
© Freescale Semiconductor, Inc., 2004. All rights reserved.

Freescale Semiconductor
Application Note

This product incorporates SuperFlash® technology licensed from SST.

AN2836
Rev. 0, 9/2004

Web Server Development with
MC9S12NE64 and OpenTCP
By: Steven Torres

8/16 Bit System Engineering
Austin, Texas

Introduction

Ethernet connectivity of embedded devices is a growing trend in industrial and consumer applications.
Ethernet is a medium of choice because of its competitive performance, relatively low price of
implementation, established infrastructure, and inter-operability. Ethernet is also easy to use, widely
available, and scalable. Ethernet is described by IEEE Standard 802.3™.

With Ethernet and TCP/IP data transmission, embedded devices can be connected to the Internet, which
allows access to the embedded device from across the world. Figure 1 shows a simplified illustration of
an embedded device that is connected to a remote host via the Internet. Figure 1 shows that the
embedded device and remote host can operate on different networks, but the connection between the
devices is transparent.

Figure 1. Embedded Device on Internet

INTERNETCONTROL
BOARD

MOTOR

REMOTE HOST

EMBEDDED DEVICE

Web Server Development with MC9S12NE64 and OpenTCP, Rev. 0

2 Freescale Semiconductor

Acronyms and Terms

Acronyms and Terms
Table 1. Acronyms and Terms

Acronym/
Term Description Definition

ARP Address resolution protocol Translates an Internet address into a hardware address

AN Auto-negotiate
Mechanism that detects the modes of two devices and
automatically configures the devices to the highest
common performance mode

BIOS Basic input/output system Collection of software routines that allows communication

BOOTP Bootstrap protocol Enables a diskless device to discover its own IP address

DHCP Dynamic host configuration protocol Allocates IP addresses dynamically

DNS Domain name server
Program/computer that converts a domain name into its
IP address

FTP File transfer protocol Used to transfer files across a network

HTML Hyper text mark-up language Used to create web pages

HTTP Hyper text transfer protocol Used to transmit web pages

ICMP Internet control message protocol Used to report errors from IP level and above

IP Internet protocol Mechanism for delivering packets across a network

ISP Internet service provider Company that links an end user to the Internet

LAN Local area network
Group of devices that share a common communication
line

NETBEUI
Network BIOS enhanced user

interface protocol
Standardizes how computers on a network communicate

OSI Open systems interconnection
Standard for how messages should be communicated
across a network so that devices will consistently work
with other devices

Ping A diagnostic program
Utility that tests whether a specific IP address is
accessible

RFC Request for comments
Series of numbered Internet informational documents and
standards that are widely followed by Internet software
developers and others

SMTP Simple mail transfer protocol Used for sending and receiving email

SNMP Simple network management protocol
Used by computers that monitor and manage network
activity to communicate with one another and the
computers they are monitoring

TCP Transmission control protocol Guarantees delivery of data

TFTP Trivial file transfer protocol
Subset of FTP that does not require valid username and
password

UDP User datagram protocol

Found at the network layer along with the TCP protocol.
UDP does not guarantee reliable, sequenced packet
delivery. If data does not reach its destination, UDP does
not retransmit, but TCP does.

Scope of This Application Note

Web Server Development with MC9S12NE64 and OpenTCP, Rev. 0

Freescale Semiconductor 3

Scope of This Application Note

This application note details the creation of a web server for an embedded device. The discussion will
provide an overview of development with the MC9S12NE64 and the OpenTCP TCP/IP stack. This
application note specifically addresses the following:

• MC9S12NE64 microcontroller unit (MCU)

• Axiom EVB9S12NE64 evaluation board

• OpenTCP open-source TCP/IP stack

This document was created to help familiarize first-time users of the MC9S12NE64 and OpenTCP TCP/IP
stack with the development environment. This understanding will help speed initial MC9S12NE64 and
OpenTCP TCP/IP stack application development. To do this, a walk-through of developing an
open-source web server is provided. This also includes reviewing some basics of the OpenTCP API and
its Metrowerks® CodeWarrior® project organization. Network-specific acronyms and terms used in this
document are described in Table 1.

Figure 2 is a simplified diagram of the web server that will be developed. This diagram shows a PC remote
host that requests a web page from an embedded device running an OpenTCP web server. The
embedded device is able to serve the requested information, which includes an ActiveX component, back
to the PC. In this example, the ActiveX component provides a dynamic web page interface to monitor and
manipulate the embedded device. The ActiveX establishes a UDP connection with the remote host in
order to exchange data on the network. Alternatively, a TCP connection could have been established for
data transfers.

Figure 2. Web Server Example TCP/IP Stack Application

REMOTE HOST

ANY WEB BROWSER

MC9S12NE64 EMBEDDED DEVICE

OpenTCP
WEB SERVER
APPLICATION

UDP-BASED APPLICATION

REQUESTS HTML

SERVES HTML

UDP CONNECTION

Web Server Development with MC9S12NE64 and OpenTCP, Rev. 0

4 Freescale Semiconductor

Scope of This Application Note

Connectivity Example Applications

Connectivity systems that use the TCP/IP stack model (see TCP/IP Stack Model Refresher), such as the
example in Figure 1, can be implemented for a wide range of applications, including:

• Database data logging or queries

• Web servers for remote embedded devices

• Remote monitoring (data collection/diagnostics)

• Remote control of devices in the field

• Use of email by remote device

• Remote reprogramming of FLASH memory

TCP/IP Stack Model Refresher

The TCP/IP stack model is derived from the OSI 7-layer communications development methodology. The
TCP stack model defines both TCP/IP stack software and the network interface (as shown in Figure 3).
In this discussion, the network interface is Ethernet, which is implemented by the MC9S12NE64
integrated Ethernet controller and Ethernet controller device drivers.

A TCP/IP stack defines a set of protocols that allows network devices to connect to a specific device and
exchange data on a network. These protocols, defined by RFC (request for comments), enable an
embedded device to send email, serve web pages, transfer files, and provide other basic connectivity
functions. Figure 3 is a simplified illustration of a user application working through the TCP stack model
and illustrates how a TCP/IP stack and the MC9S12NE64 Ethernet controller fit into the system.

Figure 3. Block Diagram of TCP/IP Model

DHCP/FTP/HTTP

TCP/UDP/IP

MC9S12NE64 NETWORK INTERFACE

USER APPLICATION

APPLICATION API

SOCKET API

DEVICE DRIVER API

NETWORK

TCP STACK
SOFTWARE

MC9S12NE64 INTEGRATED
ETHERNET CONTROLLER

AND PHYSICAL INTERFACE

MC9S12NE64 MCU with Integrated Ethernet Controller

Web Server Development with MC9S12NE64 and OpenTCP, Rev. 0

Freescale Semiconductor 5

MC9S12NE64 MCU with Integrated Ethernet Controller

This section introduces the MC9S12NE64 MCU and provides a brief overview of the MC9S12NE64
Ethernet controller.

MC9S12NE64

The MC9S12NE64 is a 16-bit MCU based on Freescale Semiconductor’s HCS12 CPU platform. It
includes 8K of RAM and 64K of FLASH. The MC9S12NE64 has other standard on-chip peripherals
including two asynchronous serial communications interface modules (SCIs), a serial peripheral interface
(SPI), an inter-integrated circuit bus (IIC), a 4-channel/16-bit timer module (TIM), an 8-channel/10-bit
analog-to-digital converter (ATD), and up to 18 pins available as keypad wake-up inputs (KWUs). In
addition, an expanded bus that can be operated at 16 MHz1 is available.

Integrated Ethernet Controller

The MC9S12NE64 introduces a new peripheral for the HCS12 CPU platform, the integrated Ethernet
controller. The MC9S12NE64 integrates an Ethernet controller that includes a media access controller
(MAC) and a physical transceiver (PHY) in one die with the CPU, memory, and other HCS12 standard
on-chip peripherals. The MC9S12NE64 integrated Ethernet controller is compatible with IEEE 802.3 and
802.3u specifications for 10-Mbps or 100-Mbps operation, respectively.

The MC9S12NE64 can be targeted at low-throughput connectivity applications that operation at 3.3-V
(±5%) external supply range. With an on-chip bandgap-based voltage regulator (VREG), the internal
digital supply voltage of 2.5 V (VDD) can also be generated.

A block diagram of the MC9S12NE64 is provided in Figure 4. More information on the MC9S12NE64 is
available from the Freescale website: http://freescale.com/semiconductors.

