
Freescale Semiconductor
Application Note

AN2832
Rev. 1, 9/2004

© Freescale Semiconductor, Inc., 2004. All rights reserved.

This application note presents an intrusive remote diagnostic
device that dynamically estimates and emulates hybrid circuits
in packet telephony systems. The device uses a robust FFT-
based channel identification scheme common to asymmetric
digital subscriber line (ADSL) systems to estimate the actual
impulse response hest of a hybrid circuit. It then dynamically
emulates a target hybrid circuit impulse response ht(n) by
injecting an echo signal based on the effective impulse response
heff (n) = ht(n) – hest. Using this method, any linear time-
invariant hybrid circuit can efficiently be transformed to have
any target impulse response, thereby enabling dynamic
correction of poorly designed hybrid circuits or cascaded
connections of hybrid circuits, which generate multiple
reflections. This method was implemented and extensively
tested in real time on a Freescale StarCore™-based DSP device.
The resulting implementation requires less than 2.0 million
cycles per second (MCPS) on average for a target impulse
response with up to a 128 ms span. The remote diagnostic
device was validated with a carrier-class network echo
canceller, which emulated various target impulse responses,
regardless of the actual hybrid circuit(s) in the system. The
remote diagnostic device was demonstrated to be a valuable
asset for developing and deploying packet telephony systems,
especially when proper control is provided over the
communication network

CONTENTS

1 Basics of Remote Diagnostics2
2 Remote Diagnostic Architecture5
2.1 Estimating the FFT-Based Hybrid Circuit

Impulse Response ...6
2.2 Generating the Training Signal6
2.3 Transmitting the Training Signal7
2.4 Calculating the Impulse Response8
2.5 Emulating Target Impulse Responses8
2.6 Considerations for Real-Time Implementation8
2.7 Typical Results ..9
3 Remote Diagnostics on StarCore11
3.1 System-Level Optimization11
3.2 Kernel-Level Optimization12
4 Conclusion ..13
5 References ...13

Packet Telephony Remote Diagnostics
on the StarCore SC140 Core
by Lúcio F.C. Pessoa, Robert Barrett, Raquel Flores, and Kim-chyan Gan

Packet Telephony Remote Diagnostics on the StarCore SC140 Core, Rev. 1

2 Freescale Semiconductor

Basics of Remote Diagnostics

1 Basics of Remote Diagnostics
Remote diagnostic tests are becoming important maintenance applications in packet telephony systems for
monitoring and sometimes correcting anomalies that affect performance of voice or data communication services
[1], [2]. Maintenance tests are performed either in-service while other users are accessing the same channel of the
communication network or out-of-service (same channel not in use). The tests employ either intrusive methods that
change transmit and/or receive signals or non-intrusive methods that do not change the signals.

The International Telecommunication Union (ITU) developed the P.561 Recommendation [3], which defines
preferred interfaces, measurement ranges, and accuracy requirements for measuring voice-grade transmission
parameters in the communication network. This recommendation is intended primarily for in-service non-intrusive
measurement devices (INMDs). Typical P.561 measurements include speech level, noise level, echo loss, and
speech echo path delay; optional measurements, such as double talk, signal classification, and speech activity
factors, are sometimes needed.

Among the transmission parameters, echo is one of the most relevant impairments affecting quality of service.
Echo is caused by a hybrid network element, which is a circuit to convert a four-wire physical interface to a two-
wire connection. The main role of this hybrid is to provide an electrical interface for signals traveling in both
transmit and receive directions at the same time. The hybrid is designed to minimize echo (reflection) of the
receive signal, but in most practical cases the echo becomes quite noticeable, especially when communication
delay is large. Therefore, an echo canceller is required to mitigate this kind of distortion [4].

Hybrid circuits are typically modeled as linear time-invariant systems so that their signal processing characteristics
can be determined by estimating impulse responses. Estimates usually employ finite impulse response (FIR) filters,
as detailed in the ITU recommendation G.168 [5], which defines eight basic FIR hybrid models for testing network
echo canceller devices. When the impulse response is known (that is, coefficients of the FIR filter), the echo signal
of a hybrid circuit can be mimicked by a linear convolution of the receive signal and the hybrid impulse response
estimate, which then cancels the echo component of the signal. This is the basic foundation of echo cancellers, but
additional nonlinear processing techniques are used to handle residual echo.

