DESCRIPTION

Monolithic single channel high side protected power switch in TOPFET2 technology assembled in a 5 pin plastic surface mount package.

APPLICATIONS

General controller for driving lamps, motors, solenoids, heaters.

FEATURES

- Vertical power TrenchMOS
- Low on-state resistance
- CMOS logic compatible
- Very low quiescent current
- Latched overtemperature protection
- Load current limiting
- Latched short circuit load protection
- Overvoltage and undervoltage shutdown with hysteresis
- Diagnostic status indication
- Voltage clamping for turn off of inductive loads
- ESD protection on all pins
- Reverse battery, overvoltage and transient protection

QUICK REFERENCE DATA

SYMBOL	PARAMETER	MIN.	UNIT
I_{L}	Nominal load current (ISO)	9	A
SYMBOL	PARAMETER	MAX.	UNIT
$V_{B G}$	Continuous off-state supply voltage	50	V
I_{L}	Continuous load current	20	A
T_{j}	Continuous junction temperature	150	${ }^{\circ} \mathrm{C}$
R_{ON}	On-state resistance $\quad \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	38	$\mathrm{m} \Omega$

FUNCTIONAL BLOCK DIAGRAM

Fig.1. Elements of the TOPFET HSS with internal ground resistor.

PIN CONFIGURATION

SYMBOL

TOPFET high side switch SMD version

LIMITING VALUES

Limiting values in accordance with the Absolute Maximum System (IEC 134)

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
$V_{\text {BG }}$	Continuous supply voltage		0	50	V
L_{L}	Continuous load current	$\mathrm{T}_{\mathrm{mb}} \leq 95^{\circ} \mathrm{C}$	-	20	A
P_{D}	Total power dissipation	$\mathrm{T}_{\mathrm{mb}} \leq 25^{\circ} \mathrm{C}$	-	67	W
$\mathrm{T}_{\text {stg }}$	Storage temperature		-55	175	${ }^{\circ} \mathrm{C}$
T_{j}	Continuous junction temperature ${ }^{1}$		-	150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {sold }}$	Mounting base temperature	during soldering	-	260	${ }^{\circ} \mathrm{C}$
	Reverse battery voltages ${ }^{2}$				
$-\mathrm{V}_{\text {BG }}$	Continuous reverse voltage		-	16	V
$-V_{B G}$	Peak reverse voltage		-	32	V
$\mathrm{R}_{\mathrm{l}}, \mathrm{R}_{\mathrm{S}}$	Application information External resistors ${ }^{3}$	to limit input, status currents	3.2	-	k Ω
	Input and status				
$1, I_{s}$	Continuous currents		-5	5	mA
l_{1}, I_{s}	Repetitive peak currents	$\delta \leq 0.1$, tp $=300 \mu \mathrm{~s}$	-50	50	mA
	Inductive load clamping	$\mathrm{I}_{\mathrm{L}}=10 \mathrm{~A}, \mathrm{~V}_{\text {BG }}=16 \mathrm{~V}$			
$\mathrm{E}_{\text {BL }}$	Non-repetitive clamping energy	$\mathrm{T}_{\mathrm{j}} \leq 150^{\circ} \mathrm{C}$ prior to turn-off	-	150	mJ

ESD LIMITING VALUE

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V_{C}	Electrostatic discharge capacitor voltage	Human body model; $\mathrm{C}=250 \mathrm{pF} ; \mathrm{R}=1.5 \mathrm{k} \Omega$	-	2	kV

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
$\mathrm{R}_{\mathrm{th} j-\mathrm{mb}}$	Thermal resistance Junction to mounting base	-				

