Philips Semiconductors

I2C Specific information

EMBEDDED SYSTEMS

Programming the 12C Interface

Programming the

[“C Interface

When intelligent devices need to communicate

he Inter-Integrated Circuit Bus
(“I*C Bus” for short) is a two-
wire, synchronous, serial inter-
face designed primarily for
communication between intel-
ligent IC devices. The I*C bus offers sev-
eral advantages over “traditional” seri-
al interfaces such as Microwire and
R$-232. Among the advanced features
of I2C are multimaster operation, auto-
matic baud-rate adjustment, and “plug-
and-play” network extensions.

Mention the [°C bus to a group of
American engineers and you'll likely get
hit with an abundance of blank stares.
I say American engineers because un-
til recently the I°C bus was primarily a
European phenomenon. Within the last
year, however, interest in [*C in the
United States has risen dramatically.
Embedded systems designers are real-
izing the cost, space. and power sav-
ings afforded by robust serial interchip
protocols.

The idea of serial interconnect be-
tween integrated circuits is not new.
Many semiconductor vendors offer de-
vices designed to “talk” via serial links
with other processors. Current examples
include Microwire (National Semicon-
ductor), SPI (Motorola), and most re-
cently Echelon’s Neuron chips. In all cas-
es. the goal is the same: to reduce the
wiring and pincount necessary for a par-
allel data bus. It simply does not make

Mitch is a senior strategic development
engineer for Intel and can be contact-
ed at 5000 W. Chandler Blvd.. Chan-
dler. AZ 85226 or at mkabn@sedona.
intel.com.

Mitchell Kahn

economic sense to route a full-speed
parallel bus to a slow peripheral.

Unfortunately for most serial-bus-
capable devices, the choice of a bus
protocol will dictate the CPU architec-
ture. For example. only two CPU ar-
chitectures implement an on-chip I*C
port. If your choice of architecture pre-
cludes use of these architectures, then
your only option is to implement the
protocol in software.

The software implementation of the
I*C protocol discussed in this article
came about as a result of an implicit
challenge during a statf meeting. One
of our managers proposed that we hire
a consultant to write a software [°C driv-
er for the Intel 80C186EB embedded
processor. Being somewhat new to the

69

| group, I took exception (although not

verbally!) to his suggestion. A weekend
of intense hacking later, [presented the
first prototype of the driver. My reward?
[got to write a generic version of the
driver for general distribution.

Design Trade-offs

Three distinct tasks are involved in im-
plementing the {*C protocol: watching
the bus. waiting for a specific amount
of time, and driving the bus. This be-
came apparent when [flowcharted 1
byte of a tvpical bus transaction: see
Figure 1. The time delays associated
with creating the bus wavetorms would
normally have been relegated to the
80C186EB's on-chip timers. I could not,
however. assume that the end users of
my code would be able to spare a timer
for the software [C port. I had to forego
the elegance (and to some extent ac-
curacy) of the on-chip timers for the
sledgehammer approach of software
timing loops. Luckily, the [*C protocol
is extremely forgiving with regard to
timing accuracy. The decision to use as-
sembly instead of a high-level language
stemmed directly from the need to con-
trol program-execution time. I had nei-
ther the time nor the inclination to hand-
tune high-level code.

Having made the decision to use as-
sembly language, ! faced my next prob-
lem: Could I make the code portable?
[nte! offers a plethora of CPU and em-
bedded-controller architectures. Would
it be possible to make the code some-
what portable berween disparate as-
sembly languages? [found my answer
in the use of macros.

Dr. Dobb's journal, june 1992

Philips Semiconductors

I2C Specific information

Programming the 12C Interface

12¢

All the basic building blocks of the
[2C protocol (wartching, waiting, and do-
ing) can be compartmentalized into dis-
tinct macros. The algorithms that make
up the [’C driver are written with these
macros as the framework. You don't
need to understand the intricacies of the
I°C protocol to port these routines—
you just need to know how to make
vour CPU watch, wait, and do.

For exampile, a 4.7_u$ delay is a com-
mon event during a transter. The macro
%Wait_4_7_uS implements just such a
delay by using the 8086 LOOP: instruc-
tion with a couple of NOPs for tuning;
see Example 1(a). Total execution time
is readily calculated from instruction tim-
ing tables. The same macro is ported to
the 1960 architecture in Example 1(b).
Although I am a neophyte when it

Drive SCL Low

Wait 2.35 uS

Assert Nth Data
Bit on SDA

Wait 2.35 uS

Drive SCL High

No (wait state)

SDA Valid?
Abort

Yy (arbitration loss)

Orive SCL low

Wait 2.35 uS

comes to {960 programming, [had no
problems porting the core macros.