Echo cancellers are deployed in media gateways, which are platforms for handling communications between IP
packet-based networks and circuit-switched networks. However, some network configurations may violate certain
design assumptions, resulting in degraded echo canceller performance and customer complaints. To resolve
configuration problems, expensive measurement devices are brought to the field to estimate telephone channel
characteristics. A far more cost effective approach is to design the media gateway with a software module that is
efficiently programmed to perform reliable measurements. A protocol is defined to transmit this measurement data
to a remote media gateway controller (see Figure 1) so that specialized engineers can retrieve and analyze it.

Figure 1. Portion of a Packet Telephony System

Media Gateway
Controller

Media
Gateway

Hybrid
Circuit

Basics of Remote Diagnostics

Packet Telephony Remote Diagnostics on the StarCore SC140 Core, Rev. 1

Freescale Semiconductor 3

The method discussed here for estimating and dynamically emulating impulse response of hybrid circuits is
motivated by channel estimation techniques in ADSL systems [5], which have been extensively employed in the
field and proven to be accurate and reliable. The proposed method is part of a hybrid circuit identification device
(HCID) illustrated in Figure 2.

Figure 2. Hybrid Circuit Identification Device (HCID).

The HCID unit is an intrusive measurement component of the remote diagnostic device that uses control signals to
specify how the identification process is performed. Upon activation, a periodic training sequence is transmitted to
the hybrid and its reflection is captured. During this process, uncorrelated spurious noise may be injected, such as
audio signals from a telephone unit connected to the hybrid, but the HCID can usually mitigate the noise, even if
the training sequence and the spurious noise coexist as double talk. The goal of the HCID is to provide accurate
impulse response estimates of the hybrid circuit.

The HCID unit can connect to multiple hybrid circuits, using time-division multiplexing (TDM) and different
channel data states to control its operation. Figure 3 shows a prototype of a multi-channel device using the
MSC8101ADS board [7]. Multiple hybrid circuits connect to the ADS board via a T1 line. Software is loaded
through the debug port from a personal computer; control signals are provided, and impulse responses are obtained
via RS-232. The MSC8101 DSP device digitally generates the training signal to estimate hybrid circuits. This
simple prototype can be used to develop an optimized software module for integration on the packet telephony
system illustrated in Figure 1.

A similar configuration for non-intrusive measurements uses an adaptive filter structure that operates in parallel
with an echo canceller infrastructure. Non-intrusive methods are not considered here, but alternatives are readily
available in the literature (see [2]). Echo cancellers can be equipped with a built-in debugging/testing feature that is
selectively enabled to estimate most required measurements during regular in-service operation and pass these
estimates to the media gateway as needed. After a physical hybrid impulse response is estimated, the user can
selectively emulate another hybrid circuit by compensating for the existing echo and injecting a desired echo
signal. Intrusive methods are usually required to perform hybrid circuit emulation, although non-intrusive methods
can be selectively employed. Hybrid emulation proceeds as follows:

1. Estimate the impulse response of a hybrid circuit.

2. Use the estimated impulse response to estimate the echo signal generated by the hybrid circuit.

3. Subtract the estimated echo signal from the actual echo signal to generate a residual echo signal.

4. Use a target impulse response to generate a target echo signal.

5. Add the target echo signal to the residual echo signal to generate an emulated echo signal.

Hybrid HCID

Training Sequence Control Signals

Echo Signal + Noise

Noise

2-Wire Side 4-Wire Side
4-Wire/2-Wire

Impulse Response
Estimate

Packet Telephony Remote Diagnostics on the StarCore SC140 Core, Rev. 1

4 Freescale Semiconductor

Basics of Remote Diagnostics

Figure 3. Multi-Channel HCID Implemented on the MSC8101ADS Board

MSC8101ADS Board

TS0

TS1

TS2

TS3

Central Office
Simulator

T1 Framer

MSC8101
DSP

T1

RS-232

Debug

Remote Diagnostic Architecture

Packet Telephony Remote Diagnostics on the StarCore SC140 Core, Rev. 1

Freescale Semiconductor 5

2 Remote Diagnostic Architecture
Figure 4 shows a top-level view of the remote diagnostic device, with respect to the hybrid circuit and network
echo canceller (ECAN). The device monitors the ro(n), y(n), and so(n) signals for performing various
measurements requested from the communication network.