[^0]
STATIC CHARACTERISTICS

Limits are at $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{mb}} \leq 150^{\circ} \mathrm{C}$ and typicals at $\mathrm{T}_{\mathrm{mb}}=25^{\circ} \mathrm{C}$ unless otherwise stated.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline SYMBOL \& PARAMETER \& \multicolumn{4}{|l|}{CONDITIONS} \& MIN. \& TYP. \& MAX. \& UNIT \\
\hline \[
\begin{array}{|l|l}
\hline V_{\mathrm{BG}} \\
V_{\mathrm{BL}} \\
-V_{\mathrm{LG}} \\
-\mathrm{V}_{\mathrm{LG}}
\end{array}
\] \& \begin{tabular}{l}
Clamping voltages \\
Battery to ground \\
Battery to load \\
Negative load to ground \\
Negative load voltage \({ }^{1}\)
\end{tabular} \& \multicolumn{4}{|l|}{\[
\begin{aligned}
\& I_{G}=1 \mathrm{~mA} \\
\& \mathrm{I}_{\mathrm{L}}=\mathrm{I}_{\mathrm{G}}=1 \mathrm{~mA} \\
\& \mathrm{I}_{\mathrm{L}}=10 \mathrm{~mA} \\
\& \mathrm{I}_{\mathrm{L}}=10 \mathrm{~A} ; \mathrm{t}_{\mathrm{p}}=300 \mu \mathrm{~s}
\end{aligned}
\]} \& \[
\begin{aligned}
\& 50 \\
\& 50 \\
\& 18 \\
\& 20
\end{aligned}
\] \& \[
\begin{aligned}
\& 55 \\
\& 55 \\
\& 23 \\
\& 25
\end{aligned}
\] \& \[
\begin{aligned}
\& 65 \\
\& 65 \\
\& 28 \\
\& 30
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathrm{V} \\
\& \mathrm{v} \\
\& \mathrm{v} \\
\& \mathrm{~V}
\end{aligned}
\] \\
\hline \(V_{B G}\) \& Supply voltage Operating range \({ }^{2}\) \& \multicolumn{4}{|l|}{battery to ground} \& 5.5 \& - \& 35 \& V \\
\hline I

I_{L}

I_{G}

I_{L} \& | Currents |
| :--- |
| Quiescent current ${ }^{3}$ |
| Off-state load current ${ }^{4}$ |
| Operating current ${ }^{5}$ |
| Nominal load current ${ }^{6}$ | \& \[

$$
\begin{aligned}
& 9 \mathrm{~V} \leq \mathrm{V}_{\mathrm{BG}} \leq \\
& \mathrm{V}_{\mathrm{LG}}=0 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{BL}}=\mathrm{V}_{\mathrm{BG}} \\
& \mathrm{I}_{\mathrm{L}}=0 \mathrm{~A} \\
& \mathrm{~V}_{\mathrm{BL}}=0.5 \mathrm{~V}
\end{aligned}
$$

\] \& \[

16 \mathrm{~V}

\] \& \[

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{mb}} \\
& \mathrm{~T}_{\mathrm{mb}} \\
& \mathrm{~T}_{\mathrm{mb}}
\end{aligned}
$$
\] \& $25^{\circ} \mathrm{C}$

$25^{\circ} \mathrm{C}$

$85^{\circ} \mathrm{C}$ \& | - |
:---
-

-

0.1
2 \& 20
2
20
1
4 \& $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ mA A

\hline \multirow[b]{2}{*}{$\mathrm{R}_{\text {ON }}$} \& \multirow[t]{2}{*}{| Resistances |
| :--- |
| On-state resistance |} \& $\mathrm{V}_{\text {BG }}$ \& I_{L} \& $\mathrm{t}_{\mathrm{p}}{ }^{\text {P }}$ \& T_{mb} \& \& \& \&

\hline \& \& 9 to 35 V \& 10 A \& $300 \mu \mathrm{~s}$ \& $$
\begin{array}{r}
25^{\circ} \mathrm{C} \\
150^{\circ} \mathrm{C}
\end{array}
$$ \& - \& \& \&

\hline $\mathrm{R}_{\text {ON }}$ \& On-state resistance \& 6 V \& 10 A \& $300 \mu \mathrm{~s}$ \& \[
$$
\begin{array}{r}
25^{\circ} \mathrm{C} \\
150^{\circ} \mathrm{C}
\end{array}
$$

\] \& - \& 36 \& 48 \& \[

$$
\begin{gathered}
\mathrm{m} \Omega \\
\mathrm{~m} \Omega
\end{gathered}
$$
\]

\hline R_{G} \& Internal ground resistance \& \multicolumn{4}{|l|}{$\mathrm{I}_{\mathrm{G}}=10 \mathrm{~mA}$} \& 95 \& 150 \& 190 \& Ω