Hardware Dependencies

A few words about the target hardware
are in order before I discuss the code.
Any implementation of the [*C protocol
requires two open-drain (or open-col-
lector), bidirectional port pins for the
Serial Clock (SCL) and Serial Data (SDA)
lines. The code in this article was de-
signed for the 80C186EB embedded pro-
cessor, which has two open-drain ports
on-chip. The two pins, P2.6 (SCL) and
P2.7 (SDA), are part of a larger 8-bit
port. Processors without open-drain I/O
ports can easily implement 1?C with the
addition of an external open-collector
latch.

Two special-function registers, P2PIN
and P2LTCH. are used to read and write
the state of the port pins. The 80C186EB
allows the special-function registers to
be located anywhere in either memo-
ry or 1/O space. For this implementa-
tion, I chose to leave the registers in
/O space, even though this limited my
choice of instructions. The 80186 ar-
chitecture does not provide for read-
modify-write instructions in /O space
(an AND to I/O. for example); it can
only load and store (IN and OUT). So
why did I limit myself? Again, I had to
assume the lowest common denomi-
nator for our customers when design-
ing my code.

Building the Framework

Early on in development. I decided to
partition my code macros according to
physical processes involved in the 1*C

protocol. Code not directly involved in
mimicking the actions of a hardware [’)C
port was not written as macros. For ex-
ample. the code necessary to access the
stack frame is not written as a macro,
whereas the code needed to toggle the
clock line is. This was done to isolate
architecture-dependent code sequences
from the more generic [°C functions.
Macros were also not used for “gray ar-
eas” such as the shifting of serial data.
which is both architecture dependent
and physical in nature. The [*C func-
tions that passed the litmus test fell in-
to the three aforementioned categories
of watching, waiting, and doing.

The “waiting” macros provide a fixed-
minimum time delay. They are imple-
mented using a simple LOOP § delay.
The LOOP instruction decremenis the
CX register, then branches to the target
(in this case itself) if the result is non-
zero. The delay is (n-1)*15+5 clocks,
where n is the starting value in the CX
register. All the delays were calculated
assuming a 16-MHz clock rate (62.5
nanoseconds per clock). The code still
works at lower CPU speeds because the
[%C protocol only specifies minimum
timings. In fact, the delay macros are
only “accurate enough.” providing tim-
ings as close as I could get to the spec-
ified minimum without undue tuning.

The “watching” macros are “spin-on-
bit” polling loops. These pieces of code
wait for a transition on the appropriate
I%C line to occur before allowing execu-
tion to continue. There are two polling
macros for each of the two IC signal
lines; one for high-to-low transitions and
one for low-to-high transitions. The

(a)

$*DEFINE (Wait_4_7_us) (
mov cx, S H
loop $ H
nop ;
nop P

(0)

define(Wait_4_7_us,'

1da 0x17, r4 4
#

Ob: cmpdeco 0, r4 #
bne.t 0b #
#

#

#

#

#

#

#

")

4 clocks

4#15+5 = 65 clocks

3 clocks

3 clocks

total = 75 clocks

75 * 62.5ns = 4.6%uS (close enough)

instruction may be issued in parallel
so assume no clocks.

compare and decrement counter in r4
if '=0 branch back (predict taken
branch)

The cmpdeco and bne.t together take 3
clocks in parallel minimum.

0x17 (25 decimal) * 3 = 75 clocks

at 16MHz this is 4.69uS

Figure 1: Flowchart of process for
transmission of a single bit.

Example 1: (a) 80C186 implementation of 4.7_uS wait macro; (b) 80960CA

implementation of 4.7_uS wait macro.

70

Dr. Dobb's Journal. June 1992

Philips Semiconductors

I2C Specific information

Programming the 12C Interface

Kl

polling of the SCL line that gives rise to
an important feature of [*C: automatic,
bit-by-bit baud-rate adjustment. Any de-
vice on the [°C bus may hold the clock
line low in order to stall the bus for
more time (a serial wait state). The oth-
er devices on the bus are then forced
to poll the SCL line until the slow de-
vice releases control of the clock.

The %Get_SDA_Bit macro also falls
under the category of “watching.” Its
function is simply to return the state of
the SDA line without waiting for a tran-
sition. %Get_SDA_Bit is used primarily
to pull the serial data off the bus when
the clock is valid.

The “doing” macros control the state
of the clock and data lines. As with the
polling macros, there are four types—
one for each transition of the SCL or
SDA lines. The “doing” macros are
named to reflect the physical operations
they perform. For example, %Drive_
SCL_Low always drives the SCL line to
a low state. %Release_SCL_High, on the
other hand, relinquishes control of the
SCL line, which may then be pulled high
or driven low by another device on the
bus. A read-modify-write operation is
used for the bit manipulation so that the
other 6 bits of Port 2 are not affected
by the I*C operations.

