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This application note presents an intrusive remote diagnostic 
device that dynamically estimates and emulates hybrid circuits 
in packet telephony systems. The device uses a robust FFT-
based channel identification scheme common to asymmetric 
digital subscriber line (ADSL) systems to estimate the actual 
impulse response hest of a hybrid circuit. It then dynamically 
emulates a target hybrid circuit impulse response ht(n) by 
injecting an echo signal based on the effective impulse response 
heff (n) = ht(n) – hest. Using this method, any linear time-
invariant hybrid circuit can efficiently be transformed to have 
any target impulse response, thereby enabling dynamic 
correction of poorly designed hybrid circuits or cascaded 
connections of hybrid circuits, which generate multiple 
reflections. This method was implemented and extensively 
tested in real time on a Freescale StarCore™-based DSP device. 
The resulting implementation requires less than 2.0 million 
cycles per second (MCPS) on average for a target impulse 
response with up to a 128 ms span. The remote diagnostic 
device was validated with a carrier-class network echo 
canceller, which emulated various target impulse responses, 
regardless of the actual hybrid circuit(s) in the system. The 
remote diagnostic device was demonstrated to be a valuable 
asset for developing and deploying packet telephony systems, 
especially when proper control is provided over the 
communication network
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1 Basics of Remote Diagnostics
Remote diagnostic tests are becoming important maintenance applications in packet telephony systems for 
monitoring and sometimes correcting anomalies that affect performance of voice or data communication services 
[1], [2]. Maintenance tests are performed either in-service while other users are accessing the same channel of the 
communication network or out-of-service (same channel not in use). The tests employ either intrusive methods that 
change transmit and/or receive signals or non-intrusive methods that do not change the signals. 

The International Telecommunication Union (ITU) developed the P.561 Recommendation [3], which defines 
preferred interfaces, measurement ranges, and accuracy requirements for measuring voice-grade transmission 
parameters in the communication network. This recommendation is intended primarily for in-service non-intrusive 
measurement devices (INMDs). Typical P.561 measurements include speech level, noise level, echo loss, and 
speech echo path delay; optional measurements, such as double talk, signal classification, and speech activity 
factors, are sometimes needed. 

Among the transmission parameters, echo is one of the most relevant impairments affecting quality of service. 
Echo is caused by a hybrid network element, which is a circuit to convert a four-wire physical interface to a two-
wire connection. The main role of this hybrid is to provide an electrical interface for signals traveling in both 
transmit and receive directions at the same time. The hybrid is designed to minimize echo (reflection) of the 
receive signal, but in most practical cases the echo becomes quite noticeable, especially when communication 
delay is large. Therefore, an echo canceller is required to mitigate this kind of distortion [4].

Hybrid circuits are typically modeled as linear time-invariant systems so that their signal processing characteristics 
can be determined by estimating impulse responses. Estimates usually employ finite impulse response (FIR) filters, 
as detailed in the ITU recommendation G.168 [5], which defines eight basic FIR hybrid models for testing network 
echo canceller devices. When the impulse response is known (that is, coefficients of the FIR filter), the echo signal 
of a hybrid circuit can be mimicked by a linear convolution of the receive signal and the hybrid impulse response 
estimate, which then cancels the echo component of the signal. This is the basic foundation of echo cancellers, but 
additional nonlinear processing techniques are used to handle residual echo. 

Echo cancellers are deployed in media gateways, which are platforms for handling communications between IP 
packet-based networks and circuit-switched networks. However, some network configurations may violate certain 
design assumptions, resulting in degraded echo canceller performance and customer complaints. To resolve 
configuration problems, expensive measurement devices are brought to the field to estimate telephone channel 
characteristics. A far more cost effective approach is to design the media gateway with a software module that is 
efficiently programmed to perform reliable measurements. A protocol is defined to transmit this measurement data 
to a remote media gateway controller (see Figure 1) so that specialized engineers can retrieve and analyze it. 

Figure 1.   Portion of a Packet Telephony System

Media Gateway
Controller

Media
Gateway

Hybrid
Circuit



Basics of Remote Diagnostics

Packet Telephony Remote Diagnostics on the StarCore SC140 Core, Rev. 1

Freescale Semiconductor 3

The method discussed here for estimating and dynamically emulating impulse response of hybrid circuits is 
motivated by channel estimation techniques in ADSL systems [5], which have been extensively employed in the 
field and proven to be accurate and reliable. The proposed method is part of a hybrid circuit identification device 
(HCID) illustrated in Figure 2.

Figure 2.   Hybrid Circuit Identification Device (HCID).