\hline
\end{tabular}

[^1]TOPFET high side switch

INPUT CHARACTERISTICS

$9 \mathrm{~V} \leq \mathrm{V}_{\text {BG }} \leq 16 \mathrm{~V}$. Limits are at $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{mb}} \leq 150^{\circ} \mathrm{C}$ and typicals at $\mathrm{T}_{\mathrm{mb}}=25^{\circ} \mathrm{C}$ unless otherwise stated.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
I_{I}	Input current	$\mathrm{V}_{\text {IG }}=5 \mathrm{~V}$	20	90	160	$\mu \mathrm{~A}$
$\mathrm{~V}_{\text {IG }}$	Input clamping voltage	$\mathrm{I}_{\mathrm{I}}=200 \mu \mathrm{~A}$	5.5	7	8.5	V
$\mathrm{~V}_{\text {IG(ON) }}$	Input turn-on threshold voltage		-	2.4	3	V
$\mathrm{~V}_{\text {IG(OFF) }}$	Input turn-off threshold voltage		1.5	2.1	-	V
$\Delta \mathrm{V}_{\text {IG }}$	Input turn-on hysteresis		-	0.3	-	V
$I_{\text {IION) }}$	Input turn-on current	$\mathrm{V}_{\text {IG }}=3 \mathrm{~V}$	-	-	100	$\mu \mathrm{~A}$
$I_{\text {IIOFF) }}$	Input turn-off current	$\mathrm{V}_{\text {IG }}=1.5 \mathrm{~V}$	10	-	-	$\mu \mathrm{A}$

STATUS CHARACTERISTICS

The status output is an open drain transistor, and requires an external pull-up circuit to indicate a logic high.
Limits are at $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{mb}} \leq 150^{\circ} \mathrm{C}$ and typicals at $\mathrm{T}_{\mathrm{mb}}=25^{\circ} \mathrm{C}$ unless otherwise stated. Refer to TRUTH TABLE.

SYMBOL	PARAMETER	CONDITIONS		MIN.	TYP.	MAX.	UNIT
$\mathrm{V}_{\text {SG }}$	Status clamping voltage Status low voltage	$\mathrm{I}_{\mathrm{S}}=100 \mu \mathrm{~A}$		5.5	7	8.5	V
$\mathrm{V}_{\text {SG }}$		$\mathrm{I}_{\mathrm{S}}=100 \mu \mathrm{~A}$	$\mathrm{T}_{\mathrm{mb}}=25^{\circ} \mathrm{C}$	-	-	1	V
				-	0.7	0.8	V
$\mathrm{I}_{\text {s }}$	Status leakage current	$\mathrm{V}_{S G}=5 \mathrm{~V}$		-	-	15	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{mb}}=25^{\circ} \mathrm{C}$	-	0.1	1	$\mu \mathrm{A}$
I_{s}	Status saturation current ${ }^{1}$	$\mathrm{V}_{\mathrm{SG}}=5 \mathrm{~V}$		2	7	12	mA
R_{s}	Application information External pull-up resistor			-	47	-	$\mathrm{k} \Omega$

[^2]TOPFET high side switch

UNDERVOLTAGE \& OVERVOLTAGE CHARACTERISTICS

Limits are at $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{mb}} \leq 150^{\circ} \mathrm{C}$ and typicals at $\mathrm{T}_{\mathrm{mb}}=25^{\circ} \mathrm{C}$. Refer to TRUTH TABLE.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
	Undervoltage					
$\mathrm{V}_{\text {BG(UV) }}$	Low supply threshold voltage ${ }^{1}$		2	4.2	5.5	V
$\Delta \mathrm{V}_{\text {bg (u) }}$	Hysteresis		-	0.5	-	V
	Overvoltage					
$\mathrm{V}_{\text {BGIOV) }}$	High supply threshold voltage ${ }^{2}$		40	45	50	V
$\Delta \mathrm{V}_{\text {BGIOV) }}$	Hysteresis			1	-	V

TRUTH TABLE

INPUT	ABNORMAL CONDITIONS DETECTED					LOAD OUTPUT	STATUS	DESCRIPTION
	SUPPLY		LOAD					
	UV	OV	LC	SC	OT			
L	X	X	X	X	X	OFF	H	off
H	0	0	X	0	0	ON	H	on \& normal (LC not detected!)
H	1	0	X	X	X	OFF	H	supply undervoltage lockout
H	0	1	X	0	0	OFF	H	supply overvoltage shutdown
H	0	0	0	1	0	OFF	L	SC protection
H	0	0	X	X	1	OFF	L	OT shutdown