1. At a 16-MHz internal bus speed, the MC9S12NE64 integrated Ethernet controller is limited to 10-Mbps operation. A 25-MHz
internal bus speed is required for 100-Mbps operation. Expanded bus is available only in the 112-pin LQFP package.

http://motorola.com/semiconductors

Web Server Development with MC9S12NE64 and OpenTCP, Rev. 0

6 Freescale Semiconductor

Axiom Ethernet Development Board for the MC9S12NE64, EVB9S12NE64

Figure 4. Block Diagram of the MC9S12NE64

Axiom Ethernet Development Board for the MC9S12NE64, EVB9S12NE64

This section describes the EVB9S12NE64 and how it must be configured for the web server
demonstration.

EVB9S12NE64

Axiom Manufacturing provides the EVB9S12NE64, a fully featured development board for the
MC9S12NE64. The EVB9S12NE64, shown in Figure 5, includes the following:

• MC9S12NE64 single chip Ethernet solution

• RJ45 connector with integrated Ethernet high-speed LAN magnetics isolation module

• 25-MHz crystal

• Reset button

• BDM connector

• Two RS-232C interfaces (with one configurable to an IrDA transceiver)

• Four user LEDs

• Four user buttons

• Potentiometer

• 256K external RAM (accessible via the external bus)

• Prototype area

• Access to all MC9S12NE64 pins

HCS12 CPU WITH DEBUG MODULE

2 X SCI

SPI IIC

V REG 3.3 V
TO 2.5 V CONVERTER

18 KEY WAKEUP
IRQ PORTS

EPHY

EMAC

64K FLASH

8K RAM

ATD
10-BIT, 8 CH

IN
TE

RN
AL

 B
U

S

TIMER
 16-BIT, 4 CH

Notes:
ATD = analog-to-digital converter
CPU = central processor unit
DAC = digital-to-analog converter
IIC = inter-integrated circuit
IRQ = external interrupt request (pin)
LVD = low-voltage detect
LVI = low-voltage inhibit
PMF = pulse modulator with fault protection
PWM = pulse-width modulator
SCI = serial communications interface
SPI = serial peripheral interface
TIM = timer interrupt module
VREG = voltage regulator

Axiom Ethernet Development Board for the MC9S12NE64, EVB9S12NE64

Web Server Development with MC9S12NE64 and OpenTCP, Rev. 0

Freescale Semiconductor 7

See the Axiom Manufacturing website, http://www.axman.com, for more information. Because the
MC9S12NE64 connects directly to an Ethernet connector and high-speed LAN magnetic isolation
module, the MC9S12NE64 is a true single-chip Ethernet system solution.

Figure 5. EVB9S12NE64 Evaluation Board from Axiom Manufacturing

EVB9S12NE64 Board Settings for Web Server Demo

The PCB version number of the EVB9S12NE64 used in this application note is revision B. For this version
of EVB9S12NE64, important jumper settings for the EVB9S12NE64 are provided in Table 2. The
simplified layouts of the EVB9S12NE64 top layer and board silk-screen are provided in Figure 6.

In this example, the EVB9S12NE64 is configured for normal single-chip mode (MODA=MODB=0,
MODC=1). For detailed information about this evaluation board, see the EVB9S12NE64 user manual
from the Axiom Manufacturing web site.

http://www.axman.com

Web Server Development with MC9S12NE64 and OpenTCP, Rev. 0

8 Freescale Semiconductor

Axiom Ethernet Development Board for the MC9S12NE64, EVB9S12NE64

Figure 6. EVB9S12NE64 Top Layer and Silkscreen

Table 2. Settings for the EVB9S12NE64

EVB9S12NE64 Jumper/Switch Settings

OSC_SEL, select Y1 crystal oscillator circuit 1 to 2

CONFIG switch 1–4 Off

CONFIG switch 5 Don’t care

CONFIG switch 6 On

COMM_SW 1–8 Don’t care

PWR_SW On

USER_EN switch, RVI_EN Don’t care

MODA, MODB, MOBC, and ROM_OFF Off

FLOW_SEL Don’t care

EE_EN (enable EEPROM access) Don’t care

VRH_EN On

JP1 Off

JP2 Off

JP3 (IRDA shutdown) On

RUN/LOAD_SW (serial monitor) Depends on MCU programmer interface

OpenTCP TCP/IP Stack Overview

Web Server Development with MC9S12NE64 and OpenTCP, Rev. 0

Freescale Semiconductor 9

OpenTCP TCP/IP Stack Overview

This section includes:

• OpenTCP introduction

• Freescale Semiconductor low-level Ethernet drivers

• OpenTCP installation and project organization

• OpenTCP CodeWarrior project

• OpenTCP TCP/IP stack API

OpenTCP Introduction

OpenTCP is a robust and portable implementation of the TCP/IP and Internet application-layer protocols.
Originally developed by Viola Systems (http://www.violasystems.com/index.php), OpenTCP was
released under an Open Source license. It includes protocols such as ARP, IPv4, ICMP, UDP, TCP,
HTTP, BOOTP, TFTP, POP3, and SMTP. A port of OpenTCP is provided for the MC9S12NE64 at
SourceForge (the direct web address is http://freescaleotcp.sourceforge.net/). SourceForge is the world’s
largest repository of Open Source code, providing a forum for MC9S12NE64 OpenTCP developers to
provide enhancements and resolve issues.

OpenTCP is a CodeWarrior compatible TCP/IP stack implementation that is tailored for 8-bit and 16-bit
embedded processors. To reduce the OpenTCP code footprint in FLASH, ROM, and RAM, OpenTCP has
made several TCP/IP stack design choices that deviate from TCP/IP’s RFC standards while still
maintaining high TCP/IP stack functionality and interoperability. These include:

• No support for IEEE 802.3 type packets

• No IP option support

• No support to handle fragmented packets

• ICMP supports only echo reply

• Ignores all TCP options

• Every TCP packet must be acknowledged with an ACK before another one can be received

Freescale Semiconductor Low-Level Ethernet Drivers

Powering the OpenTCP TCP/IP stack is a low-level Ethernet driver for the MC9S12NE64 integrated
Ethernet controller. This driver is integrated within the OpenTCP TCP/IP stack source code. However, a
Freescale stand-alone (without a TCP/IP stack) version of the low-level Ethernet driver is available for
stand-alone development.

OpenTCP Project Installation and Organization

The OpenTCP source code is provided in a zip file. When the OpenTCP zip file is extracted, several
directories are placed on the target PC. Figure 7 illustrates the OpenTCP project directories.

http://www.violasystems.com/index.php
http://freescaleotcp.sourceforge.net/

Web Server Development with MC9S12NE64 and OpenTCP, Rev. 0

10 Freescale Semiconductor

OpenTCP TCP/IP Stack Overview

Figure 7. OpenTCP Project Directory Structure

Table 3 is a description of several sub-directory that are shown in Figure 7.

Table 3. OpenTCP Project Sub-Directory Descriptions

Sub-Directory Description

{Project Directory}\Docs Contains OpenTCP user manual.

{Project Directory}\NE64_OpenTCP
Contains the CodeWarrior project files for the OpenTCP project

including ne64_OpenTCP.mcp.

{Project Directory}\OpenTCP Contains the OpenTCP source code.

{Project Directory}\NE64_OpenTCP\bin Contains the CodeWarrior project binaries for programming.

{Project Directory}\NE64_OpenTCP\prm Contains the CodeWarrior project prm files for each target.

{Project Directory}\NE64_OpenTCP\Ne64_drivers
Contains the MC9S12NE64 Ethernet low-level driver source

code.

{Project Directory}\NE64_OpenTCP\Sources Contains the end application source code including main().

{Project Directory}\NE64_OpenTCP\web

Contains the end application webpage related files, C file
representations of the web related files (HTML, JPG, GIF), a file
to C utility, CEncoderBeta.exe, that converts from
webpage-related files to their C representations, a batch file that
can be used to automate usage of CEncoderBeta.exe, and an
OpenTCP hash value calculator to generate a hash value from a
filename, hashcalbeta.exe.

OpenTCP TCP/IP Stack Overview

Web Server Development with MC9S12NE64 and OpenTCP, Rev. 0

Freescale Semiconductor 11

More information on ne64_OpenTCP.mcp is provided in the following sections. Figure 8 shows
ne64_OpenTCP.mcp opened in the CodeWarrior IDE (integrated development environment).

Figure 8. CodeWarrior IDE with OpenTCP Projects Open

Web Server Development with MC9S12NE64 and OpenTCP, Rev. 0

12 Freescale Semiconductor

OpenTCP TCP/IP Stack Overview

OpenTCP CodeWarrior Projects

This section details the files in ne64_OpenTCP.mcp. The specific files that are discussed are the files that
will likely require modification in order to develop the simple web server described by this application note.

