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EMBEDDED SYSTEMS 

When intedigent devices need to communicate 

mgs-afforded by’robust se&l mterchip 

T 
he Inter-Integrated Circuit Bus 

protocols. 

(“1% Bus” for short) IS a two- 
wire, synchronous, serial inter- 
face designed pnmanly for 
commumcation between intel- 

ligent IC devices. The 1% bus offers sev- 
eral advantages over ,.traditlonal” seri- 
al interfaces such as LMicrowlre and 
RS-232. Among the advanced features 
of 1% are multimaster operauon, auto- 
matic baud-rate adjustment, and .‘plug- 
Jnd-play ’ network extensions. 

,Mention the 1% bus to a group of 
Amencan engmeers and you’ll likely get 
hit with an abundance of blank stares. 
I say Amencan engmeers because un- 
tll recently the 12C bus was pnmanly a 
European phenomenon. Withm the last 
year, however, Interest m I‘C in the 
Unite ,d States has risen dramatIcally. 
Embe tdded systems designers are real- 
zmg the cost. soace. and Dower sav- 

The idea of serial Interconnect be- 
tween integrated clrcults IS not new. 
Many semconductor vendors offer de- 
vtces desIgned to ?alk” via serial links 
with other processor. Current exampies 
include Microwire (Xatlonai Semcon- 
ductor), SPI (~Motorolaj, and most re- 
cently Echelon’s INeuron chps. In all cas- 
es, the goal is the same: to reduce the 
wiring and pmcount necessary for a par- 
allel data bus. It simply does not make 
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economic sense to route a full-speed 

Unfortunately for most serlal-bus- 
capable devices, the choice of a bus 

parallel bus to a slow penpherai. 

protocol wdl dictate the CPU architec- 
ture. For example, onlv two CPU ar- 
chltectures implement an on-chip 1% 
port. If your choice of architecture pre- 
cludes use of these architectures, then 
your only opuon IS to tmpiement the 
protocol in software. 

The sobare lmpiementatlon of the 
1% protocol discussed m this article 
came about as a result of an ~mphclt 
challenge during a staff meetmg. One 
of our managers proposed that we hire 
a consultant to write a software 1% driv- 
er tar the Intel 8OCl86EB embedded 
processor. Being somewhat new to the 
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group. I took excepuon (although not 
verballv!) to his suggestIon. .A weekend 
of intense hacking later, I presented the 
first prototype of the driver. My reward? 
1 got to write a generic version of the 
dnver for general distnbutlon. 

Design Tmde-offs 
Three distmct tasks are mvolved m im- 
plementmg the 12C protocol: watching 
the bus, waltmg for a spectiic amount 
of time, and driving the bus. This be- 
came apparent when I flowcharted 1 
byte of a typical bus transaction: see 
Figure 1. The time delays associated 
with creatmg the bus waveforms would 
normally have been relegated to the 
8OCl86EB’s on-chip timers. I could not, 
however. assume that the end users of 
my code would be able to spare a urner 
for the software 12C prt. I had to forego 
the elegance (and to some extent ac- 
curacvj of the on-chip timers for the 
sledgehammer approach of software 
timing loops. Luchlv, the IlC protocol 
IS extremely forglvmg with regard to 
ummg accuracv. The declslon to use as- 
sembly tnstead of a high-level language 
stemmed drectly from the need to con- 
trol program-execunon time. I had ne;- 
ther the tme nor the m&anon to hand- 
tune high-level code. 

Havmg made the decision to use as- 
sembly language, I faced mv neaxt prob- 
lem: Could I make the code portable? 
Intel offers a plethora ot CPU and em- 
bedded-controller architectures. Would 
it be possible to make the code some- 
what portable between disparate as- 
sembiv languages? I found mv answer 
m the use of macros. 
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AH the basic bu1ldmg blocks of thj 
I? protocol (watching, welting, and dc 
In9 can be compartmentalized into dk 
tmct macros. The algorithms that makl 
up the IlC driver are written with thesg 
macros as the fmmework. You don 
need co understand the mtncac1es of thg 
I? protocol to port these routines- 
you just need to know how to makf 
your CPU watch, Walt. and do. 

For example, a 4,7_uS delay IS a corn 
mon event during a transfer. The macn 
%Wazt_4_ i_u.S implements lust such 
delay by usmg the 8086 LOOP instruc 
t1on with a couple of NOPs for tunmg 
see Example l(a). Total execuuon t1mf 
LS readily calculated from mstrucuon m 
ing tables. The same macro IS ported t( 
the 1960 architecture 1n Example l(b: 
Although I am a neophyte when I 

I I 

I I Drive SCl_ Low 
, 

1 Assert Nth Data 

51t on SDA 

+7 Wad 2.35 pS 
I. , 

No 

comes to i960 programng, I hJd no 
problems portmg the core macros. 