Figure 4. Top-Level Architecture of the Proposed Remote Diagnostic Device

Control Unit

Channel
Monitoring

Hybrid
Circuit

(h)

Network
Echo Canceller

(ECAN)

Remote Diagnostic
Device

To/From
Communication
Network

ro(n)

so(n)

ri(n)

si(n)
w(n)

x(n)

y(n)

z(n)

r(n)

+
+

+
+

+
+

Legend

ro(n)

so(n)

x(n)

y(n)

Far-end receive signal from the ECAN.

Sending signal from the ECAN.

Training signal (r(n) + ro(n)).

Receive signal from the hybrid (w(n) + h ∗ x(n)).

Packet Telephony Remote Diagnostics on the StarCore SC140 Core, Rev. 1

6 Freescale Semiconductor

Remote Diagnostic Architecture

2.1 Estimating the FFT-Based Hybrid Circuit Impulse Response
The impulse response of hybrid circuits is estimated with an FFT-based channel identification scheme similar to
the method used in ADSL systems, as shown in Figure 5.

Figure 5. FFT-Based Structure for Estimating Hybrid Circuit Impulse Responses

2.2 Generating the Training Signal
The training signal is generated by a white Gaussian noise signal x(n) that is a function of uniformly distributed
random variables Φk’s in the frequency domain, as shown in Equation 1.

 Equation 1

Converting this signal into the time domain by taking the inverse discrete Fourier transform results in the signal
shown in Equation 2.

 Equation 2

where N is the period of the training signal. This real-valued signal is generated in the code. Notice that this
training signal is obtained by setting r(n) = x(n) – r0(n) (see Figure 4). Before transmission, the signal can be
adjusted to a convenient power level. This signal is generated on the basis of the two main parts of the equation: a
method for efficiently computing cosines and a random number generator to produce the random phases:

Serial to
Parallel

Low-Pass
Filter

Fast Fourier
Transform Fast Fourier

Transform

Inverse 1-D

Fast Fourier
Transform

Inverse 1-DParallel to
Serial

Periodic
Transmitter

X

Complex
Conjugate

Control

y(n)

x(n)

y(n)

X h(n)

heff(n)

hest

X*

Y

+

–

X k() e
j Φk⋅

k 1 ...,
N
2
---- 1– , where Φo ΦN 2⁄ 0 and Xk XN k–

*
== =,=,=

x n() 1 1–()n
+

N

2
N
---- 2π kn⋅

N
----------------- Φk+⎝ ⎠

⎛ ⎞ ,cos

k 1=

N
2
---- 1–

∑⋅+= n 0 1 . . ,, , N 1–=

Φk, k 1= , . . . ,
N
2
---- 1–

Remote Diagnostic Architecture

Packet Telephony Remote Diagnostics on the StarCore SC140 Core, Rev. 1

Freescale Semiconductor 7

Obtaining the Φk values requires the use of a random number generator. A standard code to generate random
numbers can be found in [8]. This reference provides a number of random number generators, from which uniform
and identically distributed random variables are easily generated. The values for Φk vary between 0 and 2π, but
they are transformed as follows:

 Equation 3

such that lk is a discrete, uniformly distributed random variable with values 0,1, . . . ,N–1. The rotation matrix
recurrence method is an efficient way to calculate cosines, as shown in Equation 4.

 Equation 4

and n = 0, 1, . . . , N – 1, and c(n) and s(n) represent the discrete cosine and discrete sine, respectively. Solving
Equation 4 for c(n) results in the well-known digital oscillator [9].

 Equation 5

Using the initial conditions c(0) = 1 and c(1) = cosθ, all other values of cosine for n = 0, 1, . . . N – 1 can be
computed efficiently. Due to the even symmetry of the cosine function, only half of these values (that is, n = 0, 1, .
. . , N / 2 – 1) are computed and stored in a look-up table for future reference. The values from this look-up table are
then used in the following cosine computation:

 Equation 6

The look-up table is accessed via modular addressing, and the evenness or oddness of the remainder of (kn + lk) /
(N / 2) indicates whether the positive or negative value of the cosine is used. An even remainder indicates the
positive value of the cosine, and an odd remainder indicates the negative value. Therefore, the training signal x(n)
is composed by simple superposition of scaled discrete cosine values taken from a look-up table of c(n), n = 0, 1, .
. . , N / 2 – 1.