Table 4. Files in ne64_OpenTCP.mcp

Category Filename Description

OpenTCP

debug.h OpenTCP file for debug options

arp.c OpenTCP ARP implementation

icmp.c OpenTCP ICMP implementation

ip.c OpenTCP IP protocol implementation

udp.c OpenTCP UDP implementation

tcp.c OpenTCP TCP implementation

dhcpc.c OpenTCP DHCP client implementation

FileSys.c Contains a file system array for HTTP

http_server.c OpenTCP HTTP server implementation

https_callbacks.c OpenTCP HTTP callback implementation

dns.c OpenTCP DNS client implementation

pop3_client.c OpenTCP POP3 client implementation

pop3c_callbacks.c OpenTCP POP3 callback functions

smtp_client.c OpenTCP SMTP client implementation

smtpc_callbacks.c OpenTCP SMTP callback implementation

tftps.c OpenTCP TFTP server implementation

bootp.c OpenTCP BOOTP client implementation

MC9S12NE64
Driver

ne64config.h Used to configure low-level EMAC and EPHY options

address.c Used to configure the MAC address and IP address

ne64driver.c Low-level initialization code

mBuf.c Ethernet buffer descriptions

ne64api.c TCP/IP stack interface functions

ne64debug.c Provides a debug interface

Application

Vectors.c Provides an ISR array

webserver.c Contains the main()

Init.c Provides the application initialization code

udpinterface.c Provides demo application code

OpenTCP TCP/IP Stack Overview

Web Server Development with MC9S12NE64 and OpenTCP, Rev. 0

Freescale Semiconductor 13

OpenTCP TCP/IP Stack API

Table 5 provides a more detailed look at OpenTCP by reviewing some basic API OpenTCP functions
including a brief description for each function. For complete documentation of the OpenTCP API, please
reference the OpenTCP user guide.

Table 5. Selected OpenTCP API Functions

Function Description

UDP API
Functions

udp_init();
Initializes UDP socket pool to get everything into a

known state at startup and should be called
before any other UDP function.

INT8 udp_releasesocket (INT8) Releases a given socket.

INT8 udp_open (INT8, UINT16) Opens a given UDP socket for communication.

INT8 udp_getsocket (UINT8,
INT32(*)(INT8, UINT8, UINT32,
UINT16, UINT16, UINT16), UINT8)

Allocates a free socket in UDP socket pool.

INT16 udp_send (INT8, UINT32,
UINT16, UINT8 *, UINT16, UINT16)

Sends data to remote host using given UDP
socket.

TCP API
Functions

tcp_init();

Initializes TCP socket pool to get everything into a
known state. It should be called before any other
TCP function. Timers are also allocated for each
socket and everything is brought to a predefined
state.

tcp_poll();

Checks all TCP sockets and performs various
actions if timeouts occur. What kind of action is
performed is defined by the state of the TCP
socket.

INT8 tcp_listen (INT8, UINT16) Sets TCP socket to listen on a given port.

INT8 tcp_connect (INT8, UINT32,
UINT16, UINT16)

Initializes connection establishment towards
remote IP&port.

INT16 tcp_send (INT8, UINT8 *,
UINT16, UINT16)

Sends user data over TCP using given TCP
socket.

INT8 tcp_getsocket (UINT8, UINT8,
UINT16, INT32(*)(INT8, UINT8,
UINT32, UINT32))

Allocates a free socket in TCP socket pool.

HTTP API
Functions

https_init();
Initializes HTTP server variables; it should be

called before the HTTP server application is
used to set operating parameters.

https_run();
Is main thread of HTTP server program and

should be called periodically from main loop.

Other
Support

Functions

EtherInit();
Configures and initializes the MC9S12NE64

EMAC and EPHY.

arp_init();
Initializes ARP cache table so that ARP allocates

and initializes a timer for its use.

Web Server Development with MC9S12NE64 and OpenTCP, Rev. 0

14 Freescale Semiconductor

Preparing for OpenTCP TCP/IP Stack Development

Preparing for OpenTCP TCP/IP Stack Development

This section describes how to prepare for web server development with OpenTCP software. The following
topics are included:

• Development environment and tools

• Connecting the evaluation board to a development PC

• Configuring the MAC hardware and IP addresses

• Configuring TCP/IP protocol in Microsoft Windows® operating system

Development Environment and Tools

The OpenTCP TCP/IP stack software can be modified and compiled with the CodeWarrior environment.
Below are specific details about the development environment and tools used to develop the web server
described in this application note.

• Microsoft Windows 2000 with Microsoft Internet Explorer 5.5 or later

• Microsoft FrontPage® 2000 for web page development

• CodeWarrior HCS12 tool version 2 (with MC9S12NE64 patch) or later

• P&E BDM MultiLink® pod, category 5 (cat5) crossover cable, and optional DB9 serial cable (as
described in the next section)

Connecting the Evaluation Board to a Development PC

Figure 9 shows the basic connection of a PC running CodeWarrior software to the EVB9S12NE64. For
development, a PC must connect to the target board with the following:

• BDM MultiLink pod (BDM) — Provides a link to the embedded device and provides an interface to
program and debug the software on the MC9S12NE64 MCU. On the EVB9S12NE64 evaluation
board, the BDM connector is labeled BDM_PORT. Alternatively, instead of BDM, the target could
be programmed and debugged using a serial cable along with the HCS12 serial monitor.

• Crossover cat5 cable (XCAT5) — Required to form a local, isolated network between the PC and
the target. With an Ethernet link, the network application can be tested and debugged on a network.
Alternatively, a straight-through cable with a hub can be used.

• DB9 serial cable (COMM) — The OpenTCP program has a debug mode that sends real-time
messages about stack activity through one of the MC9S12NE64 SCI ports. By using
HyperTerminal1 and a serial cable, these debug messages can be captured.

1. To access HyperTerminal in Windows systems, click Start> Programs> Accessories> Communication>
HyperTerminal.

Preparing for OpenTCP TCP/IP Stack Development

Web Server Development with MC9S12NE64 and OpenTCP, Rev. 0

Freescale Semiconductor 15

Figure 9. Connecting the Evaluation Board to a PC

This step provides an easier interface for debugging the application than connecting directly to a real
network (because the development target is isolated). To make the application compatible with a real
network, changes should be required to only the MAC hardware and IP addresses.

Configuring the MAC Hardware and IP Addresses

After the web server is complete, it can be configured to operate on a real network by changing the MAC
hardware and IP addresses to be compatible with the real network. A brief discussion of MAC hardware
and IP addresses is provided in the following sections.

Configuring the MAC Hardware Address

The MAC hardware address is a 48-bit number. Each network device must have a unique MAC hardware
address. MAC hardware address groups are assigned to organizations by the IEEE EtherType Field
Registration Authority.

A valid MAC hardware address for the EVB9S12NE64 should be assigned by the developer. This address
is used by the datalink layer, which is implemented by the MC9S12NE64 integrated Ethernet controller
and the low-level drivers. This can be configured in address.c. If the device is not connected to a real
network, a random MAC hardware address can be used as long as it is not connected on a network that
has a device with the same 48-bit MAC hardware address.

DEVELOPMENT
HOST

EVB9S12NE64

DEVELOPMENT
TARGET

PC

COMM

BDM

XCAT5

SERIAL
PORT

PARALLEL
PORT OR USB

NETWORK
PORT (RJ45)

Web Server Development with MC9S12NE64 and OpenTCP, Rev. 0

16 Freescale Semiconductor

Preparing for OpenTCP TCP/IP Stack Development

Configuring the IP Addresses

IP addresses are assigned by a network administrator or a dynamic host configuration protocol (DHCP)
server. These addresses are used by the IP layer of the OpenTCP TCP/IP stack. If the IP addresses are
not correctly configured, the embedded device will not communicate over the network connection—even
if an Ethernet connection can be made.

When developing an application off a real network and on a developer’s PC, the developer is the network
administrator. The developer must create a local network between the PC and the target board. A network
consists of nodes that are on the same network subnet. To set up the subnet for the demo, the developer
must use compatible IP address settings between the developer’s PC and the target board.

When setting up IP addresses, it is preferable to configure or use the development target and
development host manually with non-routable IP addresses (i.e., 10.x.x.x, 90.0.0.x, 172.16.x.x through
172.32.x.x, or 192.168.x.x).

NOTE
These IP settings and others must be reflected in the Windows network
settings.

When the application is developed and ready for a real network, the IP address settings must be
configured to be compatible with the real network on which the node will reside. Recall, for the OpenTCP
code, IP addresses and MAC hardware addresses are configured in addess.c. In this web server
example, a static IP address is used. For a real network, recall that the IP address should be assigned by
the network administrator. Optionally, the DHCP capability of OpenTCP software can be used. With
DHCP, a DHCP server will automatically assign a leased IP address to the embedded device.