Getting on the Bus

Three procedures were created using
the macro framework. I'll describe on-
ly the master transmit (Listing One, page

Start
Byte = 12C address|
N=1

Transmit bit N

ATK

received?
Abort

Y

Last
Byte?

Byte ++;
Get byte;
N=1;

y

Stop

Figure 2: Flowchart for [°C transmit
procedure.

106) and master receive functions (List-
ing Two, page 108), as they represent
the needs of most I*C users. The slave
procedure is long and intricate and will
not be described here.

An [’C master transmission proceeds
as follows:

1. The master polls the bus to see if it
is in use.

2. The master generates a start condi-
tion on the bus.

3. The master broadcasts the slave ad-
dress and expects an acknowledge
(ACK) from the addressed slave.

4. The master transmits 0 or more bytes
of data, expecting an ACK following
each byte.

5. The master generates a stop condi-
tion and releases the bus.

The stack frame for the master trans-
mit procedure, 12CXA.A86, includes a
far pointer to the message for transmis-
sion, the byte count for the message,
and the slave address. Far pointers and
far procedure calls are used in all the
procedures. No attempt was made to
conform to a specific high-level lan-
guage cailing convention, although such
a conversion would be trivial. The pro-
cedures save only the state of the mod-
ified segment registers.

The master transmit procedure per-
forms error checking on the passed pa-
rameters before artempting to send the
message. The maximum message length
is set at 64 Kbytes by the segmentation
of the 80186 memory space. This re-
striction could be removed by includ-
ing code to handle segment boundaries.
The transmit procedure also checks the
direction bit in the slave address to en-
sure that a reception was not erro-
neously indicated. Errors are reported
back to the calling procedure through
the AX register. (The exact code is in
Listing One.)

The first step in sending a message is
getting on the IC bus. The macro
%Check_For_Bus_Free simply polls the
bus to determine if any transactions are
in progress. If so, the transmit proce-
dure aborts with the appropriate error
code. If the bus is free, a start condition
is generated. The start condition is de-
fined as a high-to-low transition of SDA
with SCL high followed by a 4.7_u$§
pause. These waveforms are easily gen-
erated with the %Drive_SDA_Low and
%Wait_4_7_uS macros.

All communication on the I*C bus be-
tween the stop and start conditions, in-
cluding addressing and data, takes place
as an 8-bit data value followed by an
acknowledge bit. This lead to the nat-
ural nested loop structure for the body
of the procedure; see Figure 2.

71

The inner loop is responsible for
transmitting the 8 bits of each data byte.
Each transmitted bit generates the ap-
propriate data (SDA) and clock (SCL)
waveforms while checking for both se-
rial wait states and potential bus colli-
sions. A bus collision occurs when two
masters attempt to gain control of the

Three distinct tasks
are involved in
implementing the
I2C protocol:
watching the bus,
waiting for a specific
amount of time, and
driving the bus

bus simultaneously. The [*)C protocol
handles collisions with the simple rule:
“He who transmits the first 0 on the SDA
line wins the bus.” To ensure that we
(the master transmit procedure) own the
bus, the SDA line is checked whenev-
er transmitting a 1. If a 0 is present, then
a collision has occurred (because an-
other master is pulling the line low),
and the transfer must be aborted.

Control is turned over to the outer
loop after the 8 bits of data (or address)
have been transmitted. The outer loop
immediately checks for an acknowledge
from the addressed slave. The transfer
is aborted if an acknowledge is not re-
ceived. At the end of the ACK bit the
message length counter is decremented.
Control is returned to the inner loop if
more data remains, otherwise a stop con-
dition is generated and the master trans-
mit procedure terminates.

Registers are used for intermediate re-
sult storage throughout the body of the
procedure. For example, the AH reg-
ister is used to hold the current value
(either address or data) being shifted
onto the SDA line. This eliminates the
need for local data storage within the
procedure.

On the Receiving End

The steps invoived in an 1C master re-
ceive transaction are almost identical to
those in transmission:

1. The master polls the bus to see if it
is in use.
2. The master generates a start condi-

Dr. Dobb’s journal, June 1992

Philips Semiconductors

I2C Specific information

Programming the I2C Interface

| ?

tion on the bus.

. The master broadcasts the slave ad-
dress and expects an ACK from the
addressed slave

. The master receives 0 or more bvtes
of data and sends an ACK to the slave
after each bvte. The master signals
the last byte by not sending an ACK.

. The master generates a stop condi-
tion and releases the bus.

e

+

5

A far pointer to the receive butfer is
passed on the stack to the master re-
ceive procedure. The remainder of the
parameters—slave address and mes-
sage count—are identical between the
wo procedures. The received message
length is fixed at 64 Kbytes. again be-
cause of segmentation. The error-check-
ing, bus-availability sensing, and start-
condition generation sections ot the
receive procedure are lifted verbatim
from the transmit code.

