
Philips Semiconductors

12C Specific information Programming the 12C Interface

EMBEDDED SYSTEMS

When intedigent devices need to communicate

mgs-afforded by’robust se&l mterchip

T
he Inter-Integrated Circuit Bus

protocols.

(“1% Bus” for short) IS a two-
wire, synchronous, serial inter-
face designed pnmanly for
commumcation between intel-

ligent IC devices. The 1% bus offers sev-
eral advantages over ,.traditlonal” seri-
al interfaces such as LMicrowlre and
RS-232. Among the advanced features
of 1% are multimaster operauon, auto-
matic baud-rate adjustment, and .‘plug-
Jnd-play ’ network extensions.

,Mention the 1% bus to a group of
Amencan engmeers and you’ll likely get
hit with an abundance of blank stares.
I say Amencan engmeers because un-
tll recently the 12C bus was pnmanly a
European phenomenon. Withm the last
year, however, Interest m I‘C in the
Unite ,d States has risen dramatIcally.
Embe tdded systems designers are real-
zmg the cost. soace. and Dower sav-

The idea of serial Interconnect be-
tween integrated clrcults IS not new.
Many semconductor vendors offer de-
vtces desIgned to ?alk” via serial links
with other processor. Current exampies
include Microwire (Xatlonai Semcon-
ductor), SPI (~Motorolaj, and most re-
cently Echelon’s INeuron chps. In all cas-
es, the goal is the same: to reduce the
wiring and pmcount necessary for a par-
allel data bus. It simply does not make

Mitch 1s a senior strategzc development
enguzeer for Intel and can be contact-
ed at 5000 W Chandler Blud.. Cban-
dler AZ 85226 or at mkabn@sedona.
zntel.com

Mitchell Kahn

economic sense to route a full-speed

Unfortunately for most serlal-bus-
capable devices, the choice of a bus

parallel bus to a slow penpherai.

protocol wdl dictate the CPU architec-
ture. For example, onlv two CPU ar-
chltectures implement an on-chip 1%
port. If your choice of architecture pre-
cludes use of these architectures, then
your only opuon IS to tmpiement the
protocol in software.

The sobare lmpiementatlon of the
1% protocol discussed m this article
came about as a result of an ~mphclt
challenge during a staff meetmg. One
of our managers proposed that we hire
a consultant to write a software 1% driv-
er tar the Intel 8OCl86EB embedded
processor. Being somewhat new to the

69

group. I took excepuon (although not
verballv!) to his suggestIon. .A weekend
of intense hacking later, I presented the
first prototype of the driver. My reward?
1 got to write a generic version of the
dnver for general distnbutlon.

Design Tmde-offs
Three distmct tasks are mvolved m im-
plementmg the 12C protocol: watching
the bus, waltmg for a spectiic amount
of time, and driving the bus. This be-
came apparent when I flowcharted 1
byte of a typical bus transaction: see
Figure 1. The time delays associated
with creatmg the bus waveforms would
normally have been relegated to the
8OCl86EB’s on-chip timers. I could not,
however. assume that the end users of
my code would be able to spare a urner
for the software 12C prt. I had to forego
the elegance (and to some extent ac-
curacvj of the on-chip timers for the
sledgehammer approach of software
timing loops. Luchlv, the IlC protocol
IS extremely forglvmg with regard to
ummg accuracv. The declslon to use as-
sembly tnstead of a high-level language
stemmed drectly from the need to con-
trol program-execunon time. I had ne;-
ther the tme nor the m&anon to hand-
tune high-level code.

Havmg made the decision to use as-
sembly language, I faced mv neaxt prob-
lem: Could I make the code portable?
Intel offers a plethora ot CPU and em-
bedded-controller architectures. Would
it be possible to make the code some-
what portable between disparate as-
sembiv languages? I found mv answer
m the use of macros.

Dr Dobb j-journal. _fune 1992

Philips Semiconductors

l*C Specific information Programming the i*C Interface

AH the basic bu1ldmg blocks of thj
I? protocol (watching, welting, and dc
In9 can be compartmentalized into dk
tmct macros. The algorithms that makl
up the IlC driver are written with thesg
macros as the fmmework. You don
need co understand the mtncac1es of thg
I? protocol to port these routines-
you just need to know how to makf
your CPU watch, Walt. and do.

For example, a 4,7_uS delay IS a corn
mon event during a transfer. The macn
%Wazt_4_ i_u.S implements lust such
delay by usmg the 8086 LOOP instruc
t1on with a couple of NOPs for tunmg
see Example l(a). Total execuuon t1mf
LS readily calculated from mstrucuon m
ing tables. The same macro IS ported t(
the 1960 architecture 1n Example l(b:
Although I am a neophyte when I

I I

I I Drive SCl_ Low
,

1 Assert Nth Data

51t on SDA

+7 Wad 2.35 pS
I. ,

No

comes to i960 programng, I hJd no
problems portmg the core macros.

