1 $
*/

#include <stdio.h>
#include <stdlib.h>
#include "arithEnc.h"
#include "fileIO.h"

/*
 * Set this to inline to make all internal functions inline.
 */

#define inline

/* The information associated with a context state */
typedef struct
{

uint32 I; /*< The index into Table C-2 (values in the range 0..46) */
uint32 MPS; /*< The most probable symbol (either 0 or 1) */

} ArithEncContext;

/*
 * The state information required by the arithmetic encoder.
 */

/* The lower bound of the current probability interval */
static uint32 C;

/* The size of the current probability interval */
static uint32 A;

/* Counts the number of shifts that have been performed */
static uint32 CT;

/* The byte that is currently being assembled */
static uint8 B;

/* 1 if the current byte is the first output byte, otherwise 0 */
static int firstByte;

/* The array of allowable context states */
#define MAXCONTEXT 18
static ArithEncContext contexts[MAXCONTEXT+1];

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

26 JPEG2000 Arithmetic Encoding on the StarCore SC140 �

/* == */
/* Define these inputs to have different data types */

static uint32 Qe[47] =
{
0x5601UL, 0x3401UL, 0x1801UL, 0x0ac1UL, 0x0521UL, 0x0221UL, 0x5601UL,
0x5401UL, 0x4801UL, 0x3801UL, 0x3001UL, 0x2401UL, 0x1c01UL, 0x1601UL,
0x5601UL, 0x5401UL, 0x5101UL, 0x4801UL, 0x3801UL, 0x3401UL, 0x3001UL,
0x2801UL, 0x2401UL, 0x2201UL, 0x1c01UL, 0x1801UL, 0x1601UL, 0x1401UL,
0x1201UL, 0x1101UL, 0x0ac1UL, 0x09c1UL, 0x08a1UL, 0x0521UL, 0x0441UL,
0x02a1UL, 0x0221UL, 0x0141UL, 0x0111UL, 0x0085UL, 0x0049UL, 0x0025UL,
0x0015UL, 0x0009UL, 0x0005UL, 0x0001UL, 0x5601UL
};

static uint32 SWITCH[47] =
{
 1, 0, 0, 0, 0, 0,
 1, 0, 0, 0, 0, 0, 0, 0,
 1, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0,
 0
};

static uint32 NMPS[47] =
{
 1 , 2 , 3 , 4 , 5 , 38 ,
 7 , 8 , 9 , 10 , 11 , 12 , 13 , 29 ,
 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 ,
 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 ,
 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 ,
 39 , 40 , 41 , 42 , 43 , 44 , 45 , 45 ,
 46
};

static uint32 NLPS[47] =
{
 1 , 6 , 9 , 12 , 29 , 33 ,
 6 , 14 , 14 , 14 , 17 , 18 , 20 , 21 ,
 14 , 14 , 15 , 16 , 17 , 18 , 19 , 19 ,
 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 ,
 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 ,
 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 ,
 46
};

/* == */
/*
 Initialize the arithmetic encoder.
 See Section C.2.8 and Figure C-10.
 param: file - The file to write the output bytes to.
*/

void ArithEncInit()
{

int i;

A = 0x8000u;
C = 0;
B = 0; /* Assume that the byte prior to starting is 0 */
CT = 12;

 firstByte = 1;

/* Initialize all of the contexts (see Table C-6) */

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

� Appendix A. Arithmetic Encoder: C Code 27

for (i = 0; i <= MAXCONTEXT; i++)
{

contexts[i].I = 0;
contexts[i].MPS = 0;

}
contexts[UNIFORM_CX].I = 46;
contexts[RUNLENGTH_CX].I = 3;
contexts[0].I = 4;

} /* ArithEncInit */

/* == */
/*
 Perform the bottom right box of Figure C-9.
*/

static inline void ByteOutRight(void)
{
 if (!firstByte)
 TransmitByte(B);
 else
 firstByte = 0;

B = (uint8)((C >> 20) & 0xFF);
C = C & 0xFFFFF;
CT = 7;

} /* ByteOutRight */

/* == */

/*
 Perform the bottom left box of Figure C-9.
*/

static inline void ByteOutLeft(void)
{
 if (!firstByte)
 TransmitByte(B);
 else
 firstByte = 0;

B = (uint8)((C >> 19) & 0xFF);
C = C & 0x7FFFF;
CT = 8;

} /* ByteOutLeft */

/* == */
/*
 Write out bytes, allowing for 0xFF stuffing.
 See Section C.2.7 and Figure C-9.
*/

static inline void ByteOut(void)
{

/* This test sequence might speed up process */
if (B != 0xFF)
{
 if (C < 0x8000000)
 ByteOutLeft();
 else

 {
 B += 1;
 if (B != 0xFF)
 ByteOutLeft();
 else
 {
 C = C & 0x7FFFFFF;

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

28 JPEG2000 Arithmetic Encoding on the StarCore SC140 �

 ByteOutRight();
 }
 }
 }

else
ByteOutRight();

} /* ByteOut */

/* == */
/*
 Renormalize the lower bound and size of the probability range.
 See Section C.2.6 and Figure C-8. This function ensures that the range (A)
 is at least 0.75
*/

static inline void Renorme(void)
{

do
{

/* Check that there will be no overflow with these shifts */
A <<= 1;
C <<= 1;
CT -= 1;

if (CT == 0)
ByteOut();