The structure of the receive proce-
dure ditfers slightly once the start con-

Start |
Byte = 1°c address|

(This block

Transmit represents
one pass

Address byte through he
N=1 transmit

|

‘ No ACK ’ ‘ Send ACK 1

Byte ++
N=1
|

|

Stop

Figure 3: Flowchart for [2C receive
procedure

. dition hus been generated: see Figure
i 3. The slave address is transmitted us-
ing one iteration of the transmit proce-
dure’s outer loop. Control is passed to
the receive loop once the slave acknow-
ledges its address.

The receive loop structure is patterned

inner loop controls the clocking of the
SCL line and the shifting of the serial da-
ta off the SDA line into the CPU. Eight
iteranons of the inner loop are performed
to receive each byte. The outer loop
stores the received byte in the butfer.
decrements the byte count. then sends
an ACK to the slave. The last data byte
is signalled by not sending an ACK.

Using the Procedures

Listing Three (page 110) shows a short
program that uses both the master trans-
mit and master receive procedures. The
call to procedure 12C_XMIT displays the
word "bUS-" on a four-character, sev-
en-segment display controlled bv the
SAA1064 I°C compatible display driver.
The ume of day is read from the
PCF8383 real-time clock by the call to
procedure [2C_RECV.

Please note that interrupts must be
disabled during the execution of both
procedures. An interruption at an in-
opportune time (when the master is not
in control of the clock) could cause the
bus to hang. If you need to service in-
terrupts periodically, then enable them
only when the clock is driven low.

These procedures have been tested
on a wide array of I’C devices ranging
from serial EEPROMSs to voice synthe-
sizers. No compatibility problems have
been seen to date.

Enhancing the Code
I've kicked around many ideas for en-
hancing the I°C procedures. You could.

All the basic
building blocks of
the I°C protocol
(watching, waiting,
and doing) can be
compartmentalized
into distinct macros

72

after that of the transmit procedure. The |

for example, replace the timing loops
with umed interrupts. That way, the CPU
could perform useful work during the
pauses. Along the same lines, the paus-
es could be scheduled using a real-
time kernel. again improving CPU
throughput. Finally. vou could add a
high-level language culling structure.
The use of timed interrupts adds an
order of magnitude to the complexity
of the code, but would be worth it for
high-performance. real-time systems.

Conclusion

I°C is not the only game in town when
in comes to serial protocols. Hopetully,
some of the techniques presented here
will carry over into the development of
other “simulated” serial protocols. such
as those targeted at the home-automa-
tion market. Who knows, maybe some-
day a snippet of my code may find its
way into a truly intelligent dishwasher.
I'll be waiting....

References
I2C Bus Specification. Philips Corpora-
tion (undated).

Doy

Reprinted with permission of Dr.
Dobb’s Journal, 1992
Entire contents copyright © 1992
by M&T Pubiishing, Inc.

Unless otherwise noted on specific articles.
All rights reserved.

ABP m
6 Audit
American Business Press Bureau

Philips Semiconductors

a North American Philips Company

811 E. Arques Avenue
P.0. Box 3409
Sunnyvaie, California 94088-3409

Philips Semiconductors

I2C Specific information

Exploring 16

souydoanyzin g

erial data buses are a well-

proven tool in embedded

systems. When you are com-

municating with slow per-

ipheral devices, serial buses
are often often more convenient and less
expensive than parallel buses. Addi-
tionally, a serial interface featuring a
UART or similar intermediary chip
can also serve to isolate the CPU from
noise and line glitches that might bring
down the house if they were to occur on
the processor bus. Peripherals can usu-
ally be controlled over a much greater
distance by a serial bus. The serial ap-
proach offers greater resilience and
noise immunity.

The price you pay for the conve-
nience is a slower transmission rate and,
possibly, the need for added interface
circuitry at higher voltages. Many per-
ipheral devices, however, are not in con-
stant communication with the CPU and
are not greatly affected by a slower bus.
On the hardware side, any added inter-
face circuitry required for serial-bus
support is frequently compensated for
by the resulting simplicity and tighter
pinout of the serial peripherals.