Hardware Dependencies
A few word5 about the target hardware
are 1n order before I discuss the code.
Any 1mplementatlon of the I?C protocol
requires two open-drain (or open-col-
lector), bidirectional port pins for the
Serial Clock (SCLJ and Serial Data C SDA)
lines. The code 1n this article was de-
s1gned for the 8OCl86EB embedded pr@
cessor, which has two open-dram ports
on-chip. The two pms, ~2.6 ECL) and
P2.7 (SDA), are part of a larger &bit
port. Processon wIthout opendram I/O
ports can easdy implement I’C wKh the
addition of an eZxtemal open-collector
Iacch.

Two spec1aMuncuon registers, P2PIN
and P2LTCH. are used to read and wnce
the state of the port pms. The 8OCl86EB
allows the spec1aMunct:on registers to
be located anywhere m either memo-
ry or I/O space. For this 1mplementa-
non, I chose to leave the registers 1n
I/O space, even though this iimted my
choice of instructions. The 80186 ar-
chitecture does not provide for read-
modify-wnte instructIons 1n I/O space
(an AND to I/O, for example): 1t can
only load and store (IN and OUT?. So
why did I iirmt myself? Agam, I had to
assume the lowest common denoml-
nator for our customers when design-
1ng my code.

Building the Fmmewark
Early on 1n development. I decided to
parution my code macros according to
physical processes mvolved in the 12C

protocol. Code not d1rectiy mvoived m
lm&ng the acnons of a hardware 1%
port was not wntten as macros. For ex-
ample. the code necessarv to access the
stack frame IS not written as a macro,
whereas the code needed to toggle the
clock line is. Thus was done to Isolate
Architecturedependent code sequences
from the more generic 1% funcuons.
lMacros were also not used for ‘.gray ar-
eas” such as the shtimg of serial data.
which IS both architecture dependent
and physical m nature. The 1% func-
tions that passed the litmus test fell m-
to the three aforementioned categories
of watchmg, waiting, and domg.

The .walting” macros provide a fixed-
mm~mum time delay They are impie-
mented usmg a simple LOOP $ delay.
The LOOP instructIon decrements the
CX register, then branches to the target
(in thus case 1t.self3 tf the result 1s non-
zero. The delay 1s (n-1)*15+5 clocks,
where n 1s the starting value in the CX
register. All the delays were calculated
assuming a ~~-MHZ clock rate (62.5
nanoseconds per clock). The code still
works at lower CPU speeds because the
1% protocol only specifies mmimum
tlmmgs. In fact, the delay macros are
only ~‘accurate enough.” providing tlm-
mgs as close as I could get to the spec-
ified minimum without undue tunmg.

The “watching” macros are ‘spin-on-
bit” polling loops. These pieces of code
wait for a transItion on the appropnate
12C line to occur before allowing execu-
t1on to contmue. There are two polling
macros for each of the two I’C sIgna
lines; one for high-to-low transitions and
one for low-to-high transitions. The

%*DEFINE(Wait_4_i’_uS) i

IIWV cx, 5

loop $
nOP

noP

; 4 clocks
; 4*15+5 = 65 clocks

; 3 clocks
; 3 clocks

; total = 75 clocks

; 15 * 62.5ns = 4.69uS (close enough)

0-4

defme(Waltz_4_7_uS,’

Ob:

lda 0x17, r4

cmpdeco 0, r4
bne.t Ob

instruction nay be Issued in parallel
so assume no clocks.
compare and decrement counter in r4
I if !=O branch back (predict taken
brancn)

?he cmpdeco and bne.t Cogecher take 3
clocks In parallel Cnmum.

0x17 (25 decxml) l 3 = 75 clocks
at 16MHz :h~s 1s 4.69uS

Example 1: cu) 8OCl8G tmplementatzon oj.4 7_US utazt macro: (b) 8096OCA
implementation of 4 7-1~5 wazt macro

70 Llr Dobbs Journals June 1992

Philips Semiconductors

12C Specific information Programming the 12C Interface

polling of the SCL line that gives rise I
an importanc feature of 12C: automatit
bit-by-bit baud-rate adjustment. Any df
vice on the IzC bus may hoid the clot
line low m order to stall the bus fc
more rime (a serial wait state). The otl
er devices on the bus are then force
to poll the SCL line uric11 the slow d<
vice releases control of the clock.

The %Get_SDA_&t macro also fal
under the category of “watching.” 11
function is simply to return the state c
the SDA line without waiting for a trar
sition. %Get_SDA_Bit LS used pnmanl
to pull the serial data off the bus whe
the clock is valid.

The .‘domg” macros control the stat
of the clock and data lines. As with th
polling macros. there are four types-
one for each transition of the XL c
SDA lines. The .‘domg ’ macros ar
named to reflect the physical operation
they perform. For example, %Drzve
SCL_Low always drives the SCL line t
a low state. %Relea.se_SCL_Higb, on th
other hand, relinquishes control of th
SCL line, which may then be pulIed hig
or driven low by another device on th
bus. A read-modify-write operation I
used for the bit manipulation so mat th
other 6 bits of Port 2 are not affecte
by the 12C operations.