IP address settings for this demo:

• All devices are configured with an IP address in the range 192.168.2.1
to 192.168.2.3

• OpenTCP code is programmed with an IP address of:
– 192.168.2.1, for the development host (PC)
– 192.168.2.3, for the development target (embedded device)

Preparing for OpenTCP TCP/IP Stack Development

Web Server Development with MC9S12NE64 and OpenTCP, Rev. 0

Freescale Semiconductor 17

Configuring TCP/IP Protocol in Windows

To set up the IP address for the development host in Windows, the IP address network settings of the
development host must be accessed in its operating system. For recent Windows releases, these settings
are located in the control panel. In the control panel, select network settings. A typical network settings
dialog box is shown in Figure 10.

Figure 10. Network Settings Dialog Box

The network settings window shows all devices that can be used to form network connections. Figure 10
shows two network devices defined for the PC. Network devices can also include modems.

The network settings window also shows the status of the network device. This status indicates whether
the network device has an Ethernet connection. Having an Ethernet connection does not necessarily
mean other Windows network settings for that device are set correctly (see Debugging Networks).

To access the IP address setting via the network settings dialog box, you must select the desired network
device and configure its properties. In the properties dialog box, select the TCP/IP protocol network
component for the TCP/IP adapter (see Figure 11) and click Properties.

In the Internet Protocol (TCP/IP) Properties dialog box, manually enter a subnet mask and specific IP
address. Recall that the IP address used for the development host in this example is 192.168.2.1.

Web Server Development with MC9S12NE64 and OpenTCP, Rev. 0

18 Freescale Semiconductor

Preparing for OpenTCP TCP/IP Stack Development

Figure 11. Opening Internet Protocol (TCP/IP) Properties Dialog Box

Select Internet Protocol (TCP/IP)
and click Properties.

Manually enter a subnet mask and
specific IP address. Recall that the
IP address used for the development
host in this example is 192.168.1.1.

1.

2.

Debugging Networks

Web Server Development with MC9S12NE64 and OpenTCP, Rev. 0

Freescale Semiconductor 19

Debugging Networks

Issues

Issues with network connectivity are typically due to an error in the network setup and configuration of
either the network or the remote devices. Three main network connectivity issues and their possible
solutions are described in this section:

• Ethernet connection not established

• Network connection cannot be established

• Network connection is established at the IP layer with Ping, but the devices are not communicating

Ethernet Connection Not Established

This connectivity issue means that the Ethernet transceiver on either the target or the host (or both)
cannot create a low-level link. This problem can be caused by:

• Cat5 cable damaged or unplugged

• Cat5 cross-over cable required, but a straight-through cable is used

• Ethernet transceiver loss of power

• Ethernet transceiver issue at startup

• Mismatched Windows LAN card settings

Ethernet transceiver issues at startup occur if the embedded device was not initialized correctly by the
program. First, visually verify that the devices are physically connected. On the PC and the target
evaluation board, the link and speed LEDs should be active.

If the physical connection is visually verified and the problem still exists, check the status of the link in the
network settings dialog box as shown in Figure 10. Also, if the network is configured correctly, Windows
may show the status of the link on the task bar as shown in Figure 12. The task bar shows the link as
“Network Cable Unplugged.”

Figure 12. Task Bar Showing Link Status

NETWORK

STATUS ICON

(UNPLUGGED AS SHOWN)

CONNECTION

Web Server Development with MC9S12NE64 and OpenTCP, Rev. 0

20 Freescale Semiconductor

Debugging Networks

Network Connection Cannot be Established

After the device establishes an Ethernet connection, the network settings may still require adjustments.
The most common problems are:

• Devices are unreachable

• Network connection is misdirected

In these two cases, the network IP address, network port information, network components, network
protocols, and server type must be reviewed.

This section deals with the issue of the network higher level protocols not establishing a connection, such
as an Internet protocol (TCP/IP) connection. One way this can be checked is with Ping. Ping is actually
an IPv4 ICMP (internet control management protocol) echo request that is defined by the TCP/IP stack
protocol. Because Ping functionality is included in OpenTCP and Windows, it can be used to debug the
network connection. If the command confirms a valid connection to a remote device by replying to the
ICMP echo request, the network is configured correctly. If, however, the Windows command does not
confirm a network connection to the remote device, the network is not configured correctly.

The key step to resolve this type of network bug is to determine how the network is designed and how the
remote device must be configured to accept a connection. Remote devices must be compliant with the
network’s design structure and protocols. When the network is set up and configured correctly, the
devices will connect. This problem is usually associated with incorrect and incompatible IP address
settings (see Configuring the IP Addresses).

Network Connection is Established at the IP Layer with Ping, but the Devices are Not Talking

This problem is usually difficult to debug. There may be a conflict with other protocols settings. Other
possible causes can be a firewall, proxy server settings, duplex mismatch, or invalid server settings. With
an understanding of the network design and its connection capabilities, network restrictions, and
underlying communication protocols (for example, TCP/IP and NETBEUI), a user can configure the
network and the remote devices to ensure connectivity. This issue may require assistance from a system
administrator to resolve.

Network Protocol Analyzer Tools

A network protocol analyzer is a powerful and useful tool for network debugging. The network protocol
analyzer enables more visibility of packet traffic on the network connection. A network protocol analyzer
is used to monitor the connectivity of the Internet or a local area network (LAN).

The tool is capable of non-intrusively attaching itself and monitoring a dial-up or Ethernet connection. The
network protocol analyzer can be an in-house, commercial, or downloadable freeware software package.
A network protocol analyzer can be implemented in hardware also.

The overriding feature of the network protocol analyzer is its ability to capture, analyze, and decode
network packets. The network protocol analyzer must be capable of determining the communication
protocol of the network data packets. In addition, the program must be able to display a list of network
connections, the IP addresses of the connections, the data direction, and the network data port
information. The network protocol analyzer provides the detailed network information required to debug
a network.

Overview of a Web Server Developed Using OpenTCP TCP/IP Stack

Web Server Development with MC9S12NE64 and OpenTCP, Rev. 0

Freescale Semiconductor 21

Overview of a Web Server Developed Using OpenTCP TCP/IP Stack

This section provides an overview of the web server and source code developed with OpenTCP. A
graphical overview of the web server is shown in Figure 2.

This web server is developed for distribution with the EVB9S12NE64 as a binary file, P&E_ICD.abs.
P&E_ICD.abs is located in the in the bin directory in a typical CodeWarrior project. Figure 13 shows
demo.htm in a web browser. demo.htm is one of the four pages stored on the web server. The other three
pages on the web server are static. demo.htm, however, provides dynamic web page functionality using
an embedded ActiveX control, NE64DemoNOPIC.ocx. NE64DemoNOPIC.ocx is stored on the web
server as part of the NE64DemoNOPIC.cab file and is developed to fit in the MC9S12NE64 internal
FLASH memory along with the other web page data.

The ActiveX control for the example was built with Microsoft Studio Visual Basic 6, but this is not a
requirement. Another ActiveX development IDE could have be used. In fact, instead of using an ActiveX
control, a Java applet or other web technology could be used to add the dynamic web page functionality.
This discussion does not include a step-by-step guide of how to develop an ActiveX component with
Visual Basic, but does provide some high-level ActiveX development considerations.

The ActiveX control, in this example, contains several basic Windows component objects, which are
itemized in Table 6. Each object adds to the overall ActiveX functionality as shown in Table 6.

Table 6. Windows Component Objects

Component Quantity Description

Winsock 1 Provides a TCP or UDP connection

Timers 2 Provide periodic timer events

ToggleButton 6 Provides a two-state button

ProgressBar 1 Provides a graphical view of the current value within a range

CommandButton 3 Provides a user command button

TextBox 2 Provides a user data input or display field

Shape 4 Provide a round graphical object

Label 12 Provides GUI labels for headings

Web Server Development with MC9S12NE64 and OpenTCP, Rev. 0

22 Freescale Semiconductor

Overview of a Web Server Developed Using OpenTCP TCP/IP Stack

Figure 13. OpenTCP Web Server

The remainder of this section will overview some of the files and source code that were modified during
development of the OpenTCP web server demo. Acronyms and terms used in this section are defined in
Table 1.