CHOOSING THE PROPER ROUTE
aving decided that a serial bus
H makes sense for your applica-
tion, your next task is to select
the most appropriate bus and protocol.
Here, as with rapid transit, your choice
should be determined by your destina-
tion. Contrary to what some peopie may
tell you, the choice of bus and protocol
depends at least as much on the nature
of the system’s software as it does on the
manufacturer’s data sheets.
Consider, for example, the serial-pe-
ripheral interface (SPI) and multidrop

73

Exploring 12C

The choice of bus
and protocol
depends at least as
much on the
system’s software
as it does on the
manufacturer’s
data sheets.

serial buses. Both buses are popular, but
each exhibits severly constrained per-
formance in large networks. SPI, as em-
bodied in the Motorola 6800 family,
was designed primarily for one-on-one
exchanges between two devices. Simi-
larly, the multidrop approach used in
various 8051 family members as well as
in the 68HCI11 and various UART
chips finds its broadest expression in
RS485/422 half-duplex transmissions.
Mulitidrop has no deterministic arbitra-
tion scheme between multiple masters,
leaving it mainly suitable for single-
master multiple-slave situations. (For
more on multidrop, see Jack Woehr's
article, “Multidrop Processing,” Em-
bedded Systems Programming, March
1990, pp 58-67—ed.) A different ap-
proach is to use a three-wire protocol
called MicroWire, available from Na-
tional Semiconductor in Santa Clara,
Calif., which is fine for use with addres-
sable peripherals, but requires an indi-
vidual chip select for each device ad-

lips Semiconductors

12C Specific information Exploring 12C

xploring
2

dressed. The added wiring offers no
advantage to developers, and the bus of-
fers nothing towards achieving multi-
ple-mastering capabilities.

One of the more versatile options
available to developers is the [*C bus
promulgated by Philips/Signetics in
Sunnyvale, Calif. I*C allows you to set

Figure 1
Generation of acknowledge.

up a multiple-master. multiple-slave
communications bus with conflict arbi-
tration. using only twisted-pair wiring
to connect the processors and peripher-
als. Philips/Signetics has moved to sup-
port this protocol (which is quite popu-
lar in Europe) with a large assortment
of interesting doodads, and is actively

[2 3 4 S 6 7 8 9
<N NANNNNNNS
SN T T

SDA
(slave)

74

Open-collector
configuration
means that the
output stage can
only pull the node
to ground.

encouraging other manufacturers to
join in the fun. If your next design fea-
tures a microprocessor that supports
[*)C or you are prepared to implement
[*C in software using a PIA as this arti-
cle illustrates, your reward could be a
decreased chip count and lower power
consumption—along with a comfort-
able distributed-programming model
for peripheral devices.

[’C is more flexible than the proto-
cols noted above. since only two wires
are required to service a large network
of addressable masters and addressable
slaves. A third wire may be added if in-
terrupt service is required, though Phi-
lips/Signetics microprocessors featur-
ing [)C support feature on-chip cir-
cuitry and are capable of interrupting
the processor upon receipt of a valid
address.

HOW I°’C WORKS
he I*C bus consists of two lines:
| serial clock (SCL) and serial
data (SDA). The beauty of the
[C bus is that each of these lines is bi-
directional. Bidirectional means that
everything on the bus is equal, uniike
most other serial-peripheral busses such
as SPI or MicroWire, which have dedi-
cated inputs and outputs. Each I'C
transaction line (SCL and SDA) is an
open collector of output and input. The

Philips Semiconductors

I2C Specific information

Exploring 12C

pullup resistor is external.

Open-collector (actually, they are
CMOS. so “open drain™ is more appro-
priate) configuration means that the
output stage can only pull the node to
ground. A passive resistor pulls the node
high, which means that any number of
open collector outputs can be connected
together with no deliterious results, be-
cause it 1s impossible to pull more cur-
rent through the resistor than any one
output will produce. Tying outputs to-
gether will produce disastrous results if
the same procedure is tried with stan-
dard TTL outputs. [f some of the out-
puts go high and some are low, the cur-
rent is unlimited and the logic level of
the output will be in an indeterminate
state. Tying open-collector outputs to-
gether is also known as “wire ORing” be-
cause if either A or B goes low, so does
the single-output line.

The I*)C bus speed is specified at a
maximum SCL rate of 100kHz SCL,
which, admittedly, is not blazingly fast.
The speed limit stems from the meager
ability of a pullup resistor to source cur-
rent to a long distributed line of peri-
pherals. The 10-microsecond period al-
lows plenty of time to charge the
parasitic capacitance of the wires. (The
maximum specified wire capacitance is
400 pF.)

PUTTING IT TOGETHER

Ithough I)C supports multi-
A ple-master operation, here we

use single-master, single-slave
transactions to keep the example code
simple. The master. as you might imag-
ine, is defined as the unit that initiates
the data transfer and generates the
SCL signal. (In a multimaster system,
each master would be responsible for
generating its own SCL signal.) In our
example, based strongly on the design of
one of our company’s single-board com-
puters, the processor doesn’t directly
support [)C. Instead, we've implement-

ed the [*C bus using a couple of the pins
on an 8255 peripheral [/O chip. Conse-
quently, the bulk of the example appli-
cation code is simple setup and house-
keeping routines. (Steven R. Wheeler's
example application listing was a bit
too long to run in this issue. Interested
readers may download it from the li-
brary 12 of CLMFORUM on Compu-
Serve or from the Embedded Systems

Figure 2

Start and stop conditions.