KEY TO ABBREVIATIONS

L	logic low
H	logic high
X	don'care
0	condidition not present
1	condition present

H logic high
X don't care
1 condition present

UV undervoltage
OV overvoltage
LC low current or open circuit load
SC short circuit
OT overtemperature

[^3]TOPFET high side switch
SMD version

OVERLOAD PROTECTION CHARACTERISTICS

$5.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{BG}} \leq 35 \mathrm{~V}$, limits are at $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{mb}} \leq 150^{\circ} \mathrm{C}$ and typicals at $\mathrm{T}_{\mathrm{mb}}=25^{\circ} \mathrm{C}$ unless otherwise stated.
Refer to TRUTH TABLE.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
$\mathrm{I}_{\mathrm{L}(\mathrm{lim})}$	Overload protection Load current limiting	$\begin{aligned} & V_{B L}=V_{B G} \\ & V_{B G} \geq 9 \mathrm{~V} \end{aligned}$	34	45	64	A
$\begin{aligned} & V_{\mathrm{BL}(\mathrm{TO})} \\ & \mathrm{t}_{\mathrm{dsc}} \end{aligned}$	Short circuit load protection Battery load threshold voltage ${ }^{1}$ Response time ${ }^{2}$	$\begin{array}{\|l} \\ \\ \\ \mathrm{V}_{\mathrm{BL}}>\mathrm{V}_{\mathrm{BL}(\mathrm{TO})}=16 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{BG}}=35 \mathrm{~V} \end{array}$	$\begin{gathered} 8 \\ 15 \end{gathered}$	$\begin{gathered} 10 \\ 20 \\ 180 \end{gathered}$	$\begin{gathered} 12 \\ 25 \\ 250 \end{gathered}$	V V $\mu \mathrm{s}$
$\mathrm{T}_{\mathrm{j} \text { (TO) }}$	Overtemperature protection Threshold junction temperature ${ }^{3}$		150	170	190	${ }^{\circ} \mathrm{C}$

SWITCHING CHARACTERISTICS

$\mathrm{T}_{\mathrm{mb}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{BG}}=13 \mathrm{~V}$, for resistive load $\mathrm{R}_{\mathrm{L}}=13 \Omega$.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
$t_{d o n}$ $\mathrm{dV} / \mathrm{dt}_{\text {on }}$ t on	During turn-on Delay time Rate of rise of load voltage Total switching time	from input going high to $10 \% \mathrm{~V}_{\mathrm{L}}$ 30% to $70 \% V_{L}$ to $90 \% \mathrm{~V}_{\mathrm{L}}$	-	$\begin{gathered} 40 \\ 0.35 \\ 140 \end{gathered}$	$\begin{gathered} 60 \\ 1 \\ 200 \end{gathered}$	$\mu \mathrm{s}$ $\mathrm{V} / \mu \mathrm{s}$ $\mu \mathrm{s}$
$t_{\text {d off }}$ $\mathrm{dV} / \mathrm{dt}_{\text {off }}$ $t_{\text {off }}$	During turn-off Delay time Rate of fall of load voltage Total switching time	from input going low to $90 \% \mathrm{~V}_{\mathrm{L}}$ 70% to $30 \% V_{L}$ to $10 \% \mathrm{~V}_{\mathrm{L}}$	-	$\begin{aligned} & 55 \\ & 0.6 \\ & 85 \end{aligned}$	$\begin{gathered} 80 \\ 1 \\ 120 \end{gathered}$	$\mu \mathrm{s}$ V/ $\mu \mathrm{s}$ $\mu \mathrm{s}$

CAPACITANCES

$\mathrm{T}_{\mathrm{mb}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz} ; \mathrm{V}_{\mathrm{IG}}=0 \mathrm{~V}$. designed in parameters.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
C_{ig}	Input capacitance	$\mathrm{V}_{\mathrm{BG}}=13 \mathrm{~V}$	-	15	20	pF
C_{bl}	Output capacitance	$\mathrm{V}_{\mathrm{BL}}=13 \mathrm{~V}$	-	250	350	pF
C_{sg}	Status capacitance	$\mathrm{V}_{\mathrm{SG}}=5 \mathrm{~V}$	-	11	15	pF

[^4]TOPFET high side switch

Fig.4. High side switch measurements schematic. (current and voltage conventions)