Overview of a Web Server Developed Using OpenTCP TCP/IP Stack

Web Server Development with MC9S12NE64 and OpenTCP, Rev. 0

Freescale Semiconductor 23

address.c

Before coding the web server application code, it is recommended that the basic MC9S12NE64 hardware
and software options are configured. These configuration options include:

• MAC hardware address

• IP address

• Auto-negotiation

• EMAC options

• EPHY options

• Ethernet buffer size

Although most of the options are controlled by ne64config.h, address.c provides an interface to configure
the web server MAC address and IP address with the hard_addr and prot_addr variables, respectively.
(See the code excerpt below.)

address.c:

/**
 *
 * (c) Freescale Inc. 2004 All rights reserved
 *
 * File Name : address.c
 *
 * Description : This file contains definition of hardware and protocol (IP)
 * addresses of the device
 *
 * Version : 2.1
 * Date : 02/04/04
 *
 **/

#include "MOTTYPES.h"

const tU08 hard_addr [6] = { 0x01, 0x23, 0x45, 0x56, 0x78, 0x9a };

const tU08 prot_addr [4] = { 192, 168, 2, 3 };
const tU08 netw_mask [4] = { 255, 255, 255, 0 };
const tU08 dfgw_addr [4] = { 192, 168, 2, 1 };
const tU08 brcs_addr [4] = { 192, 168, 2, 255 };

Web Server Development with MC9S12NE64 and OpenTCP, Rev. 0

24 Freescale Semiconductor

Overview of a Web Server Developed Using OpenTCP TCP/IP Stack

ne64config.h

An excerpt of the source code for ne64config.h is provided below. ne64config.h allows the user to
configure initialization options for the MC9S12NE64 EMAC and EPHY. The code excerpt below shows a
partial list of the configurations a user may desire to modify. These configurations are itemized below
along with a brief description of each:

• AUTO_NEG — This option enables the auto-negotiation mode if asserted. If not asserted, the
developer must manually set up the speed and duplex using the full_duplex and speed_100
variables.

• HALF10, FULL10, HALF100, & FULL100 — These set the auto-negotiation advertisements and
should be set to 1 if that mode is to be advertised in auto-negotiation.

• SPEED100 — if AUTO_NEG = 0 — This manually sets the device link speed.

• FULL_DUPLEX — if AUTO_NEG = 0 — This manually sets the device link duplex.

• ETYPE_PET, ETYPE_EMW, ETYPE_IPV6, ETYPE_ARP, ETYPE_IPV4, ETYPE_IEEE, and
ETYPE_ALL — These set the EMAC ethertype filtering modes.

• BRODC_REJ, CON_MULTIC, and PROM_MODE — The sets the EMAC MAC address filtering
modes.

• BUFMAP — BUFMAP configures the RAM amount that is allocated for the Ethernet buffer. For the
MC9S12NE64, 8K of RAM is available and shared between user RAM and the EMAC Ethernet
buffer space. A more detailed description of BUFMAP is provide in the P&E_ICD_linker.prm
section.

Excerpt from ne64config.h:

.

.

.
//==
//LINK SPEED/DUPLEX CONTROL
//==
//Configure for manual or auto_neg configuration
#define AUTO_NEG 1 /**< 1 - enable AUTO_NEG / 0 - disable AUTO_NEG */

#if AUTO_NEG

//define what I advertise in auto negotiation
#define HALF100 1
#define FULL100 1
#define HALF10 1
#define FULL10 1
.
.
.
#else //AUTO_NEG
#define SPEED100 1 /**< 1 - enable 100 MBps / 0 - enable 10 MBps */
#define FULL_DUPLEX 0 /**< 1 - enable full duplex / 0 - disable */

#endif //AUTO_NEG

Overview of a Web Server Developed Using OpenTCP TCP/IP Stack

Web Server Development with MC9S12NE64 and OpenTCP, Rev. 0

Freescale Semiconductor 25

//==
//Buffer Configuration
//==
#define BUFMAP 4
.
.
.
//==
//EMAC FILTERING CONTROL
//==
//Address Filtering; RXMODE setting: PAUSE frame supported, Accept Unique, Brodcast, MultiCast
#define BRODC_REJ 0
#define CON_MULTIC 0
#define PROM_MODE 0
//Ethertype Control
#define ETYPE_PET 0
#define ETYPE_EMW 0
#define ETYPE_IPV6 0
#define ETYPE_ARP 0
#define ETYPE_IPV4 0
#define ETYPE_IEEE 0
#define ETYPE_ALL 1

//Programmable Ethertype
#define ETYPE_PRG 0 /**< Enter Value if ETYPE_PET is set for filter target */

//Receive maximum frame length
#define RX_MAX_FL 1536 /**< Receive maximum frame length */
#define DELETE_BFRAMES 0 /**< set to 1 to delete packets larger than RX_MAX_FL */
.
.
.

P&E_ICD_linker.prm

An excerpt of the source code for P&E_ICD_linker.prm is provided below. P&E_ICD_linker.prm must be
modified so that it is compatible with ne64config.h’s BUFMAP configuration settings. BUFMAP configures
the Ethernet buffer space which consist of three buffer (one transmit buffer and two receive buffers) that
are each designed to only hold one Ethernet frame at any given time. The BUFMAP field is a component
of the BUFCFG register.

The RAM section shows the remainder available system RAM for the user application. This RAM for the
user application is the difference between the total system RAM (8K) and the amount of system RAM
allocated for the Ethernet buffer.

Table 7 itemizes the remainder of RAM available for the user application based on the value of BUFMAP.
Because the maximum size of an Ethernet frame is approximately 1.5K, a setting of BUFMAP = 4 would
allow each of the MC9S12NE64’s three buffers to hold one frame of the maximum allowable size.

Web Server Development with MC9S12NE64 and OpenTCP, Rev. 0

26 Freescale Semiconductor

Overview of a Web Server Developed Using OpenTCP TCP/IP Stack

Setting for BUFMAP less than 4 are provided to:

• Maximize user RAM

• Provide a filtering mechanism base on Ethernet packet size

The setting of BUFMAP is a system/network design decision. If the devices on your network should only
accept Ethernet packets of a certain size limit, BUFMAP should be configured accordingly.

Setting BUFMAP to create a buffer size limit reduces the burden on CPU from processing larger
undesirable packets on the network. If a receive frame exceeds the receive buffer size, the frame is not
accepted and both receive complete flag or the receive error flag are not set. No CPU bandwidth is used
because the EMAC state machine does all the packet filtering. This is a powerful filtering mechanism.

P&E_ICD_linker.prm also defines the placement of the sections. It is noteworthy to discuss the
MyConstSegPage1 placement. MyConstSegPage1 refers to a web server file array for the ActiveX
component, NE64DemoNOPIC_file, which is contained in NE64DemoNOPIC.c. Because
NE64DemoNOPIC.c is a constant array, by default, it would be stored in ROM_VAR which causes a
FLASH allocation problem for this project. Creating MyConstSegPage1 and grouping the
NE64DemoNOPIC_file data with DEFAULT_ROM resolves the FLASH allocation problem. More
information on FLASH allocation can be found within the CodeWarrior user manual.

Excerpt from P&E_ICD_linker.prm:

NAMES
END

SECTIONS

// RAM = READ_WRITE 0x2180 TO 0x3FFE; /* BUFMAP = 0 (128 byte) */
// RAM = READ_WRITE 0x2300 TO 0x3FFE; /* BUFMAP = 1 (256 byte) */
// RAM = READ_WRITE 0x2600 TO 0x3FFE; /* BUFMAP = 2 (512 byte) */
// RAM = READ_WRITE 0x2C00 TO 0x3FFE; /* BUFMAP = 3 (1K) less then means no DHCP*/
 RAM = READ_WRITE 0x3200 TO 0x3FFE; /* BUFMAP = 4 (1.5K) */

 /* unbanked FLASH ROM */
ROM_4000 = READ_ONLY 0x4000 TO 0x7FFF;
ROM_C000 = READ_ONLY 0xC000 TO 0xFEFF;

/* banked FLASH ROM */
SECURITY = READ_ONLY 0xFF00 TO 0xFF0F;
ROM_FF10 = READ_ONLY 0xFF10 TO 0xFF7F;

Table 7. Memory Allocation

BUFMAP Individual Buffer Size
(bytes)

Total Size of EMAC
Ethernet buffer space

Remainder RAM for
User Application

0 128 384 7.625K

1 256 768 7.25K

2 512 1536 6.5K

3 1K 3072 5K

4 1.5K 4608 3.5K

Overview of a Web Server Developed Using OpenTCP TCP/IP Stack

Web Server Development with MC9S12NE64 and OpenTCP, Rev. 0

Freescale Semiconductor 27

PAGE_3C = READ_ONLY 0x3C8000 TO 0x3CBFFF;
PAGE_3D = READ_ONLY 0x3D8000 TO 0x3DBFFF;
END

PLACEMENT
 _PRESTART, /* Used in HIWARE format: jump to _Startup at the code start */
 STARTUP, /* startup data structures */
 ROM_VAR, /* constant variables */

STRINGS, /* string literals */
 NON_BANKED, /* runtime routines which must not be banked */
 COPY /* copy down information: how to initialize variables */
 INTO ROM_4000,ROM_C000;

MyConstSegPage1,
 DEFAULT_ROM INTO PAGE_3C,PAGE_3D;
 DEFAULT_RAM INTO RAM;
END

STACKTOP 0x3FFF

Demo.htm

The HTML source code for demo.htm is provided in this section. HTML web page development can be
assisted with web tools, such as FrontPage by Microsoft, but it is not required. A simple text editor could
be used, for example. Web pages can contain standard and advanced HTML components including, but
not limited to:

• Frames

• Tables

• Forms

• Javascript or VBscript

• Applets, ActiveX, etc.