2.3 Transmitting the Training Signal
After the training signal x(n) is generated, it is periodically transmitted across the channel through the hybrid, and
the average of the receive signal (echo signal + noise) is computed. N samples of the transmit signal x(n) make up
one transmit frame, and a user-specified number of frames (M) determines how many times the signal is repeatedly
transmitted. The buffer storing the signal is accessed circularly. Multiple transmissions of the same data frame are
important for mitigating spurious noise and improving estimation accuracy.

2π k n⋅ ⋅
N

--------------------- Φk+⎝ ⎠
⎛ ⎞cos

2π
N
------ kn lk+()cos , where lk

N
2π
------ Φk⋅==

θcos θsin–

θsin θcos

c n 1–()
s n 1–()

c n()
s n()

,=⋅ where θ 2π
N
------=

c n() 2 θcos c n 1–() c n 2–()–⋅ ⋅=

2π
N
------ kn lk+()cos c kn lk+()=

Packet Telephony Remote Diagnostics on the StarCore SC140 Core, Rev. 1

8 Freescale Semiconductor

Remote Diagnostic Architecture

When the receive frame is obtained, it is used to compute the average, that is, the low-pass filter (LPF), of the
receive signal (y(n)). In this computation, the receive samples from at least the first two frames and the last two
frames are usually ignored due to boundary effects of the linear convolution and do not represent valid circular
convolution.

2.4 Calculating the Impulse Response
To find the frequency response of the hybrid impulse response, the discrete Fourier transforms of x(n) and y(n)
must be computed (that is, X and Y). A standard code for computing these transforms via FFTs is available in [8],
but optimized libraries for StarCore DSP cores are freely available on the Freescale Semiconductor website listed
on the back cover of this document. The Hest frequency response is the result of dividing Y by X. Because the
magnitude of the training signal x(n) frequency response is 1 (that is, |X| = 1), dividing by X is the same as
multiplying by its complex conjugate. Calculating the frequency response this way eliminates costly division
operations and therefore is the method used in the code. The hest impulse response estimate is then found by taking
the inverse discrete Fourier transform of the Hest frequency response.

2.5 Emulating Target Impulse Responses
As discussed in Section 1, after a physical hybrid impulse response is estimated, you can selectively emulate
another hybrid circuit by compensating the existing echo and then injecting a desired echo signal. As Figure 4
shows, a target impulse response ht(n) is easily emulated by defining z(n) = (ht(n) – hest) * r0(n), where hest is the
estimate of the physical hybrid circuit impulse response. In this process, ht(n) can be any linear filter, not
necessarily time-invariant. This method was validated in real time with a carrier-class network echo canceller using
different target impulse responses.

2.6 Considerations for Real-Time Implementation
Implementing FFT-based channel estimation in real time requires careful control of other modules, such as the
ECAN. As described in Section 2.2, during the training phase, the ECAN must be disabled and r0(n) must be
suppressed. The following algorithm summarizes the resulting steps:

1. For every channel, generate a zero-mean, white Gaussian noise training signal x(n) using the following
equation:

 Equation 7

where the Φk are independent, identically distributed random variables having uniform distribution
between 0 and 2π. (Φk ~ U(0,2π), ∀k). The r0(n) receive signal is suppressed by setting r(n) = x(n) –
r0(n) in Figure 4 so that the resulting spectrum of x(n) is flat (that is, unit gain per frequency) during
the training period (M ⋅ N samples), regardless of the spectrum of r0(n).

2. Periodically transmit x(n), read the receive signal y(n), and compute the averaged receive signal y(n),
that is, a low-pass filtered version of y(n).