}
while (A <= 0x8000);

} /* Renorme */
/* == */
/*
 Encode a bit using the given context.
 Output bits will be written to the file given to ArithEncInit().
 See Section C.2.2 and B.2.3
 param: D - The bit to encode, either 0 or 1.
 param: CX - The number of the context to use.
*/

void ArithEncEncode(uint8 D, uint16 CX)
{

ArithEncContext* pCX;
uint32 I;
uint32 QeI;
uint32 MPS;

pCX = &(contexts[CX]);

/* Put the current context into globals, and write them back later */
I = pCX->I;
MPS = pCX->MPS;
QeI = Qe[I];

if (pCX->MPS == D)
{

/* CodeMPS */
A -= QeI;

/* Doing this test first might speed up process */
if (A >= 0x8000u)
/*if ((A & 0x8000) != 0)*/
{

C += QeI;
}
else
{

/* Doing this test first might speed up process */

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

� Appendix A. Arithmetic Encoder: C Code 29

if (A >= QeI)
C += QeI;

else
A = QeI;

I = NMPS[I];

Renorme();
} /**/

}
else
{

/* CodeLPS */
A -= QeI;
/* Doing this test first might speed up process */
if (A >= QeI)

A = QeI;
else
 C += QeI;

if (SWITCH[I])
MPS = 1 - MPS;

I = NLPS[I];

Renorme();
}

pCX->I = I;
pCX->MPS = MPS;

} /* ArithEncEncode */

/* == */
/*
 Flush the output of the arithmetic encoding process.
 This must be called once all of the data bits have been sent through the
 encoder.
 See Section C.2.9 and Figure C-11.
*/

void ArithEncFlush(void)
{

uint32 tempC;

/* SETBITS (Figure C-12) */
tempC = C + A;
C |= 0xFFFF;
if (C >= tempC)

C -= 0x8000;

C <<= CT;
ByteOut();

C <<= CT;
ByteOut();

if (B != 0xFF)
TransmitByte(B);

ArithEncInit();
} /* ArithEncFlush */

/* == */

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

30 JPEG2000 Arithmetic Encoding on the StarCore SC140 �

Encoder.c
/*
 A test harness for the MQ arithmetic encoder described in
 Annex C of JPEG2000.

 This main program performs arithmetic encoding, given context-bit
 pairs stored in arrayIn[].

 author Matthew Leditschke
 version $Revision: 1.3 $
*/

#include <stdio.h>
#include <stdlib.h>
#include "arithEnc.h"
#include "fileIO.h"

/* Create arrayIn and arrayOut for testing */
#include "tile5-symbols.h"

void main()
{
 int i,j,k;
 uint16 CX;
 uint8 D;
 int numBlocks, numPairs, blockIdx;

 ArithEncInit();

 numBlocks = arrayIn[0];
 blockIdx = 1;

 for (i=0; i<numBlocks; i++)
 {
 numPairs = arrayIn[blockIdx];
 blockIdx += (1+numPairs<<1);

 for (j=0, k=2; j<numPairs; j++,k=k+2)
 {
 CX = arrayIn[k];
 D = arrayIn[k+1];
 ArithEncEncode(D, CX);
 }
 ArithEncFlush();
 }
/*
 When including "tile5-symbols.h", the
 correct results in arrayOut[] should be
 11 50 54 af
*/
} /* main */

/* == */

FileIO.c
/*
 Handle the input and output of bytes.

 author Matthew Leditschke
 version $Revision: 1.3 $
*/

#include <stdio.h>

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

� Appendix A. Arithmetic Encoder: C Code 31

#include <stdlib.h>

#include "types.h"
#include "fileIO.h"

/* Store the encoded bytes for testing */
extern uint8 arrayOut[];

/* Keep track of the total number of bytes written */
static uint32 bytesWritten = 0;

/* This writes out bits as text, ’0’ for a 0 bit and ’1’ for a 1 bit */
#undef WRITE_BITS

/* This writes bytes out as binary bytes */
#define WRITE_BYTES

/* This doesn’t write out anything - only counts */
#undef NO_WRITE

/* == */

/* brief Write a byte of data.

 For this testing code, this function just prints out the binary pattern
 for the bytes (most significant bit first) to standard output.
 parameter: byte - The byte to write out.
*/

void TransmitByte(uint8 byte)
{
#ifdef WRITE_BITS
 int bit = 1 << 7;
 while (bit)
 {
 putc((byte & bit) ? ’1’ : ’0’, outFile);
 bit >>= 1;
 }
#endif

#ifdef WRITE_BYTES
 arrayOut[bytesWritten++] = byte;
#endif

} /* TransmitByte */

/* == */
/*
Read a byte of data.
*/

uint8 ReceiveByte(FILE* inFile)
{
 uint8 byte = 0;

#ifdef WRITE_BITS
 int i;

 for (i = 0; i < 8; i++)
 {
 byte <<= 1;
 if (getc(inFile) == ’1’)
 byte |= 0x01;
 /* If reading past the end of the file, read in 1 bits */