Fig.5. Typical on-state resistance, $t_{p}=300 \mu \mathrm{~s}$. $R_{\text {ON }}=f\left(T_{j}\right)$; parameter $V_{B G} ;$ condition $I_{L}=10 \mathrm{~A}$

Fig.6. Typical on-state characteristics, $T_{i}=25^{\circ} \mathrm{C}$. $I_{L}=f\left(T_{j}\right)$; parameter $V_{B G} ; t_{p}=250 \mu s$

Fig.7. Typical supply characteristics, $25^{\circ} \mathrm{C}$. $I_{G}=f\left(V_{B G}\right)$; parameter $V_{I G}$

Fig.8. Typical on-state resistance, $T_{j}=25^{\circ} \mathrm{C}$. $R_{O N}=f\left(V_{B G}\right) ;$ condition $I_{L}=10 \mathrm{~A} ; t_{p}=300 \mu \mathrm{~s}$

Fig.9. Typical operating supply current. $I_{G}=f\left(T_{j}\right) ;$ parameters $I_{L}, V_{B G} ;$ condition $V_{I G}=5 \mathrm{~V}$

TOPFET high side switch
 $I_{B}=f\left(T_{j}\right)$; condition $V_{B G}=16 \mathrm{~V}, V_{I G}=0 \mathrm{~V}, V_{L G}=0 \mathrm{~V}$

Fig.11. Typical off-state leakage current. $I_{L}=f\left(T_{j}\right)$; conditions $V_{B L}=16 \mathrm{~V}=V_{B G}, V_{I G}=0 \mathrm{~V}$.

Fig.13. Supply undervoltage thresholds.
$V_{B G(U V)}=f\left(T_{j}\right)$; conditions $V_{I G}=5 \mathrm{~V} ; V_{B L} \leq 2 \mathrm{~V}$

Fig.14. Supply overvoltage thresholds.
$V_{B G(O V)}=f\left(T_{j}\right)$; conditions $V_{I G}=5 \mathrm{~V} ; I_{L}=100 \mathrm{~mA}$

Fig.12. Status leakage current.
$I_{S}=f\left(T_{i}\right) ;$ conditions $V_{S G}=5 \mathrm{~V}, V_{I G}=V_{B G}=0 \mathrm{~V}$

Fig.15. Typical status low characteristic.
$V_{S G}=f\left(T_{j}\right)$; conditions $V_{B G} \geq 9 \mathrm{~V}, I_{S}=100 \mu \mathrm{~A}$

TOPFET high side switch

Fig. 16. Typical threshold voltage characteristic. $V_{I G}=f\left(T_{j}\right)$; condition $9 \mathrm{~V} \leq V_{B G} \leq 16 \mathrm{~V}$

Fig.17. Typical input clamping voltage. $V_{I G}=f\left(T_{j}\right)$; condition $I_{I}=200 \mathrm{\mu A}, V_{B G}=13 \mathrm{~V}$

Fig.18. Typical status low characteristic, $T_{j}=25^{\circ} \mathrm{C}$. $\left.I_{S}=f(V), S G\right)$ conditions $V_{I G}=5 \mathrm{~V}, V_{B G}=13 \mathrm{~V}, I_{L}=0 \mathrm{~A}$

Fig.19. Typical status clamping voltage. $V_{S G}=f\left(T_{j}\right)$; condition $I_{S}=100 \mu \mathrm{~A}, V_{B G}=13 \mathrm{~V}$

Fig.20. Typical status characteristic, $T_{j}=25^{\circ} \mathrm{C}$. $I_{S}=f\left(V_{S G}\right)$; conditions $V_{I G}=V_{B G}=O V$

Fig.21. Typical battery to ground clamping voltage. $V_{B G}=f\left(T_{T}\right) ;$ parameter I_{G}

TOPFET high side switch

Fig.22. Typical battery to load clamping voltage. $V_{B L}=f\left(T_{j}\right) ;$ parameter $I_{L} ;$ condition $I_{G}=10 \mathrm{~mA}$

Fig.25. Typical reverse diode characteristic. $I_{L}=f\left(V_{B U}\right)$; conditions $V_{I G}=0 \mathrm{~V}, T_{j}=25^{\circ} \mathrm{C}$

Fig.26. Typical overload characteristic, $T_{m b}=25^{\circ} \mathrm{C}$. $I_{L}=f\left(V_{B L}\right)$; condition $V_{B G}=16 \mathrm{~V}$; parameter t_{p}