Getting on the Bus
Three procedures were created usm
the macro framework. I’ll describe or
ly the master transmit (Listing One, pag

I I stop

Figure 2: Flowcba??jx- PC transmrt
procedure.

106~ and master receive functions (List-
ing Two, page 1081, as they represent
the needs of most 12C users. The slave
procedure is long and intricate and will
not be described here.

An 12C master transmission proceeds
a.5 follows:

I. The master polls the bus to see if it
is in use.

2. The master generates a start condi-
tion on the bus.

3. The master broadcasts the slave ad-
dress and expects an acknowledge
(ACK) from the addressed slave.

4. The master transrmts 0 or more bytes
of data, expecting an ACK following
each byte.

5. The master generates a stop condi-
tion and releases the bus.

The stack frame for the master trans-
mit procedure, I~CXA.A~~, includes a
far pointer to the message for transrms-
sion, the byte count for the message,
and the slave address. Far pointers and
far procedure calls are used in all the
procedures. No attempt was made to
conform to a specific high-level lan-
guage caUing convention, although such
a conversion would be trivial. The pro-
cedures save only the state of the mcxd-
shed segment registers.

The master transmit procedure per-
forms error checking on the passed pa-
rameters before attempting to send the
message. The maximum message length
is set at 64 Kbytes by the segmentation
of the 80186 memory space. This re-
strictton could be removed by mciud-
ing code to handle segment boundanes.
The transmit procedure also checks the
direction bit tn the slave address to en-
sure that a reception was not erro-
neously indicated. Errors are reported
back to the calling procedure through
the AK regrster. (The exact code is in
Listing One.)

The first step in sending a message is
getting on the 12C bus. The macro
oM~ec~_~or_Br&+-ee simply polls the
bus to determme if any transactions are
in progress. If so, the transmit proce-
dure aborts with the appropriate error
code. If the bus is free, a start condition
IS generated, The start condition is de-
fined as a high-to-low transition of SDA
with SCL high followed by a 4.7_uS
pause. These waveforms are easily gen-
erated with the %Dnve_SDA_Low and
% WaU_4_ 7-d macros.

All communication on the Ik bus be-
tween the stop and start condiuons, in-
cluding addresstng and data, takes place
as an &bit data value followed by an
acknowledge bit. This lead to the nat-
ural nested loop structure for the body
of the procedure: see Figure 2.

71

The inner loop IS responsible for
transmitung the 8 bits of each data byte.
Each transmitted bit generates the ap-
propriate data (SDA) and clock (SCL)
waveforms whiIe checking for both se-
rial wait states and potential bus colli-
sions. A bus collision occurs when two
masters attempt to gain control of the

lh-ee distinct tasks
are involved in

implementing the

watching the bus,
waiting for a specijiic
amount of time, and

driving the bus

bus simultaneously. The 12C protocol
handles collisions with the simple rule:
“He who transmits the first 0 on the SDA
line wins the bus.” To ensure that we
(the master transmit procedure) own the
bus, the SDA line is checked whenev-
er transmitting a 1. If a 0 is present, then
a collision has occurred (because an-
other master is pulling the line low),
and the transfer must be aborted.

Control is turned over to the outer
loop after the 8 bits of data (or address)
have been transmitted. The outer loop
immediately checks for an acknowledge
from the addressed slave. The transfer
is aborted if an acknowledge is not re-
ceived. At the end of the ACK bit the
message length counter IS decremented.
Control is returned to the inner loop if
more data remains, otherwrse a stop con-
dition is generated and the master mu-is-
rmt procedure terminates.

Registers are used for tntermediate re-
sult storage throughout the body of the
procedure. For example, the AH reg-
ister is used to hold the current value
(either address or data) bemg shifted
onto the SDA line. This elimmates the
need for local data storage within the
procedure.

On the Receiving End
The steps involved in an I’C master re-
ceive transaction are almost identical to
those in transmission:

1. The
is in use.

2. The master

master the bus to see tf it

generates a start condi-

L3 Dobbk Journal June 1992

Philips Semiconductors

12C Specific information Programming the 12C Interface

non on the bu5
j The ma5ter broxica5ts the 5iave ad-

dress md aspects XI ‘\CK from th
.iddre55ed slave

+ The master recene5 0 or more bvte
ot dam and \ends <m XK to the >lav
Jtter each Me. The ma5ter signal
the bdst bake bv not 5endmg an ,\Ch

5 The ma5ter generace J \cop cond
non &md reiea5e5 the bus

.I far pointer to the receive butfer I
pasxci on the stack to the ma5ter rc
cetve procedure. The remainder ot th
pammeter5--slave addres5 and me>
sage count-xe ldentlcai between th
~0 procedures The received me55ag
length 15 fiixed At 6+ Kbvtes. +qun bt
c3use of 5egmentation The error-chech
mg, bus-a~~aMxi~tv >ensmg, Jnd \tan
condltlon generJtlon sectIons ot th
receive procedure xe lifted verbxlr
from the tran5mlt code