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

32 JPEG2000 Arithmetic Encoding on the StarCore SC140 �

 if (feof(inFile))
 byte |= 0x01;
 }
#endif

#ifdef WRITE_BYTES
 byte = getc(inFile);
 if (feof(inFile))
 byte = 0xFF;
#endif

#ifdef NO_WRITE
 fprintf(stderr, "Nothing was written, so there is nothing to read.\n");
 exit(EXIT_FAILURE);
#endif
 return byte;
} /* TransmitByte */
/* == */

ArithEnc.h
/*
 The declaration of functions that perform MQ arithmetic encoding
 as defined in Annex C of JPEG2000.
 author Matthew Leditschke
 version $Revision: 1.1 $
*/

#ifndef _ARITH_ENC_H
#define _ARITH_ENC_H

#include "types.h"

void ArithEncInit();
void ArithEncEncode(uint8 D, uint16 CX);
void ArithEncFlush(void);

/* Special context labels */
#define RUNLENGTH_CX 17
#define UNIFORM_CX 18

#endif /* _ARITH_ENC_H */
/* == */

FileIO.h

/*
 Handle the input and output of bytes.
 author Matthew Leditschke
 version $Revision: 1.2 $
*/
#ifndef _FILE_IO_H
#define _FILE_IO_H
void TransmitByte(uint8 byte);
uint8 ReceiveByte(FILE* inFile);
#endif /* _FILE_IO_H */
/* == */

types.h

/*
 Define some data types that represent different precisions.
 author Matthew Leditschke
 version $Revision: 1.2 $
*/
#ifndef _TYPES_H
#define _TYPES_H

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

� Appendix A. Arithmetic Encoder: C Code 33

/* An unsigned 32 bit integer */
typedef unsigned long int uint32;

/* An unsigned 24 bit integer */
typedef unsigned long int uint24;

/* An unsigned 16 bit integer */
typedef unsigned short int uint16;

/* An unsigned 8 bit integer */
typedef unsigned char uint8;
#endif /* _TYPES_H */
/* == */

tile5-symbols.h

/* Store the output, expected number of bytes = 4 */
uint8 arrayOut[4];

/* Extracted from original tile5-symbols.h */
uint16 arrayIn[1030] = {1,514,17, 1,18, 0,18, 0,12, 1,3, 1,13, 0,3, 1,13, 0,3, 1,
13, 0,6, 1,15, 0,7, 1,16, 0,7, 1,16, 0,7, 1,16, 0,6, 1,15, 0,7, 1,16, 0,7, 1,
16, 0,7, 1,16, 0,6, 1,15, 0,7, 1,16, 0,7, 1,16, 0,7, 1,16, 0,6, 1,15, 0,7, 1,
16, 0,7, 1,16, 0,7, 1,16, 0,6, 1,15, 0,7, 1,16, 0,7, 1,16, 0,7, 1,16, 0,6, 1,
15, 0,7, 1,16, 0,7, 1,16, 0,7, 1,16, 0,6, 1,15, 0,7, 1,16, 0,7, 1,16, 0,7, 1,
16, 0,6, 1,15, 0,7, 1,16, 0,7, 1,16, 0,7, 1,16, 0,6, 1,15, 0,7, 1,16, 0,7, 1,
16, 0,7, 1,16, 0,6, 1,15, 0,7, 1,16, 0,7, 1,16, 0,7, 1,16, 0,6, 1,15, 0,7, 1,
16, 0,7, 1,16, 0,7, 1,16, 0,6, 1,15, 0,7, 1,16, 0,7, 1,16, 0,7, 1,16, 0,6, 1,
15, 0,7, 1,16, 0,7, 1,16, 0,7, 1,16, 0,6, 1,15, 0,7, 1,16, 0,7, 1,16, 0,7, 1,
16, 0,6, 1,15, 0,7, 1,16, 0,7, 1,16, 0,7, 1,16, 0,3, 1,13, 0,3, 1,13, 0,3, 1,
13, 0,3, 1,13, 0,7, 1,16, 0,7, 1,16, 0,7, 1,16, 0,7, 1,16, 0,7, 1,16, 0,7, 1,
16, 0,7, 1,16, 0,7, 1,16, 0,7, 1,16, 0,7, 1,16, 0,7, 1,16, 0,7, 1,16, 0,7, 1,
16, 0,7, 1,16, 0,7, 1,16, 0,7, 1,16, 0,7, 1,16, 0,7, 1,16, 0,7, 1,16, 0,7, 1,
16, 0,7, 1,16, 0,7, 1,16, 0,7, 1,16, 0,7, 1,16, 0,7, 1,16, 0,7, 1,16, 0,7, 1,
16, 0,7, 1,16, 0,7, 1,16, 0,7, 1,16, 0,7, 1,16, 0,7, 1,16, 0,7, 1,16, 0,7, 1,
16, 0,7, 1,16, 0,7, 1,16, 0,7, 1,16, 0,7, 1,16, 0,7, 1,16, 0,7, 1,16, 0,7, 1,
16, 0,7, 1,16, 0,7, 1,16, 0,7, 1,16, 0,7, 1,16, 0,7, 1,16, 0,7, 1,16, 0,7, 1,
.
 .
 .
16, 0};