Hardware Dependencies 
A few word5 about the target hardware 
are 1n order before I discuss the code. 
Any 1mplementatlon of the I?C protocol 
requires two open-drain (or open-col- 
lector), bidirectional port pins for the 
Serial Clock (SCLJ and Serial Data C SDA) 
lines. The code 1n this article was de- 
s1gned for the 8OCl86EB embedded pr@ 
cessor, which has two open-dram ports 
on-chip. The two pms, ~2.6 ECL) and 
P2.7 (SDA), are part of a larger &bit 
port. Processon wIthout opendram I/O 
ports can easdy implement I’C wKh the 
addition of an eZxtemal open-collector 
Iacch. 

Two spec1aMuncuon registers, P2PIN 
and P2LTCH. are used to read and wnce 
the state of the port pms. The 8OCl86EB 
allows the spec1aMunct:on registers to 
be located anywhere m either memo- 
ry or I/O space. For this 1mplementa- 
non, I chose to leave the registers 1n 
I/O space, even though this iimted my 
choice of instructions. The 80186 ar- 
chitecture does not provide for read- 
modify-wnte instructIons 1n I/O space 
(an AND to I/O, for example): 1t can 
only load and store (IN and OUT?. So 
why did I iirmt myself? Agam, I had to 
assume the lowest common denoml- 
nator for our customers when design- 
1ng my code. 

Building the Fmmewark 
Early on 1n development. I decided to 
parution my code macros according to 
physical processes mvolved in the 12C 

protocol. Code not d1rectiy mvoived m 
lm&ng the acnons of a hardware 1% 
port was not wntten as macros. For ex- 
ample. the code necessarv to access the 
stack frame IS not written as a macro, 
whereas the code needed to toggle the 
clock line is. Thus was done to Isolate 
Architecturedependent code sequences 
from the more generic 1% funcuons. 
lMacros were also not used for ‘.gray ar- 
eas” such as the shtimg of serial data. 
which IS both architecture dependent 
and physical m nature. The 1% func- 
tions that passed the litmus test fell m- 
to the three aforementioned categories 
of watchmg, waiting, and domg. 

The .walting” macros provide a fixed- 
mm~mum time delay They are impie- 
mented usmg a simple LOOP $ delay. 
The LOOP instructIon decrements the 
CX register, then branches to the target 
(in thus case 1t.self3 tf the result 1s non- 
zero. The delay 1s (n-1)*15+5 clocks, 
where n 1s the starting value in the CX 
register. All the delays were calculated 
assuming a ~~-MHZ clock rate (62.5 
nanoseconds per clock). The code still 
works at lower CPU speeds because the 
1% protocol only specifies mmimum 
tlmmgs. In fact, the delay macros are 
only ~‘accurate enough.” providing tlm- 
mgs as close as I could get to the spec- 
ified minimum without undue tunmg. 

The “watching” macros are ‘spin-on- 
bit” polling loops. These pieces of code 
wait for a transItion on the appropnate 
12C line to occur before allowing execu- 
t1on to contmue. There are two polling 
macros for each of the two I’C sIgna 
lines; one for high-to-low transitions and 
one for low-to-high transitions. The 

%*DEFINE(Wait_4_i’_uS) i 

IIWV cx, 5 

loop $ 
nOP 

noP 

; 4 clocks 
; 4*15+5 = 65 clocks 

; 3 clocks 
; 3 clocks 

; total = 75 clocks 

; 15 * 62.5ns = 4.69uS (close enough) 

0-4 

defme(Waltz_4_7_uS,’ 

Ob: 

lda 0x17, r4 

cmpdeco 0, r4 
bne.t Ob 

# instruction nay be Issued in parallel 
# so assume no clocks. 
# compare and decrement counter in r4 
I if !=O branch back (predict taken 
# brancn) 

# ?he cmpdeco and bne.t Cogecher take 3 
# clocks In parallel Cnmum. 
# 
# 0x17 (25 decxml) l 3 = 75 clocks 
# at 16MHz :h~s 1s 4.69uS 

Example 1: cu) 8OCl8G tmplementatzon oj.4 7_US utazt macro: (b) 8096OCA 
implementation of 4 7-1~5 wazt macro 
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polling of the SCL line that gives rise I 
an importanc feature of 12C: automatit 
bit-by-bit baud-rate adjustment. Any df 
vice on the IzC bus may hoid the clot 
line low m order to stall the bus fc 
more rime (a serial wait state). The otl 
er devices on the bus are then force 
to poll the SCL line uric11 the slow d< 
vice releases control of the clock. 

The %Get_SDA_&t macro also fal 
under the category of “watching.” 11 
function is simply to return the state c 
the SDA line without waiting for a trar 
sition. %Get_SDA_Bit LS used pnmanl 
to pull the serial data off the bus whe 
the clock is valid. 

The .‘domg” macros control the stat 
of the clock and data lines. As with th 
polling macros. there are four types- 
one for each transition of the XL c 
SDA lines. The .‘domg ’ macros ar 
named to reflect the physical operation 
they perform. For example, %Drzve 
SCL_Low always drives the SCL line t 
a low state. %Relea.se_SCL_Higb, on th 
other hand, relinquishes control of th 
SCL line, which may then be pulIed hig 
or driven low by another device on th 
bus. A read-modify-write operation I 
used for the bit manipulation so mat th 
other 6 bits of Port 2 are not affecte 
by the 12C operations. 