The structure of the receive proce
dure differs 5hghtly once the start con

b. I

I-

51

I Start

Byte = l*C address,

No ACK Send ACK

1

Byte ++

N=l

93 stop

Figure 3: Flowchar? Jor IX receufe
procedure

&Ion hss heen generated. 5ee Fqglre
3 The 5b~ve -1ddresa IS tran5mltted u5-

mg one iteration ot the rran5mlt proce-
dure5 outer loop Control 15 pa\5ed to
the receive loop once the 5lave dcknow-
ledges Its addre5s

The receive Imp 5tructure 15 patterned
&er that of the trdnsmlt procedure. The
Inner loop controls the Ltockmg of the
SCL line and the 5hlhq ot rhe 5txxdl do-
ta otf the SDA lme Into the CPU Eight
LteKlhons ot the mer loop are performed
ro receive each bvte The outer loop
>tores the received bate II-I the buffer.
decrements the byte count, then sencL>
an XK to the slave. The la5t data byte
IS sqgaited by not 5endq an ACK

Using the Procedures

Ll5tmg Three (page 110) \hows J short
progrxn that u5e5 both the ma5ter trxx-
rnlt and tnaster receive procedure5 The
cxil to procedure IX_XMT dlspiavs tie
lvord ‘WS-” on a four-character. 5ev-
en-segment dl5piav controlled bv the
%A1064 1% compatible dispiav driver.
The time of dav IS read tram the
fYFS%3 real-time clock by the cait to
procedure IX_RECV

Please note that Interrupts must be
di5abled durtng the execution ot both
procedures. .&n mterruptlon at an m-
oppomme time c when the ma5ter IS not
In control of the clock) could cause the
bus to hxq It you need to service m-
terrupts perIodically, then enable them
only when the clock 15 driven low.

These procedure5 have heen rested
on a wide armv ot 1% device5 mngmg
trom senat EEPROMs to vow svnthe-
slzer5. .So compatlbllitv problems have
heen seen to date.

Enhancing the Code

l’w kIcked around many &25 for en-
hxxxng the 1% procedures. ‘t’ou could.

All the basic
building block oj*
the 12Cprotocol

(watching, waiting,
and doin& can be
compatimentalized
into distinct macros

for example, replxx the tmimg loop5
\vlth umed uxemipt5 That wry, the CPL’
could perform useful work durmg the
pxi5es .&iong the 5ame ime5. the paus-
es could be scheduled using a real-
time kernel, agam improvIng CPti
throughput. Flnaltv, vou could add a
hgh-level language calling 5tructure.

The u5e of tImed mtemlpts Jdd5 an
order of magnitude to the complextv
of the code, but n,ould be worth It for
high-pertormance. real-time 5ystems.

Conclusion

1% IS not the onlv game m town when
In comes to serial protocols. HopeMy,
some ot the technques presented here
wil carry over Into the development of
other ,xmuiated” senai protocols, such
JS those targeted at the home-automd-
tlon market. Who knows, maybe some-
dav J snippet of mv code mdv find 1t.5
way Into a trulv Intelligent dishwasher.
I’ll be waltmg

References

Z2C Bus SpeczJic~~twz. PhIlips Corpora-
tion c undated)

Reprinted with permission of Dr.

Dobbk Journal, 1992
Entwe ccmfeflts copyright * 1992

by M6T Pubitsh#ng, IX
unless otnelwlae notao o” 3peclflC artIclea.

All rights resected.

Philips Semiconductors
a North American PhIlIps Company

811 E. Arquas Avenue

P 0. Box 3409

SurtnVvale, Callfornta 94088-3409

72

l*C Specific information Exploring l*C

S
erial data buses are a well-
proven tool in embedded
systems. When you are com-
municating with slow per-
ipheral devices, serial buses

are often often more convenient and less
expensive than parallel buses. Addi-
tionally, a serial interface featuring a
UART or similar intermediary chip
can also serve to isolate the CPU from
noise and line glitches that might bring
down the house if they were to occur on
the prczessor bus. Peripherals can usu-
ally be controlled over a much greater
distance by a serial bus. The serial ap-
proach offers greater
noise immunity.

resilience and

The price you pay for the conve-
nience is a slower transmission rate and,
possibly, the need for added interface
circuitry at higher voltages. Many pr-
ipheral devices, however, are not in con-
stant communication with the CPU and
are not greatly affected by a slower bus.
On the hardware side, any added inter-
face circuitry required for serial-bus
support is frequently compensated for
by the resulting simplicity and
pinout of the serial peripherals.

tighter

CHOOSlN6 THE PROPER ROUll

H
aving decided that a serial bus
makes sense for your applica-
tion, your next task is to select

the most appropriate bus and protocol.
Here, as with rapid transit, your choice
should be determined by your destina-
tion. Contrary to what some people may
tell you, the choice of bus and protocol
depends at least as much on the nature
of the system’s software as it does on the
manufacturer’s data sheets.