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

34 JPEG2000 Arithmetic Encoding on the StarCore SC140 �

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

� Appendix B. Arithmetic Encoder: Assembly Code 35

Appendix B
Arithmetic Encoder: Assembly Code
;***
; Arithmetic Encoder - Assembly Code
;***
; FILENAME : arith_enc.asm
; PREPARED BY : MOTOROLA Australia Research Centre, 8 January 2001
; AUTHOR : Sue Twelves
;***
; ALGORITHM : JPEG2000 Arithmetic Encoder
;
;***;
; Constants Used:
; RENORM_THRESH: When the interval, A, drops below the threshold of
; $8000,renormalisation occurs
; OUTPUT: Output to the bitstream is initally to location $950
; CARRYOVER: If the C register spills into location $8000000, then
; a carry has occurred requiring bitstuffing to take
; place
;
; Input/Output location:
;
; Input initial address is at $2d0
; Output initial address is at $950
;
; registers used:
;
; r0 through to r7 and n0
;
; r0 is the base address of the Qe, table C-2, FDIS
; r1 is the base address of the input context/data pairs
; r2 is the base address of the context table for the indices
; r3 is the offset into the Qe table, i.e. it starts with I(CX)
; r4 is the base address of the context table for the MPS values
; r5 is the offset into the context table for the MPS values, i.e. it is CX
; to start with
; r6 is the offset into the context table for the Indices, i.e. it is CX
; to start with
; r7 is BP, i.e. the output bitstream pointer from the arithmetic coder
; n0 is used as an offset into the Qe table to access the SWITCH entries.
;
; assumptions:
;
; Only 1 block of input data is dealt with by this code. In this case, this
; means that the output CX/D pairs from the coefficient bit modeller when
; 1 tile of 128x128 has been processed.
;
;***
RENORM_THRESH equ $8000
OUTPUT equ $950
CARRYOVER equ $8000000

; Input data
 org p:$0
 jmp $1000
 org p:$100

; Table C-2, FDIS - Qe values, NMPS,NLPS, switch

qe: dcw $5601,$0008,$0008,$0001,$3401,$0010,$0030,$0000
dcw $1801,$0018,$0048,$0000,$0ac1,$0020,$0060,$0000
dcw $0521,$0028,$00e8,$0000,$0221,$0130,$0108,$0000
dcw $5601,$0038,$0030,$0001,$5401,$0040,$0070,$0000

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

36 JPEG2000 Arithmetic Encoding on the StarCore SC140 �

dcw $4801,$0048,$0070,$0000,$3801,$0050,$0070,$0000
dcw $3001,$0058,$0088,$0000,$2401,$0060,$0090,$0000
dcw $1c01,$0068,$00a0,$0000,$1601,$00e8,$00a8,$0000
dcw $5601,$0078,$0070,$0001,$5401,$0080,$0070,$0000
dcw $5101,$0088,$0078,$0000,$4801,$0090,$0080,$0000
dcw $3801,$0098,$0088,$0000,$3401,$00a0,$0090,$0000
dcw $3001,$00a8,$0098,$0000,$2801,$00b0,$0098,$0000
dcw $2401,$00b8,$00a0,$0000,$2201,$00c0,$00a8,$0000
dcw $1c01,$00c8,$00b0,$0000,$1801,$00d0,$00b8,$0000
dcw $1601,$00d8,$00c0,$0000,$1401,$00e0,$00c8,$0000
dcw $1201,$00e8,$00d0,$0000,$1101,$00f0,$00d8,$0000
dcw $0ac1,$00f8,$00e0,$0000,$09c1,$0100,$00e8,$0000
dcw $08a1,$0108,$00f0,$0000,$0521,$0110,$00f8,$0000
dcw $0441,$0118,$0100,$0000,$02a1,$0120,$0108,$0000
dcw $0221,$0128,$0110,$0000,$0141,$0130,$0118,$0000
dcw $0111,$0138,$0120,$0000,$0085,$0140,$0128,$0000
dcw $0049,$0148,$0130,$0000,$0025,$0150,$0138,$0000
dcw $0015,$0158,$0140,$0000,$0009,$0160,$0148,$0000
dcw $0005,$0168,$0150,$0000,$0001,$0168,$0158,$0000
dcw $5601,$0170,$0170,$0000

 org p:$280

; Context table: indices and MPS values

ctxt_idx: dcw $0020,$0000,$0000,$0000,$0000,$0000,$0000,$0000
dcw $0000,$0000,$0000,$0000,$0000,$0000,$0000,$0000
dcw $0018,$0170

ctxt_mps: dcb $00,$00,$00,$00,$00,$00,$00,$00
dcb $00,$00,$00,$00,$00,$00,$00,$00
dcb $00,$00

 org p:$2d0

; Input context/data pairs - this corresponds to tile5-symbols.h from the C
; version of the code
; The output using this input should be: 11 50 54 af, as before

ip: dcw $0001,$0202,
 dcb $11,$01,$12,$00,$12,$00,$0c,$01,$03,$01,$0d,$00,$03,$01,$0d,$00
 dcb $03,$01,$0d,$00,$06,$01,$0f,$00,$07,$01,$10,$00,$07,$01,$10,$00
 dcb $07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00
 dcb $07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00
 dcb $07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00
 dcb $07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00
 dcb $07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00
 dcb $07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00
 dcb $07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00
 dcb $07,$01,$10,$00,$03,$01,$0d,$00,$03,$01,$0d,$00,$03,$01,$0d,$00
 dcb $03,$01,$0d,$00,$07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00
 dcb $07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00
 dcb $07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00
 dcb $07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00
 dcb $07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00
 dcb $07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00
 dcb $07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00
 dcb $07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00
 dcb $07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00
 dcb $07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00
 dcb $07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00
 dcb $07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00
 dcb $07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00
 dcb $07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00
 dcb $07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