Getting on the Bus 
Three procedures were created usm 
the macro framework. I’ll describe or 
ly the master transmit (Listing One, pag 

I I stop 

Figure 2: Flowcba??jx- PC transmrt 
procedure. 

106~ and master receive functions (List- 
ing Two, page 1081, as they represent 
the needs of most 12C users. The slave 
procedure is long and intricate and will 
not be described here. 

An 12C master transmission proceeds 
a.5 follows: 

I. The master polls the bus to see if it 
is in use. 

2. The master generates a start condi- 
tion on the bus. 

3. The master broadcasts the slave ad- 
dress and expects an acknowledge 
(ACK) from the addressed slave. 

4. The master transrmts 0 or more bytes 
of data, expecting an ACK following 
each byte. 

5. The master generates a stop condi- 
tion and releases the bus. 

The stack frame for the master trans- 
mit procedure, I~CXA.A~~, includes a 
far pointer to the message for transrms- 
sion, the byte count for the message, 
and the slave address. Far pointers and 
far procedure calls are used in all the 
procedures. No attempt was made to 
conform to a specific high-level lan- 
guage caUing convention, although such 
a conversion would be trivial. The pro- 
cedures save only the state of the mcxd- 
shed segment registers. 

The master transmit procedure per- 
forms error checking on the passed pa- 
rameters before attempting to send the 
message. The maximum message length 
is set at 64 Kbytes by the segmentation 
of the 80186 memory space. This re- 
strictton could be removed by mciud- 
ing code to handle segment boundanes. 
The transmit procedure also checks the 
direction bit tn the slave address to en- 
sure that a reception was not erro- 
neously indicated. Errors are reported 
back to the calling procedure through 
the AK regrster. (The exact code is in 
Listing One.) 

The first step in sending a message is 
getting on the 12C bus. The macro 
oM~ec~_~or_Br&+-ee simply polls the 
bus to determme if any transactions are 
in progress. If so, the transmit proce- 
dure aborts with the appropriate error 
code. If the bus is free, a start condition 
IS generated, The start condition is de- 
fined as a high-to-low transition of SDA 
with SCL high followed by a 4.7_uS 
pause. These waveforms are easily gen- 
erated with the %Dnve_SDA_Low and 
% WaU_4_ 7-d macros. 

All communication on the Ik bus be- 
tween the stop and start condiuons, in- 
cluding addresstng and data, takes place 
as an &bit data value followed by an 
acknowledge bit. This lead to the nat- 
ural nested loop structure for the body 
of the procedure: see Figure 2. 
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The inner loop IS responsible for 
transmitung the 8 bits of each data byte. 
Each transmitted bit generates the ap- 
propriate data (SDA) and clock (SCL) 
waveforms whiIe checking for both se- 
rial wait states and potential bus colli- 
sions. A bus collision occurs when two 
masters attempt to gain control of the 

lh-ee distinct tasks 
are involved in 

implementing the 

watching the bus, 
waiting for a specijiic 
amount of time, and 

driving the bus 

bus simultaneously. The 12C protocol 
handles collisions with the simple rule: 
“He who transmits the first 0 on the SDA 
line wins the bus.” To ensure that we 
(the master transmit procedure) own the 
bus, the SDA line is checked whenev- 
er transmitting a 1. If a 0 is present, then 
a collision has occurred (because an- 
other master is pulling the line low), 
and the transfer must be aborted. 

Control is turned over to the outer 
loop after the 8 bits of data (or address) 
have been transmitted. The outer loop 
immediately checks for an acknowledge 
from the addressed slave. The transfer 
is aborted if an acknowledge is not re- 
ceived. At the end of the ACK bit the 
message length counter IS decremented. 
Control is returned to the inner loop if 
more data remains, otherwrse a stop con- 
dition is generated and the master mu-is- 
rmt procedure terminates. 

Registers are used for tntermediate re- 
sult storage throughout the body of the 
procedure. For example, the AH reg- 
ister is used to hold the current value 
(either address or data) bemg shifted 
onto the SDA line. This elimmates the 
need for local data storage within the 
procedure. 

On the Receiving End 
The steps involved in an I’C master re- 
ceive transaction are almost identical to 
those in transmission: 

1. The 
is in use. 

2. The master 

master the bus to see tf it 

generates a start condi- 
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non on the bu5 
j The ma5ter broxica5ts the 5iave ad- 

dress md aspects XI ‘\CK from th 
.iddre55ed slave 

+ The master recene5 0 or more bvte 
ot dam and \ends <m XK to the >lav 
Jtter each Me. The ma5ter signal 
the bdst bake bv not 5endmg an ,\Ch 