Consider, for example, the serial-pe-
ripheral interface (SPI) and multidrop

The choice of bus

and protocol

depends at least as

much on the

system’s software

as it does on the

manufacturer’s

data sheets.

serial buses. Both buses are popular, but
each exhibits severly constrained per-
formance in large networks. SPI, as em-
bodied in the Motorola 6800 family,
was designed primarily for one-on-one
exchanges between two devices. Simi-
larly, the multidrop approach used in
various 805 I family members as well as
in the 68HC 11 and various UART
chips hnds its broadest expression in
RS485/422 halfduplex transmissions.
Multidrop has no deterministic arbitra-
tion scheme between multiple masters,
leaving it mainly suitable for single-
master multiple-slave situations. (For
more on multidrop, see Jack Woehr’s
article, “Multidrop Processing, ” Em-
bedded Systems Programming, March
1990, pp 58-67-ed.) A different ap-
proach is to use a three-wire protocol
called MicroWire, available from Na-
tional Semiconductor in Santa Clara.
Calif., which is fine for use with addres-
sable peripherals, but requires an indi-
vidual chip select for each device ad-

73

lips Semiconductors

l*C Specific information Exploring l*C

Exploriizg
IC

2

dressed. The added wiring offers no

advantage to developers, and the bus of-
fers nothing towards achievmg multi-
pie-mastermg capabilities.

One of the more versattle options
available to developers IS the PC bus
promulgated by Philips/Signetics m
Sunnyvale. Calif. IT allows you to set

up a multtple-master. multiple-slave
commumcattons bus wtth conflict arbi-
tration. usmg only twtsted-patr wirmg
to connect the processors and peripher-
als. Philips/Signettcs has moved tosup-
port this protocol (which is quote popu-
lar in Europe) with a large assortment
of interesting doodads. and is actively

Figure 1
Generation of acknowledge.

---v- ---

_.- - B - - - -

Open-collector

configuration

means that the

output stage can

only pull the node

to ground.

encouragmg other manufacturers to
jotn m the fun. If your next design fea-
tures a mrcroprocessor that supports
PC or you are prepared to implement
PC in software using a PIA as this arti-
cle illustrates. your reward could be a
decreased chip count and lower power
consumption-along wtth a comfort-
able distributed-programming model
for peripheral devices.

PC is more flexible than the proto-
cols noted above. since only two wires
are required to service a large network
of addressable masters and addressable
slaves. A third wire may be added if in-
terrupt service is required. though Phi-
lips/Signetrcs mrcroprocessors featur-
ing PC support feature on-chip cir-
cuttry and are capable of interruptmg
the processor upon receipt of a valid
address.

HOW 1% WORKS

T
he PC bus consists of two lines:
serial clock (SCL) and serial
data (SDA). The beauty of the

PC bus is that each of these lines is bi-
directional. Bidirectional means that
everything on the bus 1s equal, unlike
most other serial-peripheral busses such
as SPI or MicroWire, which have dedi-
cated inputs and outputs. Each PC
transaction line (SCL and SDA) is an
open collector of output and input. The

74

Philips Semiconductors

l*C Specific information Exploring l*C

pullup reststor is external.
Open-collector (actually, they are

CMOS. so &open dram” is more appro-
priate) contiguratron means that the
output stage can only pull the node to
ground. A passive resistor pulls the node
high, which means that any number of
open collector outputs can be connected
together with no deiiterious results. be-
cause tt IS impossible to pull more cur-
rent through the reststor than any one
output will produce. Tying outputs to-
gether will produce disastrous results if
the same procedure is tried with stan-
dard TTL outputs. If some of the out-
puts go high and some are low. the cur-
rent IS unlimited and the logic level of
the output ~111 be in an indetermmate
state. Tying open-collector outputs to-
gether is also known as “wtre ORmg” be-
cause if either A or B goes low, so does
the single-output line.

The PC bus speed is specified at a
maximum SCL rate of 1OOkHz SCL,
which, admittedly, is not blazingly fast.
The speed limit stems from the meager
ability of a pullup resistor to source cur-
rent to a long distributed line of pert-
pherals. The lo-microsecond period al-
lows plenty of time to charge the
parasitic capacitance of the wires. (The
maximum spectfied wtre capacttance ts
400 pF.1

PUITING IT TOGETHER

A
Ithough FC supports multi-
ple-master operation, here we
use single-master, single-slave

transactions to keep the example code
simple. The master. as you might imag-
me, IS defined as the unit that initiates
the data transfer and generates the
SCL srgnal. (In a multimaster system,
each master would be responstble for
generating its own SCL signal.) In our
exampIe. based strongly on the destgn of
one of our company’s smgle-board com-
puters, the processor doesn’t directly
support I’C. Instead, we’ve implement-

ed the IX bus using a couple of the pins
on an 8255 peripheral L/O chtp. Conse-
quently, the bufk of the example appii-
cation code 1s simple setup and house-
keeping routines. (Steven R. Wheeler’s
example appiicatlon iistmg was a bit
too long to run in this issue. interested
readers may download It ,fi-om the li-
brar,v 12 of CLMFORUM on Compu-
Serve or j-om the Embedded Systems