� Appendix B. Arithmetic Encoder: Assembly Code 37

 dcb $07,$01,$10,$00,$03,$01,$0d,$00,$03,$01,$0d,$00,$03,$01,$0d,$00
 dcb $03,$01,$0d,$00,$07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00
 dcb $07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00
 dcb $07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00
 dcb $07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00
 dcb $07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00
 dcb $07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00
 dcb $07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00
 dcb $07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00
 dcb $07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00
 dcb $07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00
 dcb $07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00
 dcb $07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00
 dcb $07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00
 dcb $07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00
 dcb $07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00
 dcb $07,$01,$10,$00,$06,$01,$0f,$00,$07,$01,$10,$00,$07,$01,$10,$00
 dcb $07,$01,$10,$00,$06,$01,$0f,$00,$07,$01,$10,$00,$07,$01,$10,$00
 dcb $07,$01,$10,$00,$06,$01,$0f,$00,$07,$01,$10,$00,$07,$01,$10,$00
 dcb $07,$01,$10,$00,$06,$01,$0f,$00,$07,$01,$10,$00,$07,$01,$10,$00
 dcb $07,$01,$10,$00,$06,$01,$0f,$00,$07,$01,$10,$00,$07,$01,$10,$00
 dcb $07,$01,$10,$00,$06,$01,$0f,$00,$07,$01,$10,$00,$07,$01,$10,$00
 dcb $07,$01,$10,$00,$06,$01,$0f,$00,$07,$01,$10,$00,$07,$01,$10,$00
 dcb $07,$01,$10,$00,$06,$01,$0f,$00,$07,$01,$10,$00,$07,$01,$10,$00
 dcb $07,$01,$10,$00,$06,$01,$0f,$00,$07,$01,$10,$00,$07,$01,$10,$00
 dcb $07,$01,$10,$00,$06,$01,$0f,$00,$07,$01,$10,$00,$07,$01,$10,$00
 dcb $07,$01,$10,$00,$06,$01,$0f,$00,$07,$01,$10,$00,$07,$01,$10,$00
 dcb $07,$01,$10,$00,$06,$01,$0f,$00,$07,$01,$10,$00,$07,$01,$10,$00
 dcb $07,$01,$10,$00,$06,$01,$0f,$00,$07,$01,$10,$00,$07,$01,$10,$00
 dcb $07,$01,$10,$00,$06,$01,$0f,$00,$07,$01,$10,$00,$07,$01,$10,$00
 dcb $07,$01,$10,$00,$03,$01,$0d,$00,$03,$01,$0d,$00,$03,$01,$0d,$00
 dcb $03,$01,$0d,$00,$07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00
 dcb $07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00
 dcb $07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00
 dcb $07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00
 dcb $07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00
 dcb $07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00
 dcb $07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00
 dcb $07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00,$07,$01,$10,$00
 dcb $07,$01,$10,$00

 org p:$1000

; Initialize the address registers of the various look-up tables.
; Also set up clock

init:

 move.l #$80030003,PCTL0 ; Ensure clock speed is 300MHz
 move.l #ctxt_idx,r2 ; r2 is the base address of the context

; table:index
 move.l #ctxt_mps,r4 ; r4 is the base address of the context

; table:MPS
 move.l #ip,r1 deca r2 ; r1 points to the input bitstream of

; context/data pairs

; decrement r2 so when add context from bitstream, points to right index
 move.l #qe,r0 ; r0 is the base address of qe table
 move.w #0,d1 adda #2,r1 ; C = 0, assume one block for now so

; skip the input block numbers
 move.w (r1)+,d3 moveu.w #RENORM_THRESH,d13.l ; Number of context/data

; pairs. Renorm threshold used again
; in arithmetic later

 move.l #CARRYOVER,d10 deca r4 ; This is the constant to check whether
; the c register has overflowed into carry bit.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

38 JPEG2000 Arithmetic Encoding on the StarCore SC140 �

; Need CX-1 because context table:MPS starts at 0.

; Initialize the arithmetic encoder - Fig C-10
INITENC:
 moveu.w #RENORM_THRESH,d0.l move.w #OUTPUT,r7 ; A = 0x8000 (in d0.l)

; BP = BPST-1 i.e. r7 is BP
; output compressed bitstream (BP in FDIS)
; This is BPST-1, i.e. the first byte will be output to r7+1
; Assign this to BP

 move.l #$00010000,PCTL1 adda #1,r1 ; Ensure clock speed is
; 300MHz; rest of input data in bytes, so byte align r1

 move.b (r7)+,d2 move.w #2,n0 ; get previous byte from
; output stream, i.e. B pointed to by BP

 bmtsts #$ff,d2.l move.b (r1)+,r6 ; read CX, D pair into r6
; and d5.