Fig.27. Short circuit load threshold voltage. $V_{B L(T))}=f\left(V_{B G}\right) ;$ conditions $-40^{\circ} \mathrm{C} \leq T_{m b} \leq 150^{\circ} \mathrm{C}$

TOPFET high side switch

Fig.28. Typical output capacitance. $T_{m b}=25^{\circ} \mathrm{C}$ $C_{b 1}=f\left(V_{B U}\right)$; conditions $f=1 \mathrm{MHz}, V_{\mid G}=0 \mathrm{~V}$

Fig.29. Typical reverse battery characteristic. $I_{G}=f\left(V_{B G}\right)$; conditions $I_{L}=0 \mathrm{~A}, T_{j}=25^{\circ} \mathrm{C}$

Fig.31. Typical short circuit load threshold voltage. $V_{B L(T))}=f\left(T_{j}\right)$; condition $V_{B G}=16 \mathrm{~V}$

Fig.32. Transient thermal impedance. $Z_{t h ;-m b}=f(t) ;$ parameter $D=t_{p} / T$

Fig. 30. Typical overload current, $V_{B L}=8 \mathrm{~V}$. $I_{L}=f\left(T_{j}\right) ;$ parameter $V_{B G}=13 \mathrm{~V} ; t_{\rho}=300 \mu \mathrm{~s}$

TOPFET high side switch

MECHANICAL DATA

Plastic single-ended surface mounted package (Philips version of D²-PAK); 5 leads (one lead cropped)

Fig.33. SOT426 surface mounting package¹, centre pin connected to mounting base.

TOPFET high side switch

DEFINITIONS

DATA SHEET STATUS

DATA SHEET STATUS	PRODUCT STATUS	DEFINITIONS
Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice
Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in ordere to improve the design and supply the best possible product
Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Changes will be communicated according to the Customer Product/Process Change Notification (CPCN) procedure SNW-SQ-650A
Limiting values		
Limiting values are given in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of this specification is not implied. Exposure to limiting values for extended periods may affect device reliability.		
Application information		
Where application information is given, it is advisory and does not form part of the specification.		
© Philips Electronics N.V. 2001		
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.		
The information presented in this document does not form part of any quotation or contract, it is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent or other industrial or intellectual property rights.		

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

[^5]
[^0]: 1 For normal continuous operation. A higher T_{j} is allowed as an overload condition but at the threshold $\mathrm{T}_{\mathrm{j}(\mathrm{TO})}$ the over temperature trip operates to protect the switch.
 2 Reverse battery voltage is allowed only with external resistors to limit the input and status currents to a safe value. The connected load must limit the reverse load current. The internal ground resistor limits the reverse battery ground current. Power is dissipated and the T_{j} rating must be observed.
 3 To limit currents during reverse battery and transient overvoltages (positive or negative).
 4 Of the output power MOS transistor

[^1]: 1 For a high side switch, the load pin voltage goes negative with respect to ground during the turn-off of an inductive load.
 2 On-state resistance is increased if the supply voltage is less than 9 V .
 3 This is the continuous current drawn from the supply when the input is low and includes leakage current to the load.
 4 The measured current is in the load pin only.
 5 This is the continuous current drawn from the supply with no load connected, but with the input high.
 6 Defined as in ISO 10483-1. For comparison purposes only. This parameter will not be characterised for automotive PPAP.
 7 The supply and input voltage for the R_{ON} tests are continuous. The specified pulse duration t_{p} refers only to the applied load current.

[^2]: 1 in a fault condition with the pull-up resistor short circuited while the status transistor is conducting. This condition should be avoided in order to prevent possible interference with normal operation of the device.

[^3]: 1 Undervoltage sensor causes the device to switch off and reset.
 2 Overvoltage sensor causes the device to switch off to protect its load.

[^4]: 1 The batiery to load threshold voltage for short circuit protection is proportional to the battery supply voltage.After short circuit protection has operated, the input voltage must be toggled low for the switch to resume normal operation.
 2 Measured from when the input goes high.
 3 Latched protection. After cooling below the threshold temperature the switch will resume normal operation only after the input has been toggled low.

[^5]: 1 Please consult the most recently issued datasheet before initiating or completing a design.
 2 The product status of the device(s) described in this datasheet may have changed since this datasheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