Programmmg bulietm board service at
(415) 905-2689-ed.1

By definition. a slave can be any pro-
cessor or peripheral that responds to the
master. Slaves all have unique, 7-bit ad-
dresses that are based on the device type
and the wiring of address pins on the
chip. All I*C peripherals have the top
nibble of an address built in. For the
PCFgj74 I/O-port expanders we’re us-

Figure 2
Start and stop conditions.

SDA

SCL

Start stop

75

Philips Semiconductors

l*C Specific information Exploring l*C

Expbriig
IC 2

ing as examples, the address is OlOOxxx.
The xxx indicates the address selected
by the state of the three address pins on
the peripheral.

PC serial transactions are always
eight bits of data from the transmitter
followed by a ninth ACK bit from the re-
ceiver. The first step in any PC data
transfer is to send the address of the
slave on the SDA line. This act might
seem confusing, since we seem to be
mixing 7-bit addresses with g-bit data.
In practice, it’s quite easy to work with:
addresses are always seven bits long,
and the eighth bit is used to determine
whether the operation is a read or a
write. For example, upon transmitting
01ooo0O1 to the PCF8574, the slave, as-
suming it exists on the bus and is
strapped to address Ooo, will respond
with a low on the SDA line after the
master has finished with its last (eighth)
data bit. The master leaves the line
high. If it doesn’t find a slave with ad-
dress 10000, the data line ~111 remain
high and a failed communication at-
tempt can be detected.

If a slave is connected, it begins put-
ting data on the SDA line as soon as it
has detected that the eighth bit is set
(which is a read request). The SDA line
is driven to the data level when the SCL
line is low. Data is read when SCL is
high, so SDA must not change when
SCL is high. This protocol leads to a

simple definition of the start of an PC
transaction-SDA goes from high to
low when the clock is high.

The end of a transaction is equally
simple to detect: SDA goes from low to
high when SCL is high. This cycle
leaves SDA and SCL in the high state,
which is necessary if any other open-
collector PC peripheral wants access to
the bus. Figure 2 illustrates the start
and stop conditions of an FC bus
transaction.

ADDITIDNAL DESIGN RDDTES

A
s you’ve seen, the PC protocol
is easy to work with and rela-
tively simple to implement,

even if you’re not using a processor that
directly implements it. If you’re not
planning to use Philips/Signetics mi-
croprocessors with onboard PC support
(such as the 68070 or various members
of the 805 1 family), you can still use the
wide variety of available peripheral
chips.

The number of integrated circuits
using the PC serial bus is increasing all
the time. Application-oriented inte-
grated circuits that support PC include
a voice sythesizer, a transc&er for IR
remote control, several digital tuning
circuits for computer-controlled televi-
sion, several audio processors, PLL fre-
quency synthesizers, tone generators,
and frequency synthesizers. General-

purpose integrated circuits using PC in-
clude LCD drivers, digital-toanalog
converters, SRAMs, EEPROMs, and a
RAM clock/calender.

PC is very popular in Europe, where
Philips has been aggressively marketing
this flexible method of extending pe-
ripheral support to control projects, and
it is currently catching fire on this side
of the Atlantic. It seems reasonable to
expect that, given the burden of printed-
wire requirements for embedded sys-
tems based on increasingly wider chip
buses, more and more designers seeking
economy of means will be attracted to
the economy of PC.

Steven Sarns is the president of Vesta
Technology in Wheat Ridge, Cola, He
is a member of Mensa, Intertel, and the
Michigan Society of Professional En-
gineers. Sarns is also a founding mem-
ber of the Denver chapter of the Forth
Interest Group.

Jack Woehr is a senior project manager
at Vesta Technology Inc, in Wheat
Ridge, Colo. He is a Chapter Coordin-
atorfor the Forth Interest Group and is
currently a member of the X3Jl4 Tech-
nical committeefor ANS Forth. He can
be reached by E-mail as jax@wll.sf
.ca.us or as VESTA on GEnie.

Reprinted with permission from
EMBEDDED SYSTEMS PROGRAMMING, September 1991

0 I991 MILLER FREEMAN PUBLICATIONS

76

Philips Semiconductors

l*C Specific information Bit-Banging Serial Ports

Bit-Banging
Serial Posts
T

hey say that necesstty IS
the mother of inventron.

and it certainly seems to

be the case in embedded

systems work. No sooner

do you accomplish the tmposstble in one

project than your boss or customer asks

you to do it agam, only faster and

cheaper this time. Even when you’re

working with low-cost mtcrocontrollers.
there’s still that mcenttve to make

things cheaper through magtc software.