 ; CX is an index into CONTXT table of indices; B = 0xFF?
 move.b (r1)+,d5 deca r2 ; data in d5, need to have

 ;CX-1 because CONTXT:index table address starts at 0

; if B not equal 0xFF, CT = 12 else CT = 13
 ift move.w #13,d4 iff move.w #12,d4
 asla r6 tfra r6,r5 ; need to multiply CX by 2 because stored indices

; as words in table
; r5 points to CX:MPS of bytes

 adda r2,r6 adda r4,r5 ; r2 and r4 are the base addresses of the CONTXT
; tables for indices and MPS values respectively, so to access
; correct index and MPS need to offset by base addresses

 dosetup0 BLOCK
 doen0 d3 ; set up loop through cx,d pairs in one block

; (assumed only 1 block in this example)

BLOCK

 loopstart0
 falign
 move.w (r6),r3 move.w (r5),d6 ; d6 = MPS i.e. MPS(CX) ; r3 = index

; i.e. I(CX)
 cmpeq d5,d6 ; D = MPS(CX)?
 adda r0,r3 ; r3 -> NMPS

; now pointing at Qe in table entry for this index as r0 is
; base address for Qe table
; now code lps or mps

 jtd CODEMPS move.w (r3)+,d7 ; from D = MPS(CX)? test, d7 = Qe,
 sub d7,d0,d0 ; in either MPS or LPS case, first step is A = A - Qe

CODELPS:
 move.w (r3+n0),d9 cmpgt d0,d7 ; d9 = SWITCH; A < Qe(I(CX))?
 adda #2,r3 ; r3 -> NLPS(I(CX))
 ift add d7,d1,d1 ; if A<Qe true, C = C + Qe(I(CX))

 bmtsts #$0001,d9.l tfrf d7,d0 ; SWITCH(I(CX)) = 1?
; if A>Qe then A = Qe(I(CX))

 move.w (r3),d8 ; if A<Qe, I(CX) = NLPS(I(CX))
 ift bmchg #$0001,d6.l ; if SWITCH, MPS = 1 - MPS

; i.e. if 0 change to 1 and vice versa
; replace new sense of MPS to memory and d8 = NLPS(I(CX))

 ift move.w d6,(r5) ; if SWITCH, MPS(CX) = 1 - MPS(CX)
 ;always renormalize on the CODELPS path

 jmp RENORME move.w d8,(r6) ; I(CX) = NLPS(I(CX))

CODEMPS:
 bmtsts #$8000,d0.l ; A AND 0x8000 = 1?
 move.w (r3),d8 ; d8 = NMPS(I(CX))
 jt norenorm ift add d7,d1,d1 ; if false (i.e. T set)

; C = C + Qe(I(CX))

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

� Appendix B. Arithmetic Encoder: Assembly Code 39

; if A > 0.75 no renormalisation is required. i.e. A and 0x8000 not = 0
; if A < 0.75, needs renormalisation
; the most sigfig number is not set
; therefore, A has fallen below 0.75 (i.e. 0x8000)

 cmpgt d0,d7 move.w d8,(r6) ; A < Qe(I(CX))?, r6 -> I(CX),
; I(CX) = NMPS(I(CX))

 tfrt d7,d0 iff add d7,d1,d1 ; if true, A = Qe(I(CX)),
; else C = C + Qe(I(CX))

; now renormalize

RENORME:

 deceq d4 ; CT = CT - 1, CT = 0?
 asl d0,d0 asl d1,d1 ; A = A << 1, C = C << 1,
 ift jsr BYTEOUT ; if CT = 0, output byte

rentest:
 bmtsts #$8000,d0.l ; A and 0x8000 = 1?
 jf RENORME ; if = 0 (i.e. T cleared) repeat renormalisation

norenorm:
 move.b (r1)+,r6 ; get next CX/D pair
 move.b (r1)+,d5 ; CX is an index into two CONTXT tables of

; indices and MPS data in d5,
; need to have CX-1 because
; CONTXT table address starts at 0

 asla r6 tfra r6,r5 ; need to multiply CX by 2 because
; stored indices as words in table r5 is index into
; CONTXT:MPS table of bytes

 adda r2,r6 ; r2 is the base address of the CONTXT:index table so to
; access correct index need to offset

 adda r4,r5 ; r4 is the base address of the CONTXT:MPS table so to
; access correct MPS need to offset

 loopend0

FLUSH:
; terminate the coded bitstream with the correct marker code
; setbits - set as many of the C register bits as possible

SETBITS:
 add d1,d0,d12 ; TEMPC = C + A
 or #$ffff,d1.l ; C = C OR 0xffff
 cmpeq d12,d1 ; if C >= TEMPC then C = C - 0x8000
 ift sub d13,d1,d1
 cmpgt d12,d1
 ift sub d13,d1,d1

; end SETBITS

 asll d4,d1 ; C = C << CT
 jsr BYTEOUT ; BYTEOUT
 asll d4,d1 ; C = C << CT
 jsr BYTEOUT ; BYTEOUT

 bmtsts #$ff,d2.l ; if B = 0xFF then discard B
 nop
 ift deca r7 ; if B not = 0xFF then BP = BP + 1

; BP already points to BP + 1, therefore, decrement r7

test: stop ; finished coding all pairs of input

BYTEOUT:
; byteout procedure

 bmtsts #$ff,d2.l ; B = 0xFF?