SbA

Programming bulletin board service at
(415) 905-2689—ed.)

By definition. a slave can be any pro-
cessor or peripheral that responds to the
master. Slaves all have unique, 7-bit ad-
dresses that are based on the device type
and the wiring of address pins on the
chip. All I*C peripherals have the top
nibble of an address built in. For the
PCF8574 1/0-port expanders we're us-

TN T N

Stop

Start

75

Philips Semiconductors

I2C Specific information

Exploring 12C

Exploring
G

ing as examples, the address is 0100xxx.
The xxx indicates the address selected
by the state of the three address pins on
the peripheral.

[*C serial transactions are always
eight bits of data from the transmitter
followed by a ninth ACK bit from the re-
ceiver. The first step in any I’C data
transfer is to send the address of the
slave on the SDA line. This act might
seem confusing, since we seem to be
mixing 7-bit addresses with 8-bit data.
In practice, it’s quite easy to work with:
addresses are always seven bits long,
and the eighth bit is used to determine
whether the operation is a read or a
write, For example, upon transmitting
01000001 to the PCF8574, the slave, as-
suming it exists on the bus and is
strapped to address 000, will respond
with a low on the SDA line after the
master has finished with its last (eighth)
data bit. The master leaves the line
high. If it doesn’t find a slave with ad-
dress 10000, the data line will remain
high and a failed communication at-
tempt can be detected.

If a slave is connected, it begins put-
ting data on the SDA line as soon as it
has detected that the eighth bit is set
(which is a read request). The SDA line
is driven to the data level when the SCL
line is low. Data is read when SCL is
high, so SDA must not change when
SCL is high. This protocol leads to a

simple definition of the start of an [*)C
transaction—SDA goes from high to
low when the clock is high.

The end of a transaction is equally
simple to detect: SDA goes from low to
high when SCL is high. This cycle
leaves SDA and SCL in the high state,
which is necessary if any other open-
collector I*C peripheral wants access to
the bus. Figure 2 illustrates the start
and stop conditions of an I*C bus
transaction.

ADDITIONAL DESIGN ROUTES

s you've seen, the I*C protocol
A is easy to work with and rela-

tively simple to implement,
even if you're not using a processor that
directly implements it. If you're not
planning to use Philips/Signetics mi-
croprocessors with onboard I*C support
(such as the 68070 or various members
of the 8051 family), you can still use the
wide variety of available peripheral
chips.

The number of integrated circuits
using the [*C serial bus is increasing all
the time. Application-oriented inte-
grated circuits that support I*C include
a voice sythesizer, a transcoder for IR
remote control, several digital tuning
circuits for computer-controlled televi-
sion, several audio processors, PLL fre-
quency synthesizers, tone generators,
and frequency synthesizers. General-

Reprinted with permission from

purpose integrated circuits using [’C in-
clude LCD drivers, digital-to-analog
converters, SRAMs, EEPROMs, and a
RAM clock/calender.

I*C is very popular in Europe, where
Philips has been aggressively marketing
this flexible method of extending pe-
ripheral support to control projects, and
it is currently catching fire on this side
of the Atlantic. It seems reasonable to
expect that, given the burden of printed-
wire requirements for embedded sys-
tems based on increasingly wider chip
buses, more and more designers seeking
economy of means will be attracted to
the economy of I*C.

Steven Sarns is the president of Vesta
Technology in Wheat Ridge, Colo. He
is a member of Mensa, Intertel, and the
Michigan Society of Professional En-
gineers. Sarns is also a founding mem-
ber of the Denver chapter of the Forth
Interest Group.

Jack Woehr is a senior project manager
at Vesta Technology Inc. in Wheat
Ridge, Colo. He is a Chapter Coordin-
ator for the Forth Interest Group and is
currently a member of the X3J14 Tech-
nical committee for ANS Forth. He can
be reached by E-mail as jax@well.sf
.ca.us or as VESTA on GEnie.

EMBEDDED SYSTEMS PROGRAMMING, September 1991

76

© 1991 MILLER FREEMAN PUBLICATIONS

Philips Semiconductors

I2C Specific information

"BYMARK GARDNER

Biz-Banging
Serial Ports

hey say that necessity is
the mother of invention.
and it certainly seems to
be the case in embedded
systems work. No sooner
do vou accomplish the impossible in one
project than your boss or customer asks
you to do it again, only faster and
cheaper this time. Even when you're
working with low-cost microcontrollers,
there’s still that incentive to make
things cheaper through magic software.