5 The ma5ter generace J \cop cond 
non &md reiea5e5 the bus 

.I far pointer to the receive butfer I 
pasxci on the stack to the ma5ter rc 
cetve procedure. The remainder ot th 
pammeter5--slave addres5 and me> 
sage count-xe ldentlcai between th 
~0 procedures The received me55ag 
length 15 fiixed At 6+ Kbvtes. +qun bt 
c3use of 5egmentation The error-chech 
mg, bus-a~~aMxi~tv >ensmg, Jnd \tan 
condltlon generJtlon sectIons ot th 
receive procedure xe lifted verbxlr 
from the tran5mlt code 

The structure of the receive proce 
dure differs 5hghtly once the start con 

b. I 

I- 

51 

I Start 

Byte = l*C address, 

No ACK Send ACK 

1 

Byte ++ 

N=l 

93 stop 

Figure 3: Flowchar? Jor IX receufe 
procedure 

&Ion hss heen generated. 5ee Fqglre 
3 The 5b~ve -1ddresa IS tran5mltted u5- 

mg one iteration ot the rran5mlt proce- 
dure5 outer loop Control 15 pa\5ed to 
the receive loop once the 5lave dcknow- 
ledges Its addre5s 

The receive Imp 5tructure 15 patterned 
&er that of the trdnsmlt procedure. The 
Inner loop controls the Ltockmg of the 
SCL line and the 5hlhq ot rhe 5txxdl do- 
ta otf the SDA lme Into the CPU Eight 
LteKlhons ot the mer loop are performed 
ro receive each bvte The outer loop 
>tores the received bate II-I the buffer. 
decrements the byte count, then sencL> 
an XK to the slave. The la5t data byte 
IS sqgaited by not 5endq an ACK 

Using the Procedures 

Ll5tmg Three (page 110) \hows J short 
progrxn that u5e5 both the ma5ter trxx- 
rnlt and tnaster receive procedure5 The 
cxil to procedure IX_XMT dlspiavs tie 
lvord ‘WS-” on a four-character. 5ev- 
en-segment dl5piav controlled bv the 
%A1064 1% compatible dispiav driver. 
The time of dav IS read tram the 
fYFS%3 real-time clock by the cait to 
procedure IX_RECV 

Please note that Interrupts must be 
di5abled durtng the execution ot both 
procedures. .&n mterruptlon at an m- 
oppomme time c when the ma5ter IS not 
In control of the clock) could cause the 
bus to hxq It you need to service m- 
terrupts perIodically, then enable them 
only when the clock 15 driven low. 

These procedure5 have heen rested 
on a wide armv ot 1% device5 mngmg 
trom senat EEPROMs to vow svnthe- 
slzer5. .So compatlbllitv problems have 
heen seen to date. 

Enhancing the Code 

l’w kIcked around many &25 for en- 
hxxxng the 1% procedures. ‘t’ou could. 

All the basic 
building block oj* 
the 12Cprotocol 

(watching, waiting, 
and doin& can be 
compatimentalized 
into distinct macros 

for example, replxx the tmimg loop5 
\vlth umed uxemipt5 That wry, the CPL’ 
could perform useful work durmg the 
pxi5es .&iong the 5ame ime5. the paus- 
es could be scheduled using a real- 
time kernel, agam improvIng CPti 
throughput. Flnaltv, vou could add a 
hgh-level language calling 5tructure. 

The u5e of tImed mtemlpts Jdd5 an 
order of magnitude to the complextv 
of the code, but n,ould be worth It for 
high-pertormance. real-time 5ystems. 

Conclusion 

1% IS not the onlv game m town when 
In comes to serial protocols. HopeMy, 
some ot the technques presented here 
wil carry over Into the development of 
other ,xmuiated” senai protocols, such 
JS those targeted at the home-automd- 
tlon market. Who knows, maybe some- 
dav J snippet of mv code mdv find 1t.5 
way Into a trulv Intelligent dishwasher. 
I’ll be waltmg 
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S 
erial data buses are a well- 
proven tool in embedded 
systems. When you are com- 
municating with slow per- 
ipheral devices, serial buses 

are often often more convenient and less 
expensive than parallel buses. Addi- 
tionally, a serial interface featuring a 
UART or similar intermediary chip 
can also serve to isolate the CPU from 
noise and line glitches that might bring 
down the house if they were to occur on 
the prczessor bus. Peripherals can usu- 
ally be controlled over a much greater 
distance by a serial bus. The serial ap- 
proach offers greater 
noise immunity. 

resilience and 

The price you pay for the conve- 
nience is a slower transmission rate and, 
possibly, the need for added interface 
circuitry at higher voltages. Many pr- 
ipheral devices, however, are not in con- 
stant communication with the CPU and 
are not greatly affected by a slower bus. 
On the hardware side, any added inter- 
face circuitry required for serial-bus 
support is frequently compensated for 
by the resulting simplicity and 
pinout of the serial peripherals. 

tighter 

CHOOSlN6 THE PROPER ROUll 

H 
aving decided that a serial bus 
makes sense for your applica- 
tion, your next task is to select 

the most appropriate bus and protocol. 
Here, as with rapid transit, your choice 
should be determined by your destina- 
tion. Contrary to what some people may 
tell you, the choice of bus and protocol 
depends at least as much on the nature 
of the system’s software as it does on the 
manufacturer’s data sheets. 