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

40 JPEG2000 Arithmetic Encoding on the StarCore SC140 �

 jfd nobitstuffyet

bitstuff:
 tfr d1,d11 ; d1 = d11 = C
 asrr #20,d11 and #$ffff,d1.l ; C = C AND 0xFFFFF
 jmpd endbyteout move.w #7,d4 ; CT = 7
 and #$000f,d1.h

nobitstuffyet:
 cmpgt d1,d10 ; C < 0x8000000?
 jt outputbyte ; true
 inc d2 ; false: B = B+1
 bmtsts #$ff,d2.l ; B = 0xFF?
 jf outputbyte ; false
 and #$ffff,d1.l ; true: C = C AND 0x7FFFFFF
 jmpd bitstuff
 and #$07ff,d1.h

outputbyte:
 tfr d1,d11 ; d1 = d11 = C
 asrr #19,d11 and #$ffff,d1.l ; C = C AND 0x7FFFF
 and #$0007,d1.h move.w #8,d4 ; CT = 8

endbyteout:
 rtsd tfr d11,d2 ; B = C >> 20 or B = C >> 19
 move.b d2,(r7)+ ; output B to memory BP out

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

� Appendix C. Excerpts from FDIS 41

Appendix C
Excerpts from FDIS
This appendix reproduces several flow diagrams and a table from Appendix C of
ISO/IEC FDIS 15444-1 : 2000 (18th August 2000).

Figure C-1. Arithmetic Encoder Inputs and Outputs

Figure C-2. Encoder for the MQ-Coder

ENCODER
D

CX
CD

ENCODER

INITENC

Read CX, D

ENCODE

Finished?
No

Yes

FLUSH

Done

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

42 JPEG2000 Arithmetic Encoding on the StarCore SC140 �

Figure C-3. ENCODE Procedure

Figure C-4. CODE1 Procedure

Figure C-5. CODE0 Procedure

ENCODE

D = 0?
No Yes

FLUSH

Done

FLUSH

CODE1

MPS(CX) = 1?
No Yes

CODELPS

Done

CODEMPS

CODE0

MPS(CX) = 0?
No Yes

CODELPS

Done

CODEMPS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

� Appendix C. Excerpts from FDIS 43

Figure C-6. CODELPS Procedure with Conditional MPS/LPS Exchange

CODELPS

SWITCH(I(CX))

No Yes

A = Qe(I(CX))

Done

C = C + Qe(I(CX))

A = A – Qe(I(CX))

A < Qe(I(CX))?

= 1?

MPS(CX) = 1 – MPS(CX)
No

Yes

I(CX) = NLPS(I(CX))

RENORME

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

44 JPEG2000 Arithmetic Encoding on the StarCore SC140 �

Figure C-7. CODEMPS Procedure with Conditional MPS/LPS Exchange

CODEMPS

No Yes

C = C + Qe(I(CX))

Done

A = A – Qe(I(CX))

A AND $8000 = 0?

No Yes

I(CX) = NMPS(I(CX))

RENORME

A < Qe(I(CX))?

A = Qe(I(CX))C = C + Qe(I(CX))

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

� Appendix C. Excerpts from FDIS 45

Figure C-8. Encoder Renormalization Procedure

RENORME

A AND $8000 = 0?

No

Yes

Done

A = A << 1

CT = 0?

No

Yes

BYTEOUT

C = C << 1
CT = CT – 1

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

46 JPEG2000 Arithmetic Encoding on the StarCore SC140 �

Figure C-9. Encoder BYTEOUT Procedure

BYTEOUT

No

Yes

Done

B = $FF?

No

Yes

B = B + 1

C < $8000000?

C = C AND $7FFFFFF

No

B = $FF?

Yes

BP = BP + 1
B = C >> 19

C = C AND $7FFFFFF
CT = 8

BP = BP + 1
B = C >> 19

C = C AND $7FFFFFF
CT = 8

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

� Appendix C. Excerpts from FDIS 47

Figure C-10. Encoder Initialization

INITENC

Yes

B = $FF?

A = $8000
C = 0

BP = BPST – 1
CT = 12

CT = 13

No

Done

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

48 JPEG2000 Arithmetic Encoding on the StarCore SC140 �

Figure C-11. FLUSH Procedure

FLUSH

YesB = $FF?