The x(n) signal is transmitted periodically so that the receive signal y(n) is a circular convolution with
the channel impulse response h. This allows use of point-by-point multiplication of discrete Fourier
transforms (DFTs) in step 4 to obtain the frequency response of the channel. During the training, the

x n() 1 1–()n
+

N
----------------------=

2
N

2π kn⋅
N

----------------- Φk+⎝ ⎠
⎛ ⎞ ,cos

k 1=

N
2
---- 1–

∑⋅+ n 0 1 . . . , ,= N 1–

Remote Diagnostic Architecture

Packet Telephony Remote Diagnostics on the StarCore SC140 Core, Rev. 1

Freescale Semiconductor 9

ECAN must be disabled (see Figure 4). Notice that the signals are converted from serial to parallel
(S/P) and from parallel to serial (P/S), as needed.

3. Compute the DFT of x(n), which is typically pre-computed, and y(n): X = FFT[x(n)] and Y =
FFT[y(n)].

4. Use X and Y to compute H= FFT[hest]: Hest = Y / X = Y ⋅ X*, since |X|=1, where (⋅)* denotes a complex
conjugate.

5. Get the impulse response estimate of the hybrid circuit, which is the channel impulse response (CIR),
by taking the inverse discrete Fourier transform of Hest: hest = IFFT[Hest].

A simple MATLAB script corresponding to these steps is listed as follows (for simplicity, r0(n) = 0, such that x(n)
= r(n)):

N = 2^10; % Set maximum echo path span to 128 ms
X = ones(1, N);

X(2 : N / 2) = exp(2 * pi * j * rand(1, N / 2 -1)); % Define Random phase
X(N : -1 : N/2 + 2) = conj(X(2 : N / 2)); % Impose Hermitian symmetry
x = real(ifft(X)); % Generate the training signal

M = 100; % Number of frames to be transmitted
xx = zeros(1, M * N);
for m = 1 : M % Generate training sequence

xx((m - 1) * M + (1 : N)) = x;
end

ho = load(‘hybrid_impulse_response.txt’); % Reference impulse response

y = conv(xx, ho); % Generate expected receive signal
y = y(1, 1 : M * N);
SNR = 30; % Target SNR (in dB)
d = sqrt(mean(y.^2)) * 10^(-SNR / 20) * randn(1, M * N);
yd = y + d; % Inject additive noise to achieve target SNR

ya = zeros(1, N);
for m = 1 : M % Main estimation loop

ya = ya + ya((m - 1) * M + (1 : N)) / M;
end

Ya = fft(ya); % Generate the FFT of the average receive signal
hest = real(ifft(Ya .* conj(X))); % Estimate hybrid impulse response

ye = conv(xx, hest); % Generate estimated receive signal
ye = ye(1, 1 : M * N);
e = yd - ye; % Estimate residual echo (error signal)
ep = 10*log10(mean(e.^2)) + 6.2; % Estimate residual echo power (dBm0)
erle = 20*log10(norm(ho) / norm(ho - hest)); % Estimate ERLE (dB)

2.7 Typical Results
Figure 6 and Figure 7 illustrate typical results obtained with the method described here, using the MATLAB
script. Figure 6 illustrates a multi-window impulse response generated by cascading multiple hybrid circuits.
Additive white Gaussian noise is injected at w(n) (see Figure 4) to simulate an SNR = 30 dB. The resulting
estimate presented an accuracy of at least 9 bits, estimated as follows:

log2 h hest– ∞()

Packet Telephony Remote Diagnostics on the StarCore SC140 Core, Rev. 1

10 Freescale Semiconductor

Remote Diagnostic Architecture

The training signal is composed of M = 100 periods of 128 ms frames at a sampling rate of 8 KHz (that is, N = 128
× 8 = 1024 samples). Two estimates of echo return loss enhancement (ERLE) are also computed, both indicating an
ERLE of about 44 dB. Figure 7 illustrates similar results, but with noise injected to simulate an SNR = 0 dB.
Notice that the intrusive method can achieve at least 6 bits of precision and an ERLE of about 20 dB under this
high noise condition. Similar performance would be difficult to achieve with non-intrusive standard methods, such
as NLMS-based channel estimation techniques.