When the web page development is completed, the next step is to convert them to their equivalent C files
representation using OpenTCP’s CEncoderBeta utility. In this case, the C files for demo.htm are demo.c
and demo.h. Both of these files must be added to OpenTCP CodeWarrior project and detailed in the
OpenTCP file system (see the FileSys.c section).

The source code below is standard HTML. The portion of the code that embeds the ActiveX component
on the web page is the following:

<object ID="UserControlPanel" CLASSID="CLSID:956FC15B-5D58-4F1D-95CC-242020FA9175"
CODEBASE="NE64DemoNOPIC.CAB#version=1,0,0,0">
<param name="_ExtentX" value="10266">
<param name="_ExtentY" value="14340">
</object>

This object shows the ActiveX component is provided in a cabinet file, NE64DemoNOPIC.CAB. Cabinet
files are used to package ActiveX controls for faster downloading over the internet by reducing the ActiveX
file size footprint using data-compression technology. The cabinet file also includes a “inf” file to automate
the ActiveX component file installation and registration in the client machine’s registry.

Web Server Development with MC9S12NE64 and OpenTCP, Rev. 0

28 Freescale Semiconductor

Overview of a Web Server Developed Using OpenTCP TCP/IP Stack

Web Server demo.htm HTML Source Code:

<html>

<head>
<meta http-equiv="Content-Language" content="en-us">
<meta name="GENERATOR" content="Microsoft FrontPage 5.0">
<meta name="ProgId" content="FrontPage.Editor.Document">
<title>NE64DemoNOPIC.CAB</title>
</head>

<body bgcolor="#FFFFFF">

<table border="1" cellpadding="0" cellspacing="0" style="border-collapse: collapse;
border-width: 0" bordercolor="#111111" width="100%" id="AutoNumber4">
<tr>
<td width="72%" style="border-style: none; border-width: medium"><img border="0"
src="freescale.jpg" align="left" width="313" height="117"> </td>
<td width="28%" style="border-style: none; border-width: medium"><hr>
<p align="right" style="margin-top: 0; margin-bottom: 0"><font size="4" face="Arial
Black">MC9S12NE64 OpenTCP Web Server Demo</p>
<hr></td>
</tr>
<tr>
<td width="100%" style="border-style: none; border-width: medium" colspan="2"
bgcolor="#0C99CC"><img border="0"
src="space.gif" width="27" height="22"> </td>
</tr>
<tr>
<td width="100%" style="border-style: none; border-width: medium" colspan="2">
<p style="margin-bottom: 8" align="center">Main PageNE64 Features<img border="0" src="space.gif" width="125"
height="13">Development Tools<img border="0" src="space.gif"
width="125" height="13">Demo<font size="1" face="sans-serif"
color="#FFFFFF"> </td>
</tr>
<tr>
<td width="100%" style="border-style: none; border-width: medium" colspan="2"
bgcolor="#809966"><img border="0"
src="space.gif" width="27" height="21"><font face="sans-serif" size="4"
color="#FFFFFF">MC9S12NE64: A cost-effective
single-chip Ethernet system solution </td>
</tr>
</table>
<table border="1" cellpadding="0" cellspacing="0" style="border-collapse: collapse;
border-width: 0" bordercolor="#111111" width="101%" id="AutoNumber5">
<tr>
<td width="3%" style="border-style: none; border-width: medium"> </td>
<td width="43%" style="border-style: none; border-width: medium" valign="top"> <p><font
face="Arial Black">WEB SERVER DEMO DESCRIPTION</p>

Multiple web pages on web server
Dynamic web page
Hyperlinks
Embedded Graphics
Embedded ActiveX Component¹

Overview of a Web Server Developed Using OpenTCP TCP/IP Stack

Web Server Development with MC9S12NE64 and OpenTCP, Rev. 0

Freescale Semiconductor 29

<p><img border="0" src="space.gif" width="27"
height="244"> </p>
<p>1 - " In order to run this ActiveX component, the
Visual Basic run-time files are required. Please download the Visual Basic 6
run-time files if the ActiveX component on this page is not functional. The link below to
Microsoft Knowledge Base articles containing downloadable self-extracting EXE's. The
self-extracting EXEs contain the run-time files." </p>
<p><a HREF="http://support.microsoft.com/default.aspx?scid=fh;en-us;vbruntime&product=vbb"
style="text-decoration: none"><font COLOR="#0000ff" face="sans-serif"
size="1">http://support.microsoft.com/default.aspx?scid=fh;en-us;vbruntime&product=vbb</f
ont> </p>
<p> </td>
<td width="7%" style="border-style: none; border-width: medium"> </td>
<td width="48%" style="border-style: none; border-width: medium">
<object ID="UserControlPanel" CLASSID="CLSID:956FC15B-5D58-4F1D-95CC-242020FA9175"
CODEBASE="NE64DemoNOPIC.CAB#version=1,0,0,0">
<param name="_ExtentX" value="10266">
<param name="_ExtentY" value="14340">
</object>
</td>
</tr>
</table>
<table border="1" cellpadding="0" cellspacing="0" style="border-collapse: collapse;
line-height: 100%; text-align: center; border-width: 0; margin-top: 10; margin-bottom: 10"
bordercolor="#111111" width="100%" id="AutoNumber6" bgcolor="#0C99CC">
<tr>
<td width="100%" style="border-style: none; border-width: medium" bgcolor="#0C99CC"
align="center">
<p style="margin-top: 0; margin-bottom: 0" align="right"><font size="1" face="sans-serif"
color="#FFFFFF"><font
face="sans-serif" size="1">© Freescale Semiconductor, Inc. 2004. All Rights
Reserved<img border="0"
src="space.gif" width="15" height="21"> </td>
</tr>
</table>

</body>

</html>

Web Server Development with MC9S12NE64 and OpenTCP, Rev. 0

30 Freescale Semiconductor

Overview of a Web Server Developed Using OpenTCP TCP/IP Stack

FileSys.c

FileSys.c is used by OpenTCP as a file system array reference for HTML and other files used in the web
server. When a client remote host makes a request to the web server for a file, OpenTCP accesses
FileSys.c to determine whether the file is available, so it is important that FileSys.c contains the correct
information. FileSys.c requires that the header files provided by CEncoderBeta.exe are listed in the
include section for FileSys.c as shown in the source code.

FileSys.c defines an array of the web server files. Each file entry is defined by the following structure,
which includes a hash value of the original web server file name, a pointer to the C representation of the
web server file, and its file size. For demo.htm, the pointer to the C representation of the web server file
is found in demo.c (demo_file); the length of the demo.c date is provided in demo.h (DEMO_FILE_LEN).

typedef struct TFileEntry
{
unsigned char hash; // hash value for this entry file name
const unsigned char* file_start_address; //start of file
unsigned short file_length;
} TFileEntry;

The hash value for demo.htm can be easily calculated. The hash calculation formula is provided in the
https_calculatehash (UINT32 len) function in the http_server.c file. A simple utility is provided with this
application note (in AN2863SW.zip from freescale.com) to provide the hash calculation,
hashcalculator.exe. This hash calculator is provided without any guarantees.

Table 8 provides a brief description of each file referenced by the web server.