No

Done

SETBITS

BYTEOUT

C = C << CT

BYTEOUT

C = C << CT

BP = BP + 1 Discard B

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

� Appendix C. Excerpts from FDIS 49

Figure C-12. Setting the Final Bits in the C Register

SETBITS

Yes

C ≥ TEMPC?No

Done

TEMPC = C + A

C = C – $8000

C = C OR $FFFF

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

50 JPEG2000 Arithmetic Encoding on the StarCore SC140 �

Table C-2. Qe Values and Probability Estimation

Index
Qe_Value

NMPS NLPS SWITCH
Hexadecimal Binary Decimal

0 0x5601 0101 0110 0000 0001 0.503 937 1 1 1

1 0x3401 0011 0100 0000 0001 0.304 715 2 6 0

2 0x1801 0001 1000 0000 0001 0.140 650 3 9 0

3 0x0AC1 0000 1010 1100 0001 0.063 012 4 12 0

4 0x0521 0000 0101 0010 0001 0.030 053 5 29 0

5 0x0221 0000 0010 0010 0001 0.012 474 38 33 0

6 0x5601 0101 0110 0000 0001 0.503 937 7 6 1

7 0x5401 0101 0100 0000 0001 0.492 218 8 14 0

8 0x4801 0100 1000 0000 0001 0.421 904 9 14 0

9 0x3801 0011 1000 0000 0001 0.328 153 10 14 0

10 0x3001 0011 0000 0000 0001 0.281 277 11 17 0

11 0x2401 0010 0100 0000 0001 0.210 964 12 18 0

12 0x1C01 0001 1100 0000 0001 0.164 088 13 20 0

13 0x1601 0001 0110 0000 0001 0.128 931 29 21 0

14 0x5601 0101 0110 0000 0001 0.503 937 15 14 1

15 0x5401 0101 0100 0000 0001 0.492 218 16 14 0

16 0x5101 0101 0001 0000 0001 0.474 640 17 15 0

17 0x4801 0100 1000 0000 0001 0.421 904 18 16 0

18 0x3801 0011 1000 0000 0001 0.328 153 19 17 0

19 0x3401 0011 0100 0000 0001 0.304 715 20 18 0

20 0x3001 0011 0000 0000 0001 0.281 277 21 19 0

21 0x2801 0010 1000 0000 0001 0.234 401 22 19 0

22 0x2401 0010 0100 0000 0001 0.210 964 23 20 0

23 0x2201 0010 0010 0000 0001 0.199 245 24 21 0

24 0x1C01 0001 1100 0000 0001 0.164 088 25 22 0

25 0x1801 0001 1000 0000 0001 0.140 650 26 23 0

26 0x1601 0001 0110 0000 0001 0.128 931 27 24 0

27 0x1401 0001 0100 0000 0001 0.117 212 28 25 0

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

� Appendix C. Excerpts from FDIS 51

28 0x1201 0001 0010 0000 0001 0.105 493 29 26 0

29 0x1101 0001 0001 0000 0001 0.099 634 30 27 0

30 0x0AC1 0000 1010 1100 0001 0.063 012 31 28 0

31 0x09C1 0000 1001 1100 0001 0.057 153 32 29 0

32 0x08A1 0000 1000 1010 0001 0.050 561 33 30 0

33 0x0521 0000 0101 0010 0001 0.030 053 34 31 0

34 0x0441 0000 0100 0100 0001 0.024 926 35 32 0

35 0x02Al 0000 0010 1010 0001 0.015 404 36 33 0

36 0x0221 0000 0010 0010 0001 0.012 474 37 34 0

37 0x0141 0000 0001 0100 0001 0.007 347 38 35 0

38 0x0111 0000 0001 0001 0001 0.006 249 39 36 0

39 0x0085 0000 0000 1000 0101 0.003 044 40 37 0

40 0x0049 0000 0000 0100 1001 0.001 671 41 38 0

41 0x0025 0000 0000 0010 0101 0.000 847 42 39 0

42 0x0015 0000 0000 0001 0101 0.000 481 43 40 0

43 0x0009 0000 0000 0000 1001 0.000 206 44 41 0

44 0x0005 0000 0000 0000 0101 0.000 114 45 42 0

45 0x0001 0000 0000 0000 0001 0.000 023 45 43 0

46 0x5601 0101 0110 0000 0001 0.503 937 46 46 0

Table C-2. Qe Values and Probability Estimation (Continued)

Index
Qe_Value

NMPS NLPS SWITCH
Hexadecimal Binary Decimal

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

52 JPEG2000 Arithmetic Encoding on the StarCore SC140 �

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

	Title Page
	Abstract and Contents
	1 Introduction
	2 Background Theory
	2.1 Huffman Coding
	2.1.1 The Huffman Coding Algorithm
	2.1.2 Limitations of Huffman Coding

	2.2 Arithmetic Coding
	2.3 Binary Arithmetic Coding
	2.3.1 BAC Encoding
	2.3.2 BAC Decoding

	2.4 JPEG2000 Arithmetic Coding
	2.4.1 Removing Multiplication
	2.4.2 Conditional Exchange of MPS Sense
	2.4.3 An Adaptive BAC: Probability Estimation Process
	2.4.4 Finite Precision
	2.4.5 Carry Propagation
	2.4.6 Software Versus Custom Hardware Implementation

	3 Implementation
	3.1 StarCore Implementation in C Code
	3.1.1 Encoder Initialization
	3.1.2 Flushing the Encoder
	3.1.3 StarCore Performance

	3.2 StarCore Implementation in Assembler
	3.2.1 Address Registers
	3.2.2 Change-of-Flow Instructions
	3.2.3 If-Then-Else Decisions
	3.2.4 Results

	4 Summary
	5 References
	Appendix�A Arithmetic Encoder: C Code
	Appendix�B Arithmetic Encoder: Assembly Code
	Appendix�C Excerpts from FDIS