Figure 6. Example of Estimated Multi-Window Impulse Response Under SNR = 30 dB

Figure 7. Example of Estimated Multi-Window Impulse Response Under SNR = 0 dB

ERLE = 43.99 (43.98) dB, Precision = 9 Bits

0.4

0.3

0.2

0.1

0

–0.1

–0.2

–0.3
0 100 200 300 400 500 600 700 800 900 1000

Sample Number

ERLE = 20.18 (20.25) dB, Precision = 6 Bits

0.4

0.3

0.2

0.1

0

–0.1

–0.2

–0.3
0 100 200 300 400 500 600 700 800 900 1000

Sample Number

Remote Diagnostics on StarCore

Packet Telephony Remote Diagnostics on the StarCore SC140 Core, Rev. 1

Freescale Semiconductor 11

3 Remote Diagnostics on StarCore
This section describes an implementation of the remote diagnostic architecture presented in Section 2 on a
Freescale StarCore MSC8101 DSP. Extensive real-time tests demonstrated that the remote diagnostic software
requires fewer than 2.0 million cycles per second (MCPS), on average, for a target impulse response with up to a
128 ms span. Hybrid circuit impulse response estimation and emulation are a major part of the remote diagnostic
functionality, but other basic measurements are included.

A flexible application programming interface (API) dynamically enables/disables hybrid estimation and emulation,
providing signal levels in dBm0—such as r0(n), si(n), and s0(n)—and providing hybrid impulse response
information, such as ERL, bulk delay, and active portion of the impulse response. These are a small subset of the
possible remote diagnostic features in comparison to those discussed in [3], but they are critical indicators of
possible anomalies in the communication network. Proprietary schemes integrated in a media gateway system can
use these measurements to monitor ECAN performance (see Figure 4). Alert messages are generated when
troubling conditions are detected, such as a level of s0(n) much larger than the level of si(n), which is inconsistent
with expected ECAN behavior. Furthermore, when the remote diagnostic device is integrated within a packet
telephony development platform such as the prototype illustrated in Figure 3, it can emulate any target hybrid
impulse response—for example, one of the 8 G.168 hybrid models. It can also emulate time-varying impulse
responses, thus providing valuable help in acoustic echo canceller development and testing.

The FFT and inverse 1-D fast Fourier transform (IFFT) processing block handled most of the required processing
load, so it is discussed further. We also used other common code optimization strategies, such as precomputing the
training signal and storing it in look-up tables and efficient multi-sample processing of the FIR filtering step [10]
required for echo estimation and emulation. High-level C optimization of the FFT/IFFT increased the efficiency of
the impulse response estimation process. The speed-up efforts were conducted in two phases: system-level
optimization and kernel-level optimization.

3.1 System-Level Optimization
The original FFT/IFFT was performed in floating-point operations, which are not very efficient on fixed-point
processors. Therefore, we converted the FFT/IFFT block to fixed-point, imposing precision limitations. To validate
the functionality of the new code with ease, we defined a preprocessor so that the user can select either the fixed- or
floating-point FFT/IFFT implementation.

#define MOT_REM_DIAG_FFT_FIX16 1 // Enable(1) -> use 16-bit fix-pointed FFT
// Disable(0) -> use floating point FFT

During the channel estimation step, a random sequence with known probability distribution is generated in real-
time and periodically transmitted through the hybrid circuit. A new training signal is generated per channel
estimation task. However, the training signal can instead be precomputed, in both the time and frequency domains,
and stored in look-up tables. If look-up tables are in use, the random sequence generator can be turned off, reducing
the total number of FFT/IFFT operations from three to two. A preprocessor macro is defined so that the user can
choose the fixed- or real-time generated random sequence.

#define MOT_REM_DIAG_FIX_TRAINING_SEQ 1 // Enable(1) -> use fixed training sequence
// Disable(0) -> use real-time self-generate
// training sequence for every frame

Packet Telephony Remote Diagnostics on the StarCore SC140 Core, Rev. 1

12 Freescale Semiconductor

Remote Diagnostics on StarCore

During FFT/IFFT operations, the received signal and estimated channel impulse response are purely real signals;
that is, their imaginary portions are all zeroes. To increase computational efficiency, the real data set can be split
into two subsets [8], [9] for the real and imaginary parts, forming an equivalent complex data of half the original
size. Then a complex FFT/IFFT of half the original data size can be performed. The result is pre- and post-
processed to recover the original real data from the complex data.