Performmg mrracies through soft-

ware trickery IS a skill that a11 embed-

ded developers must cultivate. An op-

portumty for me to practice such tricks

came m the form of a project using the
Signettcs 8x75 I mtcrocontroller. The

8x75 1 is an 805 1 dertvattve that has no

internal serial port-no attachment of

SBUF shift registers to RxD and TxD.

no diverston of timers to baud rate pac-

mg, no serial interrupts. But the chip is

low-prtced and offers a small-fcotprmt,

and hence IS desirable in many applica-

ttons. Where the price or size outweighs

the need for a simple sertai port, one

must be butlt out of firmware by appro-

priately controlling a single bit m a port.
The practice is affecttonateiy known as

tibu-bangmg.”

The approach I’ll describe here has

the advantages of being simple and fast.
There is no transmtt state-machine, no

spectai provtston for start and stop bits.

2nd it takes less than two dozen ma-

chine cycles for each bit. It has a further

Advantage that the data doesn’t need to

be specrafly orgamzed for transmtttmg.

That 1s. the bits that are adjacent m the

transmit data stream don’t need to be

adjacent when they are stored m mem-

ory. This soiutton IS for a transmttter

only, but I have used a stmtlar procedure

for receiving.

The shift (or

rotate) operation

is the first thing

that comes to

mind when you’re

designing code to

provide a serial

data output.

My project was required to operate

dt 9600 baud. This rate gives a per-bit

time of 104 mtcroseconds. or IO4 cycles

if you’re using a 12-AMHz part. The ap-

plication in question had plenty of other

acttvtties as well as a sertal port (such as

reading a serial analog-to-digital con-

verter. performing averages. and so on),
so it was imperative that the sertal port

handling take an absolute munmum of

ttme. Since I chose to execute in a tixed-

time ioop (to avotd interrupt overhead),

rt was dfso a godi that the code take a

fixed amount of time regardless of the

current transmrt state.

THE STRUCTURE POINTER SOLUTION

G
enerally, the shift (or rotate)

operation is the first thing that

comes to mind when you’re de-

signing code to provtde a sertai data out-

put-the format of the data suggests
such a scheme. With this approach.

however. special states and a counter are

needed to provide the start and stop bits

dnd to sequence through the set of bytes

77

to be transmitted.

The method presented here provides

an array of structures (in the cede or
PROM space) that defines the transmit

sequence bit by bit and uses a pointer to

this array as the only controlling eie-

merit. This means that only two bytes of

scarce internal RAM is used.

Philips Semiconductors

i*C Specific information Bit-Banging Serial Ports

The structures are referenced con-
secutlvely. Each gves the source of a bit
to be transmitted and a flag to indicate
whether the pointer should be increased
to point to a new bit. The transmission is
terminated by having a structure that
refers to an *idle” bit and does not in-
crease the pointer. Transmission is initi-

ated by changing the pointer to point to for the work described here. The 8x75 1
the first structure. Start and stop bits does not support external RAM. so the
are not distinguished from data bits. small model is used. (If the transmit
The bit update prtion of the code is data resided in external RAM. the algo-
constant-time, and the pointer update rithm could be applied, but would be

can be easily padded if necessary to expected to take a little longer to
achieve this part of the goal. execute.)

Franklin’s C5l compiler was used
THE DECLARATIONS

T
he structure that provides indi-
vidual bit definitions is:

// tranat bit-reference structure

struct BR ;
unsigned char Index :
unsigned char mask :
unsigned char bump :

No memory is allocated by this defini-
tion-it is essentially a typedef. The ac-
tual allocation and initialization are
provided by the definition (in a header
file, send _ seq.h, in this case) of the Bit-
Refarray:

code struct BR BitRef[41] = ’ 1 ;

wherethedetails will be given in a mo-
ment. The pointer is defined as:

I/ pointer to BitRef structure array
data struct BR code *BR_ptr

In Franklin’s C5 I, the declaration
tokens are interpreted as follows. In the
struct BR declaration. the token code as-
signs the BitRef array to program mem-
ory (which is then accessed with themovc
instruction).Inthe *BR_ptrdeciaratIon,

the token codeimpliesthatBR_ptrisex-

cluslvelya pointertotheprogramspace.

so~trequiresonlytwo bytes to becom-
pletely defined. The token data causes
the compder to store the pointer value m

7a

Philips Semiconductors

l*C Specific information Bit-Banging Serial Ports

internal RL41M. (Since I was using the
small model, this would have been the
default storage anyway.)

The Index entry in each structure al-
lows the serial bit to be selected from an
array of bytes called transmlt[4] in my
case. The transmtt array can. if desired,
be set up to literally overlay all of the
internal memory, so that the maximum
&random access” can be achteved. This
was not necessary in my c3se.