Table 8. Files Referenced by the Web Server

Filename Hash Value Description

index.htm 115 Static web page

devetools.htm 139 Static web page

features.htm 242 Static web page

demo.htm 160 Dynamic web page

freescale.jpg 193 Logo graphic

space.jpg 120 Graphic

NE64DemoNDPIC.cab 247 Compressed ActiveX file

Overview of a Web Server Developed Using OpenTCP TCP/IP Stack

Web Server Development with MC9S12NE64 and OpenTCP, Rev. 0

Freescale Semiconductor 31

Excerpt from FileSys.c:

/**
 *
 * (c) Freescale Inc. 2004 All rights reserved
 *
 * File Name : FileSys.c
 * Description :
 *
 * Version : 1.0
 * Date : Mar/05/2004
 *
 *
 **/
 #include "FileSys.h"

/********* Include Web server files here *************/
#include "index.h"
#include "NE64DemoNOPIC.h"
#include "demo.h"
#include "devtools.h"
#include "features.h"
#include "freescale.h"
#include "space.h"
/***/

const TFileEntry FAT [] = {
 { 115, index_file, INDEX_FILE_LEN },
 { 247, NE64DemoNOPIC_file, NE64DEMONOPIC_FILE_LEN },
 { 160, demo_file, DEMO_FILE_LEN },
 { 139, devtools_file, DEVTOOLS_FILE_LEN },
 { 242, features_file, FEATURES_FILE_LEN },
 { 193, freescale_file, FREESCALE_FILE_LEN },
 { 120, space_file, SPACE_FILE_LEN },
 { 0, (unsigned char *)0, 0 }
};

mainwebserver.c

mainwebserver.c contains main() for the user application. In main(), the MC9S12NE64 MCU and its
integrated Ethernet controller are configured and enabled. main() also initializes the OpenTCP TCP/IP
stack then waits and serves a web page on request.

mainwebserver.c Source Code:

/**
 *
 * Copyright (C) 2003 Freescale Semiconductor, Inc.
 * and 2000-2002 Viola Systems Ltd.
 * All Rights Reserved
 *
 ***/

#include "debug.h"

Web Server Development with MC9S12NE64 and OpenTCP, Rev. 0

32 Freescale Semiconductor

Overview of a Web Server Developed Using OpenTCP TCP/IP Stack

#include "datatypes.h"
#include "timers.h"
#include "system.h"
#include "ethernet.h"
#include "arp.h"
#include "ip.h"
#include "tcp_ip.h"

#include "http_server.h"
#include "smtp_client.h"

#include "ne64driver.h"
#include "ne64api.h"
#include "mBuf.h"
#include "ne64config.h"
#include "udp_demo.h"

#include "address.h"

#include "MC9S12NE64.h"
/* Including used modules for compiling procedure */

/* Network Interface definition. Must be somewhere so why not here? :-)*/
struct netif localmachine;

extern void RTI_Enable (void);
extern void porth_isr_handler (void);

extern tU08 gotlink;

#if USE_SWLED
tU16 LEDcounter=0;
#endif

//==
tU08 OldSwitchValue=255;
tU16 Pot=0;
tU16 OldPot=1050;
tU08 OldB1=255;
tU08 OldB2=255;
tU08 OldB3=255;
tU08 OldB4=255;

//==
#pragma CODE_SEG NON_BANKED
interrupt void PortHInterrupt (void)
{
 porth_isr_handler();
}
#pragma CODE_SEG DEFAULT

//==
//Initialize ATD
//==
void ATD_init(void)

Overview of a Web Server Developed Using OpenTCP TCP/IP Stack

Web Server Development with MC9S12NE64 and OpenTCP, Rev. 0

Freescale Semiconductor 33

{
 ATDCTL2 = ATDCTL2_ADPU_MASK | ATDCTL2_AFFC_MASK;
 ATDCTL3_S1C = 8; // 8 ch seq.
 ATDCTL3_FIFO = 0; // no FIFO
 ATDCTL3_FRZ = 3; // Freeze immediately in BDM
 ATDCTL4 = ATDCTL4_PRS2_MASK |ATDCTL4_PRS1_MASK | ATDCTL4_PRS0_MASK;
 ATDCTL4 = ATDCTL4 & ~ATDCTL4_SRES8_MASK; //10 bit
 ATDCTL5 = ATDCTL5_SCAN_MASK;
}

//==
// Initialize Port for LEDs, Switch, and Buttons
//==
void demoinit(void)
 {
 //LEDS
 DDRG_DDRG0 = 1; //1:output
 DDRG_DDRG1 = 1; //1:output
 DDRG_DDRG2 = 1; //1:output
 DDRG_DDRG3 = 1; //1:output
 PTG_PTG0 = 1;//turn off
 PTG_PTG1 = 1;//turn off
 PTG_PTG2 = 1;//turn off
 PTG_PTG3 = 1;//turn off

 //SWITCH (RUN/LOAD) 0:input
 DDRG_DDRG4 = 0;

 //BUTTON2
 DDRH_DDRH4 = 0;
 PIEH_PIEH4 = 1; //PIEH4 Interrupt Enable

 DDRH_DDRH5 = 0; //0:input
 DDRH_DDRH6 = 0; //0:input

 }

//==
/* main */
//==
void main(void)
{
 INT16 len;

 /* System clock initialization */
 CLKSEL=0;
 CLKSEL_PLLSEL = 0; /* Select clock source from XTAL */
 PLLCTL_PLLON = 0; /* Disable the PLL */
 SYNR = 0; /* Set the multiplier register */
 REFDV = 0; /* Set the divider register */
 PLLCTL = 192;
 PLLCTL_PLLON = 1; /* Enable the PLL */
 while(!CRGFLG_LOCK); /* Wait */
 CLKSEL_PLLSEL = 1; /* Select clock source from PLL */

Web Server Development with MC9S12NE64 and OpenTCP, Rev. 0

34 Freescale Semiconductor

Overview of a Web Server Developed Using OpenTCP TCP/IP Stack

 INTCR_IRQEN = 0; /* Disable the IRQ interrupt. IRQ interrupt is enabled
after CPU reset by default. */

/* initialize processor-dependant stuff (I/O ports, timers...).
 * Most important things to do in this function as far as the TCP/IP
 * stack concerns:
 * - initializing some timer so it executes decrement_timers
 * on every 10ms (TODO: Throw out this dependency from several files
 * so that frequency can be adjusted more freely!!!)
 * - not mess too much with ports allocated for Ethernet controller
 */

 init();
 demoinit();
 ATD_init();
 /* Set our network information. This is for static configuration.
 * if using BOOTP or DHCP this will be a bit different.
 */
 /* IP address */
 localmachine.localip = *((UINT32 *)ip_address);
 /* Default gateway */
 localmachine.defgw = *((UINT32 *)ip_gateway);
 /* Subnet mask */
 localmachine.netmask = *((UINT32 *)ip_netmask);

 /* Ethernet (MAC) address */
 localmachine.localHW[0] = hard_addr[0];
 localmachine.localHW[1] = hard_addr[1];
 localmachine.localHW[2] = hard_addr[2];
 localmachine.localHW[3] = hard_addr[3];
 localmachine.localHW[4] = hard_addr[4];
 localmachine.localHW[5] = hard_addr[5];

/* Init system services*/
timer_pool_init();

 /* Initialize all buffer descriptors */
mBufInit ();

/*interrupts can be enabled AFTER timer pool has been initialized */

 /* Initialize all network layers*/
 EtherInit();

 //Initialize required network protocols
 arp_init();
 (void)udp_init();

udp_demo_init();
 (void)tcp_init();

(void)https_init ();

//Enable RTI
RTI_Enable ();

Overview of a Web Server Developed Using OpenTCP TCP/IP Stack

Web Server Development with MC9S12NE64 and OpenTCP, Rev. 0

Freescale Semiconductor 35

/* main loop */
DEBUGOUT(">>>>>>>>>Entering to MAIN LOOP>>>>>>>>>\n\r");
for (;;)
{

#if USE_SWLED
 UseSWLedRun();
#endif

 if (gotlink) {

 /* take care of watchdog stuff */

 /* Try to receive Ethernet Frame*/
 if(NETWORK_CHECK_IF_RECEIVED() == TRUE) {
 switch(received_frame.protocol)

 {
 case PROTOCOL_ARP:

 process_arp (&received_frame);
 break;

 case PROTOCOL_IP:
 len = process_ip_in(&received_frame);
 if(len < 0)
 break;
 switch (received_ip_packet.protocol)
 {
 case IP_ICMP:
 process_icmp_in (&received_ip_packet, len);
 break;
 case IP_UDP:
 process_udp_in (&received_ip_packet,len);
 break;
 case IP_TCP:
 process_tcp_in (&received_ip_packet, len);
 break;
 default:
 break;
 }
 break;

 default:
 break;

 }
/* discard received frame */

 NETWORK_RECEIVE_END();
 }
 arp_manage();

/* Application main loops */
/* TCP/IP stack Periodic tasks here... */

 udp_demo_run();
 tcp_poll();

 https_run ();

 }
 else {

 PTG_PTG0 = 1;//turn off LED1
 PTG_PTG1 = 1;//turn off LED2

 }
}

}

Web Server Development with MC9S12NE64 and OpenTCP, Rev. 0

36 Freescale Semiconductor

OpenTCP Project Configuration to Optimize the Stack Solution

OpenTCP Project Configuration to Optimize the Stack Solution

When developing a web server, there are several strategies to ensure that the code size of the solution
does not exceed the available resources:

• Minimize or off-load web page content

• Use only required network protocols

• Set buffers to appropriate values

Minimize or Off-Load Web Page Content

A fully featured web page for an application uses valuable FLASH and RAM resources. Before
implementation, it is important to understand the resources that the application will require and balance
them with the web server features. Each web page graphic, for example, can easily require 6 to 8 Kbytes
of FLASH. The following techniques help minimize or off-load web server content and still provide the
connectivity functionality for the application:

• Use an HTML file compressor — HTML compressors remove unnecessary white space characters
such as carriage returns, line feeds, spaces, and tabs; this can reduce the size of a web page by
as much as 50%. Compressed code requires less space on the web server and client system. More
importantly, compressed HTML files download faster.