3.2 Kernel-Level Optimization
The FFT/IFFT bit-reverse operations use a look-up table for in-place bit-reverse processing. Only values that must
be swapped are stored in the look-up table. The real and imaginary parts of the signal are 16-bit data, so the whole
complex data points are stored in 32-bit groups. In other words, the data swap is performed in 32-bits. The bit-
reverse operation can also be implemented through the Metrowerks® compiler-specific br_inc() macro. This
macro uses the hardware bit-reverse mechanism provided by the SC140 DSP core to change the index through bit-
reverse operations. Unfortunately, the in-place bit-reverse operation cannot be implemented directly. An additional
buffer with specific alignment must be allocated. This approach speeds up the bit reverse operation by
approximately 170 cycles per 10 ms frames at the expense of data placement flexibility and an additional 32 bytes.
The FFT implementation performs the radix-2 decimation-in-time (DIT) computation with a butterfly kernel
operation illustrated in Figure 8.

Figure 8. Radix-2 Decimation-in-Time (DIT) FFT Butterfly Using In-Place Computation

In assembly-level optimization, two butterflies can be computed in the kernel. In C-level implementation, only one
butterfly is computed in the kernel. The butterfly processing steps are rearranged so that the overall computation is
reduced from six to four (see Table 1). Only operations on the real portion of the complex data are considered. The
imaginary portion has the same number of operations.

Another portion of the kernel decomposes N/2-point complex FFT/IFFT data into N-point real FFT/IFFT data. The
decomposition formula is presented Equation 8. Fk is the FFT of the original real data and Gk is the FFT of the
complex data corresponding to half the real data size.

Table 1. Butterfly Computation of the Real Portion of Complex Data

Optimized Computation Instructions Normal Computation Instructions

A + BW MAC, MAC A + BW MAC, MAC

(A + BW)/2 SHR A – BW MSU, MSU

(A – BW)/2
[A– (A + BW)/2]

SUB (A + BW)/2 SHR

(A – BW)/2 SHR

(A + BW)/2

–1 (A – BW)/2

A

B W

Conclusion

Packet Telephony Remote Diagnostics on the StarCore SC140 Core, Rev. 1

Freescale Semiconductor 13

 Equation 8

It is much more efficient to compute two data points in parallel. Another point of computation is N/2 – k, which
shares the same twiddle factor as point k:

 Equation 9

Finally, the FFT/IFFT kernel has a triple nested loop, one loop for looping through the number of processing nodes
within a butterfly set, another for processing through the number of butterfly sets, and a third for looping through
the number of FFT/IFFT stages, which depends on the number of computation points. A pragma statement
provides the loop counter boundary range information to the compiler for more aggressive loop optimization.

#pragma loop_count (1,64)

4 Conclusion
Remote diagnostics are an important maintenance application in packet telephony systems for monitoring, and
sometimes correcting, anomalies affecting performance of voice or data communication services. This application
note presents an intrusive remote diagnostic device that dynamically estimates and emulates hybrid circuits in
packet telephony systems. This device uses a robust FFT-based channel identification scheme to estimate the actual
impulse response hest of a hybrid circuit and then dynamically emulate a target hybrid circuit impulse response
ht(n) by injecting an echo signal based on the effective impulse response heff (n) = ht(n) – hest. Typical performance
results for this remote diagnostic device demonstrate the robustness of its contribution in packet telephony systems.
Finally, selected code optimization strategies make effective use of the key parallel architecture features of the
StarCore DSP. The remote diagnostic device was efficiently implemented and extensively tested in real time on the
Freescale StarCore-based DSP, requiring less than 2.0 million cycles per second (MCPS), on average, for a target
impulse response of up to 128 ms span. The remote diagnostic device was validated with a carrier-class network
echo canceller as it emulated various target impulse responses, regardless of the actual hybrid circuit(s) in the
system. This device is demonstrated to be a valuable component in developing and deploying packet telephony
systems, especially when proper control is provided over the communication network

5 References
[1] M. Bertocco and P. Paglierani, “In-Service Nonintrusive Measurement of Echo Parameters in Telephone-

Type Networks,” IEEE Transactions on Instrumentation and Measurement, vol. 47, no. 5, pp. 1322–1325,
1998.