The physical port pm to be exercised
IS defined:

/* transmit 1s on P3 3 *I
sblt TransBlt = OxB3

THE STRUCTURE INITIAMATION

E
ach bit to be transmrtted is de-
fined by an index and mask.
These are irntiaiized rn the Bit-

Ref structure so that characters can be
formed as desired in the output btt
stream. The index IS the offset wtthin
the transmit array. The mittaiizatton n-r
my case, for a sequence of 40 bits mak-
ing up four characters. was:

code struct BR 8itRef[41] = ,
11 index mask bump comnent

3 b01000000 1. I 0 start bit

'I b00000001 , I, /'I 06

1 b00000010 I, I/ 07

1 b00000100 I, f/ 08

1 b00001000 1. 1 09

1 b00010000 1. /I 010

1 b00100000 1. I/ 011

3 b10000000 I, (1 1 fixed

3 b10000000 1. '1 1 fixed

3 b10000000 I, / 1 stop bit

3 b01000000 I, '/ 0 start bit

3 , b01000000 , 1. I/ 0 fixed

3 b10000000 1. /I 1 stop bit

3 b10000000 0 /I 1 idle bit

(The *‘masks- are given in binary nota-
tion. [See “.A Binary Upgrade jbr C, ”
pp. 60-62.-Ed.] Because of my assem-
bler and hardware background. thts no-

The “bump” is a

flag that continues

the transmission.

When it finally

reaches 0, the

serial output

sequeflce will

stop.

tation 1s natural for me tn bit mask
references.)

The *‘index” refers. as menttoned. to
the element of “transmit” in which the
bit restdes. Some mitializatton code has
guaranteed that the upper two bits of
transmlt[3] wtll be IO. so that they can
be referred to for start and stop bits and
for any tixed-vaiue bits that happen to
be m the data stream (in my case, the
fixed bits are used to indicate data byte
order).

The *bump” IS a flag that continues
the transmtsston. When rt IS finally 0,
the serial output sequence ~111 stop.

THE CODE

T
he code fragment that accom-
plishes the transmtssion IS:

(a) VansBit =
(bit)(transmit[BLptr-1index]

8 BLptr-)mask)
(b) if (BR_ptr-)bump)
BR_ptr++

The program sequence for sectIon (a)

looks like this:

BR_ptr-1index

-- looks up current index, then used in

transmit[index]

-- to get byte with desired bit.

then ANDed with mask

BR_ptr-)mask

-- to get zero~nonzero value. which

(bit)(value 8 value)

-- 1s then cast to a bit for output

TransBlt = bit

-- to port pin, the ultimate goal.

The pointer IS lncrcdsedin (b),depend-

tngon the value of BR__Ptr-jbump. 2~s in-
dicated earlier. this is aiwavs one except
in the last structure, so the serial trans-
mrsston always proceeds to the defined
end. The statement:

BR_ptr = &BitRef[40]

in lnitiaiization ~111 keep the transmtt-
ter off durmg startup, and:

BR_ptr = BitRef

IS used to initiate a transmtssron
sequence.

79

Philips Semiconductors

12C Specific information Bit-Banging Serial Ports

The previous transmitting code corn-

plies. with only a Me manual assls-
tance, to:

The assembly language code reveals

that the mechamsm is pretty efficient.

This method is in use in one of my cli-

ents’ prducts and has proved effective.
TransEit = (bit)(transnnt[

BR_ptr-Findex] 8 BR_ptr-Unask)
WV DPL.BR_ptr+OlH

MIV 0PH,Bfl_!~tr

CLR A

WC A.@A+DPlR

GlT4ANGlNG WGGKS

T
his bit-banging solution serves

to provide serial transmission m

an embedded system that has

no hardware specifically dedicated to

[he function. Though alternate and

more traditional solutions would have

worked. the need for speed encouraged

ADD A,ntransmit

KIV RO A

h!OV A.&%0

KIV R7.A

INC DPTR

CLR A

Mavc A,@A*DPTR

ANL A.R7

ADD A.nOFFH

MOV TransB1t.C

If (BRdtr-)bm)
INC DPTR

CLR A

Move A,@A+DPTR

JZ XDOII

BR_ptr++

MOV A.aD3H

ADD A.BR_ptr+OlH

WV BR_ptr+OlH,A

CLR A

ADDC A.BR_ptr

MOV BRatr.A

~cooll

development of a code-pomter-based

solution that works fast enough m this

case and takes up only two internal

RAM bytes for operation. I hope that
this presentation will prove to be useful

for you.

Mark Gardner 1s a consultant based in

Acton, CA. He has been designing

hardware and writingfirmwarefor em-

bedded svstems for over 15 years. He

has an h4S in eiectronx engineering

jborn the University of Illinois.

For more mformanon. contact:

Philips Semiconductors

81 I E. Arques Avenue
P.O. Box 3409
Sunnyvale. CA 94088-3409
(408) 991-352

ReprInted wnh permissIon from EMBEDDED SYSTEMS PROGRAMMING, September 1993
0 1993 MILLER FREEMAN INC.

80