• Compress any ActiveX controls using a cabinet file as described in the Demo.htm section. Java is
compressed using “jar” files.

• Place ActiveX controls or other content on another web server — the CODEBASE attribute in the
Demo.htm section shows that the ActiveX cabinet file is on the web server. Alternatively, this code
can be stored on another, larger web server that is reachable by the network in the end application.
The alternative syntax for CODEBASE to point to another location is
CODEBASE="http://www.largewebserver.com/offloadedforNE64.cab#Version=1,0,0,1". This
off-loads the web server content from the embedded device to another web server.

• Use a standalone UDP (or TCP) application that is loaded on the client machine instead of building
a web server to provide the remote access. This off-loads the web server content from the
embedded device to the client machine. This is not possible in all cases, but this approach should
be considered. An example UDP application that can replace the web server while providing similar
functionality is provided as an example (see Figure 14).

OpenTCP Project Configuration to Optimize the Stack Solution

Web Server Development with MC9S12NE64 and OpenTCP, Rev. 0

Freescale Semiconductor 37

Figure 14. Example of UDP Application Replacing the Web Server

• Off-load web page data to an external memory device interfaced to the MC9S12NE64 via the
expanded memory or using one of the MC9S12NE64 serial interfaces. Softec
(www.softecmicro.com) provides a OpenTCP demo that demonstrates using external memory via
the SPI. The Softec example stores all web page content on the external device. An example of
the Softec web content is provided in Figure 15.

Figure 15. Softec Web Content

RETRIEVED FROM

EXTERNAL MEMORY

VIA THE SPI

www.softecmicro.com

Web Server Development with MC9S12NE64 and OpenTCP, Rev. 0

38 Freescale Semiconductor

OpenTCP Project Configuration to Optimize the Stack Solution

Use Only Required Network Protocols

For resource-constrained TCP/IP stack implementations, such as implementing a TCP/IP stack on an
8-/16-bit embedded system, it is not always best to implement the complete set of networking protocols.
Figure 16 illustrates a simplified or partial TCP/IP stack implementation. This stack uses only the UDP
protocol and the user applications.

Figure 16. Partial Stack TCP/IP Stack Implementation

The major disadvantage of TCP/IP stack implementations that are customized to a specific application is
that they are not complete TCP/IP stack implementations. So, if changes to the TCP stack functionality
are required after product deployment, making updates would require recompiling the TCP stack code to
include the missing components and reprogramming the device in the field.

OpenTCP Zero Copy Functionality

Zero copy refers to the TCP/IP stack ability to send and receive from the Ethernet buffers’ stack without
copying data to user RAM. Not making a copy of the data saves user RAM space and improves
performance. Performance is improved because, in most cases, the data can be completely processed
in much less of time that would be required to make a copy of the data between the Ethernet buffer RAM
and web RAM.

Set Buffers to Appropriate Values

RAM for Tx and Rx Ethernet buffers should be balanced with user application RAM. If large Ethernet
buffers are not required for the user application, set the Ethernet buffer values (in the BUFMAP register)
so that the user application uses only the necessary RAM resources. The Tx and Rx Ethernet buffers’
size is controlled in ne64config.h.

NETWORK INTERFACE

IP

USER APPLICATION

ARP

UDP

Conclusion

Web Server Development with MC9S12NE64 and OpenTCP, Rev. 0

Freescale Semiconductor 39

Conclusion

Combining the MC9S12NE64 and the OpenTCP stack software provides a single-chip Ethernet system
solution that is low cost and easy to use. The OpenTCP web server described in this application note is
only one of the many network applications possible with the MC9S12NE64.The MC9S12NE64 provides
developers with the means to add Ethernet functionality to everyday applications and/or design
innovative, network-enabled applications.

NOTE
With the exception of mask set errata documents, if any other Freescale
document contains information that conflicts with the information in the
device data sheet, the data sheet should be considered to have the most
current and correct data.

Although specific methods and tools are used to develop and debug this
demo, Freescale Semiconductor does not recommend or endorse any
particular methodology, tool, or vendor. These methods and tools are
provided only to describe the generic principles and features that may be
required for development of a networked device.

Notes

Notes

AN2836
Rev. 0, 9/2004

How to Reach Us:

USA/Europe/Locations not listed:
Freescale Semiconductor Literature Distribution
P.O. Box 5405, Denver, Colorado 80217
1-800-521-6274 or 480-768-2130

Japan:
Freescale Semiconductor Japan Ltd.
SPS, Technical Information Center
3-20-1, Minami-Azabu
Minato-ku
Tokyo 106-8573, Japan
81-3-3440-3569

Asia/Pacific:
Freescale Semiconductor H.K. Ltd.
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T. Hong Kong
852-26668334

Learn More:
For more information about Freescale
Semiconductor products, please visit
http://www.freescale.com

Information in this document is provided solely to enable system and software implementers to use

Freescale Semiconductor products. There are no express or implied copyright licenses granted

hereunder to design or fabricate any integrated circuits or integrated circuits based on the information
in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products

herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the

suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any
liability arising out of the application or use of any product or circuit, and specifically disclaims any

and all liability, including without limitation consequential or incidental damages. “Typical” parameters

which may be provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating parameters,

including “Typicals” must be validated for each customer application by customer’s technical experts.

Freescale Semiconductor does not convey any license under its patent rights nor the rights of others.

Freescale Semiconductor products are not designed, intended, or authorized for use as components
in systems intended for surgical implant into the body, or other applications intended to support or

sustain life, or for any other application in which the failure of the Freescale Semiconductor product

could create a situation where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall

indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and

distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney
fees arising out of, directly or indirectly, any claim of personal injury or death associated with such

unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was

negligent regarding the design or manufacture of the part.

Metrowerks
®

 and CodeWarrior
®

 are registered trademarks of Metrowerks, Inc., a wholly owned
subsidiary of Motorola, Inc.

Microsoft, Windows, Internet Explorer, and FrontPage are either registered trademarks or

trademarks of Microsoft Corporation in the U.S. and other countries.
MultiLink is a trademark of P&E Microcomputer Systems, Inc.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other
product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2004.

	Introduction
	Acronyms and Terms
	Scope of This Application Note
	Connectivity Example Applications
	TCP/IP Stack Model Refresher

	MC9S12NE64 MCU with Integrated Ethernet Controller
	MC9S12NE64
	Integrated Ethernet Controller

	Axiom Ethernet Development Board for the MC9S12NE64, EVB9S12NE64
	EVB9S12NE64
	EVB9S12NE64 Board Settings for Web Server Demo

	OpenTCP TCP/IP Stack Overview
	OpenTCP Introduction
	Freescale Semiconductor Low-Level Ethernet Drivers
	OpenTCP Project Installation and Organization
	OpenTCP CodeWarrior Projects
	OpenTCP TCP/IP Stack API

	Preparing for OpenTCP TCP/IP Stack Development
	Development Environment and Tools
	Connecting the Evaluation Board to a Development PC
	Configuring the MAC Hardware and IP Addresses
	Configuring the MAC Hardware Address
	Configuring the IP Addresses

	Configuring TCP/IP Protocol in Windows

	Debugging Networks
	Issues
	Ethernet Connection Not Established
	Network Connection Cannot be Established
	Network Connection is Established at the IP Layer with Ping, but the Devices are Not Talking

	Network Protocol Analyzer Tools

	Overview of a Web Server Developed Using OpenTCP TCP/IP Stack
	address.c
	address.c:

	ne64config.h
	Excerpt from ne64config.h:

	P&E_ICD_linker.prm
	Excerpt from P&E_ICD_linker.prm:

	Demo.htm
	Web Server demo.htm HTML Source Code:

	FileSys.c
	Excerpt from FileSys.c:

	mainwebserver.c
	mainwebserver.c Source Code:

	OpenTCP Project Configuration to Optimize the Stack Solution
	Minimize or Off-Load Web Page Content
	Use Only Required Network Protocols
	OpenTCP Zero Copy Functionality
	Set Buffers to Appropriate Values

	Conclusion