Consider, for example, the serial-pe- 
ripheral interface (SPI) and multidrop 

The choice of bus 

and protocol 

depends at least as 

much on the 

system’s software 

as it does on the 

manufacturer’s 

data sheets. 

serial buses. Both buses are popular, but 
each exhibits severly constrained per- 
formance in large networks. SPI, as em- 
bodied in the Motorola 6800 family, 
was designed primarily for one-on-one 
exchanges between two devices. Simi- 
larly, the multidrop approach used in 
various 805 I family members as well as 
in the 68HC 11 and various UART 
chips hnds its broadest expression in 
RS485/422 halfduplex transmissions. 
Multidrop has no deterministic arbitra- 
tion scheme between multiple masters, 
leaving it mainly suitable for single- 
master multiple-slave situations. (For 
more on multidrop, see Jack Woehr’s 
article, “Multidrop Processing, ” Em- 
bedded Systems Programming, March 
1990, pp 58-67-ed.) A different ap- 
proach is to use a three-wire protocol 
called MicroWire, available from Na- 
tional Semiconductor in Santa Clara. 
Calif., which is fine for use with addres- 
sable peripherals, but requires an indi- 
vidual chip select for each device ad- 
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Exploriizg 
IC 

2 

dressed. The added wiring offers no 

advantage to developers, and the bus of- 
fers nothing towards achievmg multi- 
pie-mastermg capabilities. 

One of the more versattle options 
available to developers IS the PC bus 
promulgated by Philips/Signetics m 
Sunnyvale. Calif. IT allows you to set 

up a multtple-master. multiple-slave 
commumcattons bus wtth conflict arbi- 
tration. usmg only twtsted-patr wirmg 
to connect the processors and peripher- 
als. Philips/Signettcs has moved tosup- 
port this protocol (which is quote popu- 
lar in Europe) with a large assortment 
of interesting doodads. and is actively 

Figure 1 
Generation of acknowledge. 

---v- --- 

_.- - B - - - - 

Open-collector 

configuration 

means that the 

output stage can 

only pull the node 

to ground. 

encouragmg other manufacturers to 
jotn m the fun. If your next design fea- 
tures a mrcroprocessor that supports 
PC or you are prepared to implement 
PC in software using a PIA as this arti- 
cle illustrates. your reward could be a 
decreased chip count and lower power 
consumption-along wtth a comfort- 
able distributed-programming model 
for peripheral devices. 

PC is more flexible than the proto- 
cols noted above. since only two wires 
are required to service a large network 
of addressable masters and addressable 
slaves. A third wire may be added if in- 
terrupt service is required. though Phi- 
lips/Signetrcs mrcroprocessors featur- 
ing PC support feature on-chip cir- 
cuttry and are capable of interruptmg 
the processor upon receipt of a valid 
address. 

HOW 1% WORKS 

T 
he PC bus consists of two lines: 
serial clock (SCL) and serial 
data (SDA). The beauty of the 

PC bus is that each of these lines is bi- 
directional. Bidirectional means that 
everything on the bus 1s equal, unlike 
most other serial-peripheral busses such 
as SPI or MicroWire, which have dedi- 
cated inputs and outputs. Each PC 
transaction line (SCL and SDA) is an 
open collector of output and input. The 
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pullup reststor is external. 
Open-collector (actually, they are 

CMOS. so &open dram” is more appro- 
priate) contiguratron means that the 
output stage can only pull the node to 
ground. A passive resistor pulls the node 
high, which means that any number of 
open collector outputs can be connected 
together with no deiiterious results. be- 
cause tt IS impossible to pull more cur- 
rent through the reststor than any one 
output will produce. Tying outputs to- 
gether will produce disastrous results if 
the same procedure is tried with stan- 
dard TTL outputs. If some of the out- 
puts go high and some are low. the cur- 
rent IS unlimited and the logic level of 
the output ~111 be in an indetermmate 
state. Tying open-collector outputs to- 
gether is also known as “wtre ORmg” be- 
cause if either A or B goes low, so does 
the single-output line. 

The PC bus speed is specified at a 
maximum SCL rate of 1OOkHz SCL, 
which, admittedly, is not blazingly fast. 
The speed limit stems from the meager 
ability of a pullup resistor to source cur- 
rent to a long distributed line of pert- 
pherals. The lo-microsecond period al- 
lows plenty of time to charge the 
parasitic capacitance of the wires. (The 
maximum spectfied wtre capacttance ts 
400 pF.1 