Performing miracles through soft-
ware trickery is a skill that all embed-
ded developers must cultivate. An op-
portunity for me to practice such tricks
came in the form of a project using the
Signetics 8x751 microcontroller. The
8x751 is an 8051 derivative that has no
internal serial port—no attachment of
SBUF shift registers to RxD and TxD,
no diversion of timers to baud rate pac-
ing, no serial interrupts. But the chip is
low-priced and offers a small-footprint,
and hence is desirable in many applica-
tions. Where the price or size outweighs
the need for a simple serial port, one
must be built out of firmware by appro-
priately controlling a single bitin a port.
The practice is affectionately known as
~bit-banging.”

The approach I'll describe here has
the advantages of being simple and fast.
There is no transmit state-machine, no
special provision for start and stop bits,
and it takes less than two dozen ma-
chine cycles for each bit. [t has a further
advantage that the data doesn’t need to
be specially organized for transmitting.
That is, the bits that are adjacent in the
transmit data stream don't need to be
adjacent when they are stored in mem-
ory. This soiution is for a transmitter
only, but I have used a similar procedure
for receiving.

I

The shift (or
rotate) operation
is the first thing
that comes to
mind when you're
designing cade to
provide a serial
data output.

My project was required to operate
at 9600 baud. This rate gives a per-bit
time of 104 microseconds. or 104 cycles
if you're using a 12-MHz part. The ap-
plication in question had plenty of other
activities as well as a serial port (such as
reading a serial analog-to-digital con-
verter, performing averages. and soon),
so it was imperative that the serial port
handling take an absolute minimum of
time. Since [chose to execute in a fixed-
time loop (to avoid interrupt overhead),
it was also a goal that the code take a
fixed amount of time regardless of the
current transmit state.

THE STRUCTURE POINTER SOLUTION

enerally, the shift (or rotate)
G operation is the first thing that

comes to mind when you're de-
signing code to provide a serial data out-
put—the format of the data suggests
such a scheme. With this approach.
however. special states and a counter are
needed to provide the start and stop bits
and to sequence through the set of bytes

77

Bit-Banging Serial Ports

to be transmitted.

The method presented here provides
an array of structures (in the code or
PROM space) that defines the transmit
sequence bit by bit and uses a pointer to
this array as the only controlling ele-
ment. This means that only two bytes of
scarce internal RAM is used.

Philips Semiconductors

I2C Specific information

Bit-Banging Serial Ports

The structures are referenced con-
secutively. Each gives the source of a bit
to be transmitted and a flag to indicate
whether the pointer should be increased
to point toa new bit. The transmission is
terminated by having a structure that
refers to an “idle” bit and does not in-
crease the pointer. Transmission is initi-

ated by changing the pointer to point to
the first structure. Start and stop bits
are not distinguished from data bits.
The bit update portion of the code is
constant-time, and the pointer update
can be easily padded if necessary to
achieve this part of the goal.

Franklin’s C51 compiler was used

78

for the work described here. The 8x751
does not support external RAM, so the
smalil model is used. (If the transmit
data resided in external RAM. the algo-
rithm could be applied, but would be
expected to take a little longer to
execute.)

THE DECLARATIONS
he structure that provides indi-
I vidual bit definitions is:

// transmit bit-reference structure
struct BR |

unsigned char index :

unsigned char mask ;

unsigned char bump :
No memory is allocated by this defini-
tion—it is essentially a typedef. The ac-
tual allocation and initialization are
provided by the definition (in a header
file, send _seq.h, in this case) of the Bit-
Ref array:

code struct BR BitRef[41] = { ... } ;

where the details will be given in a mo-
ment. The pointer is detined as:

- // pointer to BitRef structure array

data struct BR code *BR_ptr :

In Franklin's C51. the declaration
tokens are interpreted as follows. In the
struct BR declaration, the token code as-
signs the BitRef array to program mem-
ory (which is then accessed with the move
instruction). In the *BR_ptr declaration,
the token code implies that BR_ptr is ex-
clusively a pointer to the program space.
so it requires only two bytes to be com-
pletely defined. The token data causes
the compiler to store the pointer valuein

Philips Semiconductors

I2C Specific information

Bit-Banging Serial Ports

internal RAM. (Since [was using the
small model, this would have been the
default storage anyway.)

The index entry in each structure al-
lows the serial bit to be selected from an
array of bytes called transmit{4] in my
case. The transmit array can. if desired,
be set up to literally overlay all of the
internal memory, so that the maximum
“random access” can be achieved. This
was not necessary in my case.

The physical port pin to be exercised
1s defined:

/* transmit is on P3.3 */
sbit TransBit = 0xB3 :

THE STRUGTURE INITIALIZATION

ach bit to be transmitted is de-
E fined by an index and mask.