[2] T. Gänsler and G. Salomonsson, “Nonintrusive Measurements of the Telephone Channel,” IEEE
Transactions on Communications, vol. 47, no. 1, pp. 158–167, 1999.

[3] ITU-T, Recommendation P.561: In-Service Non-intrusive Device–Voice Service Measurements, 2002.

[4] R. A. Dyba, P. P. He, and L. F. C. Pessoa, Network Echo Cancellers and Motorola Solutions Using the
StarCore SC140 core, Freescale Application Note, AN2598/D, 2004.

[5] ITU-T, Recommendation G.168: Digital Network Echo Canceller, 2002.

Fk
1
2
--- Gk G∗N 2 k–⁄+() j

2
--- G∗N 2 k–⁄ Gk–()e

j2πk N⁄–
+=

FN 2 k–⁄
1
2
--- GN 2 k–⁄ G∗k+() j

2
--- G∗k GN 2 k–⁄–()e

j2π N 2 k–⁄() N⁄–
+=

Packet Telephony Remote Diagnostics on the StarCore SC140 Core, Rev. 1

14 Freescale Semiconductor

References

[6] ANSI, “Network and Customer Installation Interfaces: Asymmetric Digital Subscriber Line (ADSL) Metallic
Interface,” American National Standard for Telecommunications, no. T1E1.413, 1998.

[7] MSC8101 Application Development System User’s Manual, Freescale Semiconductor, 2001.

[8] W. H. Press, et al., Numerical Recipes in C++: The art of Scientific Computing, Cambridge University Press,
Feb. 2002.

[9] A. V. Oppenheim, R.W. Schafer, and J. R. Buck, Discrete-Time Signal Processing, Prentice Hall, 2nd edition,
1999.

[10] E. Roy and D. Crawford, Introduction to the StarCore SC140 tools: An approach in Nine Exercises, Freescale
Semiconductor, Application Note, AN2009/D, 2001.

References

Packet Telephony Remote Diagnostics on the StarCore SC140 Core, Rev. 1

Freescale Semiconductor 15

NOTES:

AN2832
Rev. 1
9/2004

Information in this document is provided solely to enable system and software implementers to
use Freescale Semiconductor products. There are no express or implied copyright licenses
granted hereunder to design or fabricate any integrated circuits or integrated circuits based on
the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any
products herein. Freescale Semiconductor makes no warranty, representation or guarantee
regarding the suitability of its products for any particular purpose, nor does Freescale
Semiconductor assume any liability arising out of the application or use of any product or
circuit, and specifically disclaims any and all liability, including without limitation consequential
or incidental damages. “Typical” parameters which may be provided in Freescale
Semiconductor data sheets and/or specifications can and do vary in different applications and
actual performance may vary over time. All operating parameters, including “Typicals” must be
validated for each customer application by customer’s technical experts. Freescale
Semiconductor does not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the
Freescale Semiconductor product could create a situation where personal injury or death may
occur. Should Buyer purchase or use Freescale Semiconductor products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Freescale
Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such unintended or
unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent
regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. StarCore
is a trademark of StarCore LLC. Metrowerks and CodeWarrior are registered trademarks of
Metrowerks Corp. in the U.S. and/or other countries. All other product or service names are the
property of their respective owners.

© Freescale Semiconductor, Inc. 2004.

How to Reach Us:
Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations not listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GMBH
Technical Information Center
Schatzbogen 7
81829 München, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Technical Information Center
3-20-1, Minami-Azabu. Minato-ku
Tokyo 106-8573, Japan
0120 191014 or +81-3-3440-3569
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T. Hong Kong
+800 2666 8080

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

	1 Basics of Remote Diagnostics
	2 Remote Diagnostic Architecture
	2.1 Estimating the FFT-Based Hybrid Circuit Impulse Response
	2.2 Generating the Training Signal
	2.3 Transmitting the Training Signal
	2.4 Calculating the Impulse Response
	2.5 Emulating Target Impulse Responses
	2.6 Considerations for Real-Time Implementation
	2.7 Typical Results

	3 Remote Diagnostics on StarCore
	3.1 System-Level Optimization
	3.2 Kernel-Level Optimization

	4 Conclusion
	5 References