PUITING IT TOGETHER 

A 
Ithough FC supports multi- 
ple-master operation, here we 
use single-master, single-slave 

transactions to keep the example code 
simple. The master. as you might imag- 
me, IS defined as the unit that initiates 
the data transfer and generates the 
SCL srgnal. (In a multimaster system, 
each master would be responstble for 
generating its own SCL signal.) In our 
exampIe. based strongly on the destgn of 
one of our company’s smgle-board com- 
puters, the processor doesn’t directly 
support I’C. Instead, we’ve implement- 

ed the IX bus using a couple of the pins 
on an 8255 peripheral L/O chtp. Conse- 
quently, the bufk of the example appii- 
cation code 1s simple setup and house- 
keeping routines. (Steven R. Wheeler’s 
example appiicatlon iistmg was a bit 
too long to run in this issue. interested 
readers may download It ,fi-om the li- 
brar,v 12 of CLMFORUM on Compu- 
Serve or j-om the Embedded Systems 

Programmmg bulietm board service at 
(415) 905-2689-ed.1 

By definition. a slave can be any pro- 
cessor or peripheral that responds to the 
master. Slaves all have unique, 7-bit ad- 
dresses that are based on the device type 
and the wiring of address pins on the 
chip. All I*C peripherals have the top 
nibble of an address built in. For the 
PCFgj74 I/O-port expanders we’re us- 

Figure 2 
Start and stop conditions. 

SDA 

SCL 

Start stop 
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Expbriig 
IC 2 

ing as examples, the address is OlOOxxx. 
The xxx indicates the address selected 
by the state of the three address pins on 
the peripheral. 

PC serial transactions are always 
eight bits of data from the transmitter 
followed by a ninth ACK bit from the re- 
ceiver. The first step in any PC data 
transfer is to send the address of the 
slave on the SDA line. This act might 
seem confusing, since we seem to be 
mixing 7-bit addresses with g-bit data. 
In practice, it’s quite easy to work with: 
addresses are always seven bits long, 
and the eighth bit is used to determine 
whether the operation is a read or a 
write. For example, upon transmitting 
01ooo0O1 to the PCF8574, the slave, as- 
suming it exists on the bus and is 
strapped to address Ooo, will respond 
with a low on the SDA line after the 
master has finished with its last (eighth) 
data bit. The master leaves the line 
high. If it doesn’t find a slave with ad- 
dress 10000, the data line ~111 remain 
high and a failed communication at- 
tempt can be detected. 

If a slave is connected, it begins put- 
ting data on the SDA line as soon as it 
has detected that the eighth bit is set 
(which is a read request). The SDA line 
is driven to the data level when the SCL 
line is low. Data is read when SCL is 
high, so SDA must not change when 
SCL is high. This protocol leads to a 

simple definition of the start of an PC 
transaction-SDA goes from high to 
low when the clock is high. 

The end of a transaction is equally 
simple to detect: SDA goes from low to 
high when SCL is high. This cycle 
leaves SDA and SCL in the high state, 
which is necessary if any other open- 
collector PC peripheral wants access to 
the bus. Figure 2 illustrates the start 
and stop conditions of an FC bus 
transaction. 

ADDITIDNAL DESIGN RDDTES 

A 
s you’ve seen, the PC protocol 
is easy to work with and rela- 
tively simple to implement, 

even if you’re not using a processor that 
directly implements it. If you’re not 
planning to use Philips/Signetics mi- 
croprocessors with onboard PC support 
(such as the 68070 or various members 
of the 805 1 family), you can still use the 
wide variety of available peripheral 
chips. 

The number of integrated circuits 
using the PC serial bus is increasing all 
the time. Application-oriented inte- 
grated circuits that support PC include 
a voice sythesizer, a transc&er for IR 
remote control, several digital tuning 
circuits for computer-controlled televi- 
sion, several audio processors, PLL fre- 
quency synthesizers, tone generators, 
and frequency synthesizers. General- 

purpose integrated circuits using PC in- 
clude LCD drivers, digital-toanalog 
converters, SRAMs, EEPROMs, and a 
RAM clock/calender. 

PC is very popular in Europe, where 
Philips has been aggressively marketing 
this flexible method of extending pe- 
ripheral support to control projects, and 
it is currently catching fire on this side 
of the Atlantic. It seems reasonable to 
expect that, given the burden of printed- 
wire requirements for embedded sys- 
tems based on increasingly wider chip 
buses, more and more designers seeking 
economy of means will be attracted to 
the economy of PC. 

Steven Sarns is the president of Vesta 
Technology in Wheat Ridge, Cola, He 
is a member of Mensa, Intertel, and the 
Michigan Society of Professional En- 
gineers. Sarns is also a founding mem- 
ber of the Denver chapter of the Forth 
Interest Group. 

Jack Woehr is a senior project manager 
at Vesta Technology Inc, in Wheat 
Ridge, Colo. He is a Chapter Coordin- 
atorfor the Forth Interest Group and is 
currently a member of the X3Jl4 Tech- 
nical committeefor ANS Forth. He can 
be reached by E-mail as jax@wll.sf 
.ca.us or as VESTA on GEnie. 
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Bit-Banging 
Serial Posts 
T 

hey say that necesstty IS 
the mother of inventron. 

and it certainly seems to 

be the case in embedded 

systems work. No sooner 

do you accomplish the tmposstble in one 

project than your boss or customer asks 

you to do it agam, only faster and 

cheaper this time. Even when you’re 

working with low-cost mtcrocontrollers. 
there’s still that mcenttve to make 

things cheaper through magtc software. 