These are initialized in the Bit-
Ref structure so that characters can be
formed as desired in the output bit
stream. The index is the offset within
the transmit array. The initialization in

my case. for a sequence of 40 bits mak-
ing up four characters, was:

code struct BR BitRef[41] =

// index mask bump comment

3 . b061000000 . 1.

/ 0 start bit

1. b00C00001 . 1. // DB

1. 60000000 . . // D7

4 . b0ooooc100 . 1. // D8

1. b00001000 . 1. /09

1. b00010000 . 1. // D10

1. 500100000 . 1. // OM

3 . b10000000 . 1. // 1 fixed

3 . b710000000 . 1. /1 fixed
3. b710000000 . 1. // 1 stop bit

3 . b01000000 . 1.

/0 start bit

3 . b071000000 . 1, // 0 fixed
3 . b70000000 . 1. /71 stop bit
3 . b10000000 . 0 // 1 idle bit

(The “masks™ are given in binary nota-
tion. [See “A Binarv Upgrade for C.”
pp. 60-62.—E£d.] Because of my assem-
bler and hardware background. this no-

The “bump” is a
flag that continues
the transmission.
When it finally
reaches 0, the
serial output
sequence will
stop.

tation is natural for me in bit mask
references.)

The “index" refers. as mentioned. to
the element of “transmit” in which the
bit resides. Some initialization code has
guaranteed that the upper two bits of
transmit[3] will be 10, so that they can
be referred to for start and stop bits and
for any fixed-value bits that happen to
be in the data stream (in my case. the
fixed bits are used to indicate data byte
order).

79

The “bump” is a flag that continues
the transmission. When it is finally 0,
the serial output sequence will stop.

THE CODE
he code fragment that accom-
I plishes the transmission is:

(a) TransBit =
(bit){ transmit{ BR_ptr-)index]
3 BR_ptr-)mask) :
(b) if (BR_ptr-)bump)
BR_ptr++ :

The program sequence for section (a)
looks like this:

BR_ptr-)index

-- looks up current index. then used in
transmit[index]

-- to get byte with desired bit.

then ANDed with mask

BR_ptr-)mask

-- to get zero/nonzero value. which
(bit)(value & value)

-- is then cast to a bit for output
TransBit = bit

-- to port pin. the ultimate goal.

The pointer is increased in (b), depend-
ing on the value of BR_ptr-)bump. As in-
dicated earlier, this is a/ways one except
in the last structure, so the serial trans-
mission always proceeds to the defined
end. The statement:

BR_ptr = &BitRef[40] :

in imtalization will keep the transmit-
ter off during startup, and:

BR_ptr = BitRef :

is used to initiate a transmission

sequence.

Philips Semiconductors

I2C Specific information

Bit-Banging Serial Ports

Bir-Banging
SerialPorts

The previous transmitting code com-
piles, with only a little manual assis-
tance, to:

: TransBit = (bit)(transmit[
BR_ptr-)index] & BR_ptr-imask) :
MOV DPL.BR__ptr+QH
MoV OPH.BR_ptr

CLR A

MOvC A, @A+OPTR
ADD A stransmit
MoV RO.A

MOV A.@R0

MoV R7.A

INC OPTR

CLR A

MOVC A.@A+OPTR
ANL A.R7

ADD A.#0FFH
MOV TransBit.C
: 1f (BR_ptr-)bump)

INC DPTR

CLR A

MOVC A.@A+DPTR

JZ 200011
BR_ptr++ :

MY A, #03H

ADD A.BR_ptr+0H

MOV BR_ptr+0’H.A

CLR A

ADDC A.BR_ptr

MOV BR_ptr.A
200011:

The assembly language code reveals
that the mechanism is pretty efficient.
This method is in use in one of my cli-
ents’ products and has proved effective.

BIT-BANGING WORKS
his bit-banging solution serves
I to provide serial transmission in
an embedded system that has
no hardware specifically dedicated to
the function. Although alternate and
more traditional solutions would have
worked, the need for speed encouraged
development of a code-pointer-based
solution that works fast enough in this
case and takes up only two internal
RAM bytes for operation. I hope that
this presentation will prove to be useful
for you.

Mark Gardner is a consultant based in
Acton, CA. He has been designing
hardware and writing firmware for em-
bedded systems for over 15 years. He
has an MS in electronic engineering
Sfrom the University of Illinois.

For more information. contact:

Philips Semiconductors

811 E. Arques Avenue

P.O. Box 3409

Sunnyvale, CA 94088-3409
(408) 991-3552

Reprinted with permission from EMBEDDED SYSTEMS PROGRAMMING, September 1993

© 1993 MILLER FREEMAN INC.
80