Performmg mrracies through soft- 

ware trickery IS a skill that a11 embed- 

ded developers must cultivate. An op- 

portumty for me to practice such tricks 

came m the form of a project using the 
Signettcs 8x75 I mtcrocontroller. The 

8x75 1 is an 805 1 dertvattve that has no 

internal serial port-no attachment of 

SBUF shift registers to RxD and TxD. 

no diverston of timers to baud rate pac- 

mg, no serial interrupts. But the chip is 

low-prtced and offers a small-fcotprmt, 

and hence IS desirable in many applica- 

ttons. Where the price or size outweighs 

the need for a simple sertai port, one 

must be butlt out of firmware by appro- 

priately controlling a single bit m a port. 
The practice is affecttonateiy known as 

tibu-bangmg.” 

The approach I’ll describe here has 

the advantages of being simple and fast. 
There is no transmtt state-machine, no 

spectai provtston for start and stop bits. 

2nd it takes less than two dozen ma- 

chine cycles for each bit. It has a further 

Advantage that the data doesn’t need to 

be specrafly orgamzed for transmtttmg. 

That 1s. the bits that are adjacent m the 

transmit data stream don’t need to be 

adjacent when they are stored m mem- 

ory. This soiutton IS for a transmttter 

only, but I have used a stmtlar procedure 

for receiving. 

The shift (or 

rotate) operation 

is the first thing 

that comes to 

mind when you’re 

designing code to 

provide a serial 

data output. 

My project was required to operate 

dt 9600 baud. This rate gives a per-bit 

time of 104 mtcroseconds. or IO4 cycles 

if you’re using a 12-AMHz part. The ap- 

plication in question had plenty of other 

acttvtties as well as a sertal port (such as 

reading a serial analog-to-digital con- 

verter. performing averages. and so on ), 
so it was imperative that the sertal port 

handling take an absolute munmum of 

ttme. Since I chose to execute in a tixed- 

time ioop (to avotd interrupt overhead), 

rt was dfso a godi that the code take a 

fixed amount of time regardless of the 

current transmrt state. 

THE STRUCTURE POINTER SOLUTION 

G 
enerally, the shift (or rotate) 

operation is the first thing that 

comes to mind when you’re de- 

signing code to provtde a sertai data out- 

put-the format of the data suggests 
such a scheme. With this approach. 

however. special states and a counter are 

needed to provide the start and stop bits 

dnd to sequence through the set of bytes 
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to be transmitted. 

The method presented here provides 

an array of structures (in the cede or 
PROM space) that defines the transmit 

sequence bit by bit and uses a pointer to 

this array as the only controlling eie- 

merit. This means that only two bytes of 

scarce internal RAM is used. 
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The structures are referenced con- 
secutlvely. Each gves the source of a bit 
to be transmitted and a flag to indicate 
whether the pointer should be increased 
to point to a new bit. The transmission is 
terminated by having a structure that 
refers to an *idle” bit and does not in- 
crease the pointer. Transmission is initi- 

ated by changing the pointer to point to for the work described here. The 8x75 1 
the first structure. Start and stop bits does not support external RAM. so the 
are not distinguished from data bits. small model is used. (If the transmit 
The bit update prtion of the code is data resided in external RAM. the algo- 
constant-time, and the pointer update rithm could be applied, but would be 

can be easily padded if necessary to expected to take a little longer to 
achieve this part of the goal. execute.) 

Franklin’s C5l compiler was used 
THE DECLARATIONS 

T 
he structure that provides indi- 
vidual bit definitions is: 

// tranat bit-reference structure 

struct BR ; 
unsigned char Index : 
unsigned char mask : 
unsigned char bump : 

No memory is allocated by this defini- 
tion-it is essentially a typedef. The ac- 
tual allocation and initialization are 
provided by the definition (in a header 
file, send _ seq.h, in this case) of the Bit- 
Refarray: 

code struct BR BitRef[41] = ’ 1 ; 

wherethedetails will be given in a mo- 
ment. The pointer is defined as: 

I/ pointer to BitRef structure array 
data struct BR code *BR_ptr 

In Franklin’s C5 I, the declaration 
tokens are interpreted as follows. In the 
struct BR declaration. the token code as- 
signs the BitRef array to program mem- 
ory (which is then accessed with themovc 
instruction).Inthe *BR_ptrdeciaratIon, 

the token codeimpliesthatBR_ptrisex- 

cluslvelya pointertotheprogramspace. 

so~trequiresonlytwo bytes to becom- 
pletely defined. The token data causes 
the compder to store the pointer value m 
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internal RL41M. (Since I was using the 
small model, this would have been the 
default storage anyway.) 

The Index entry in each structure al- 
lows the serial bit to be selected from an 
array of bytes called transmlt[4] in my 
case. The transmtt array can. if desired, 
be set up to literally overlay all of the 
internal memory, so that the maximum 
&random access” can be achteved. This 
was not necessary in my c3se. 

The physical port pm to be exercised 
IS defined: 

/* transmit 1s on P3 3 *I 
sblt TransBlt = OxB3 

THE STRUCTURE INITIAMATION 

E 
ach bit to be transmrtted is de- 
fined by an index and mask. 
These are irntiaiized rn the Bit- 

Ref structure so that characters can be 
formed as desired in the output btt 
stream. The index IS the offset wtthin 
the transmit array. The mittaiizatton n-r 
my case, for a sequence of 40 bits mak- 
ing up four characters. was: 

code struct BR 8itRef[41] = , 
11 index mask bump comnent 

3 b01000000 1. I 0 start bit 

'I b00000001 , I, /'I 06 

1 b00000010 I, I/ 07 

1 b00000100 I, f/ 08 

1 b00001000 1. 1 09 

1 b00010000 1. /I 010 

1 b00100000 1. I/ 011 

3 b10000000 I, (1 1 fixed 

3 b10000000 1. '1 1 fixed 

3 b10000000 I, / 1 stop bit 

3 b01000000 I, '/ 0 start bit 

3 , b01000000 , 1. I/ 0 fixed 

3 b10000000 1. /I 1 stop bit 

3 b10000000 0 /I 1 idle bit 

(The *‘masks- are given in binary nota- 
tion. [See “.A Binary Upgrade jbr C, ” 
pp. 60-62.-Ed.] Because of my assem- 
bler and hardware background. thts no- 

The “bump” is a 

flag that continues 

the transmission. 

When it finally 

reaches 0, the 

serial output 

sequeflce will 

stop. 

tation 1s natural for me tn bit mask 
references.) 

The *‘index” refers. as menttoned. to 
the element of “transmit” in which the 
bit restdes. Some mitializatton code has 
guaranteed that the upper two bits of 
transmlt[3] wtll be IO. so that they can 
be referred to for start and stop bits and 
for any tixed-vaiue bits that happen to 
be m the data stream (in my case, the 
fixed bits are used to indicate data byte 
order). 

The *bump” IS a flag that continues 
the transmtsston. When rt IS finally 0, 
the serial output sequence ~111 stop. 

THE CODE 

T 
he code fragment that accom- 
plishes the transmtssion IS: 

(a) VansBit = 
(bit)( transmit[ BLptr-1index ] 

8 BLptr-)mask ) 
(b) if ( BR_ptr-)bump ) 
BR_ptr++ 

The program sequence for sectIon (a) 

looks like this: 

BR_ptr-1index 

-- looks up current index, then used in 

transmit[index] 

-- to get byte with desired bit. 

then ANDed with mask 

BR_ptr-)mask 

-- to get zero~nonzero value. which 

(bit)(value 8 value) 

-- 1s then cast to a bit for output 

TransBlt = bit 

-- to port pin, the ultimate goal. 

The pointer IS lncrcdsedin (b),depend- 

tngon the value of BR__Ptr-jbump. 2~s in- 
dicated earlier. this is aiwavs one except 
in the last structure, so the serial trans- 
mrsston always proceeds to the defined 
end. The statement: 

BR_ptr = &BitRef[40] 

in lnitiaiization ~111 keep the transmtt- 
ter off durmg startup, and: 

BR_ptr = BitRef 

IS used to initiate a transmtssron 
sequence. 
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The previous transmitting code corn- 

plies. with only a Me manual assls- 
tance, to: 

The assembly language code reveals 

that the mechamsm is pretty efficient. 

This method is in use in one of my cli- 

ents’ prducts and has proved effective. 
TransEit = (bit)( transnnt[ 

BR_ptr-Findex ] 8 BR_ptr-Unask ) 
WV DPL.BR_ptr+OlH 

MIV 0PH,Bfl_!~tr 

CLR A 

WC A.@A+DPlR 

GlT4ANGlNG WGGKS 

T 
his bit-banging solution serves 

to provide serial transmission m 

an embedded system that has 

no hardware specifically dedicated to 

[he function. Though alternate and 

more traditional solutions would have 

worked. the need for speed encouraged 

ADD A,ntransmit 

KIV RO A 

h!OV A.&%0 

KIV R7.A 

INC DPTR 

CLR A 

Mavc A,@A*DPTR 

ANL A.R7 

ADD A.nOFFH 

MOV TransB1t.C 

If ( BRdtr-)bm ) 
INC DPTR 

CLR A 

Move A,@A+DPTR 

JZ XDOII 

BR_ptr++ 

MOV A.aD3H 

ADD A.BR_ptr+OlH 

WV BR_ptr+OlH,A 

CLR A 

ADDC A.BR_ptr 

MOV BRatr.A 

~cooll 

development of a code-pomter-based 

solution that works fast enough m this 

case and takes up only two internal 

RAM bytes for operation. I hope that 
this presentation will prove to be useful 

for you. 

Mark Gardner 1s a consultant based in 

Acton, CA. He has been designing 

hardware and writingfirmwarefor em- 

bedded svstems for over 15 years. He 

has an h4S in eiectronx engineering 

jborn the University of Illinois. 
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