The HCID unit is an intrusive measurement component of the remote diagnostic device that uses control signals to 
specify how the identification process is performed. Upon activation, a periodic training sequence is transmitted to 
the hybrid and its reflection is captured. During this process, uncorrelated spurious noise may be injected, such as 
audio signals from a telephone unit connected to the hybrid, but the HCID can usually mitigate the noise, even if 
the training sequence and the spurious noise coexist as double talk. The goal of the HCID is to provide accurate 
impulse response estimates of the hybrid circuit.

The HCID unit can connect to multiple hybrid circuits, using time-division multiplexing (TDM) and different 
channel data states to control its operation. Figure 3 shows a prototype of a multi-channel device using the 
MSC8101ADS board [7]. Multiple hybrid circuits connect to the ADS board via a T1 line. Software is loaded 
through the debug port from a personal computer; control signals are provided, and impulse responses are obtained 
via RS-232. The MSC8101 DSP device digitally generates the training signal to estimate hybrid circuits. This 
simple prototype can be used to develop an optimized software module for integration on the packet telephony 
system illustrated in Figure 1.

A similar configuration for non-intrusive measurements uses an adaptive filter structure that operates in parallel 
with an echo canceller infrastructure. Non-intrusive methods are not considered here, but alternatives are readily 
available in the literature (see [2]). Echo cancellers can be equipped with a built-in debugging/testing feature that is 
selectively enabled to estimate most required measurements during regular in-service operation and pass these 
estimates to the media gateway as needed. After a physical hybrid impulse response is estimated, the user can 
selectively emulate another hybrid circuit by compensating for the existing echo and injecting a desired echo 
signal. Intrusive methods are usually required to perform hybrid circuit emulation, although non-intrusive methods 
can be selectively employed. Hybrid emulation proceeds as follows:

1. Estimate the impulse response of a hybrid circuit.

2. Use the estimated impulse response to estimate the echo signal generated by the hybrid circuit.

3. Subtract the estimated echo signal from the actual echo signal to generate a residual echo signal.

4. Use a target impulse response to generate a target echo signal.

5. Add the target echo signal to the residual echo signal to generate an emulated echo signal.
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Figure 3.   Multi-Channel HCID Implemented on the MSC8101ADS Board
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2 Remote Diagnostic Architecture
Figure 4 shows a top-level view of the remote diagnostic device, with respect to the hybrid circuit and network 
echo canceller (ECAN). The device monitors the ro(n), y(n), and so(n) signals for performing various 
measurements requested from the communication network.

Figure 4.   Top-Level Architecture of the Proposed Remote Diagnostic Device
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2.1   Estimating the FFT-Based Hybrid Circuit Impulse Response
The impulse response of hybrid circuits is estimated with an FFT-based channel identification scheme similar to 
the method used in ADSL systems, as shown in Figure 5.

Figure 5.   FFT-Based Structure for Estimating Hybrid Circuit Impulse Responses

2.2   Generating the Training Signal
The training signal is generated by a white Gaussian noise signal x(n) that is a function of uniformly distributed 
random variables Φk’s in the frequency domain, as shown in Equation 1.

 Equation 1

Converting this signal into the time domain by taking the inverse discrete Fourier transform results in the signal 
shown in Equation 2.

 Equation 2

where N is the period of the training signal. This real-valued signal is generated in the code. Notice that this 
training signal is obtained by setting r(n) = x(n) – r0(n) (see Figure 4). Before transmission, the signal can be 
adjusted to a convenient power level. This signal is generated on the basis of the two main parts of the equation: a 
method for efficiently computing cosines and a random number generator to produce the random phases:
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Obtaining the  Φk values requires the use of a random number generator. A standard code to generate random 
numbers can be found in [8]. This reference provides a number of random number generators, from which uniform 
and identically distributed random variables are easily generated. The values for Φk vary between 0 and 2π, but 
they are transformed as follows:

 Equation 3

such that lk is a discrete, uniformly distributed random variable with values 0,1, . . . ,N–1. The rotation matrix 
recurrence method is an efficient way to calculate cosines, as shown in Equation 4.

 Equation 4

and n = 0, 1, . . . , N – 1, and c(n) and s(n) represent the discrete cosine and discrete sine, respectively. Solving 
Equation 4 for c(n) results in the well-known digital oscillator [9].

 Equation 5

Using the initial conditions c(0) = 1 and c(1) = cosθ, all other values of cosine for n = 0, 1, . . . N – 1 can be 
computed efficiently. Due to the even symmetry of the cosine function, only half of these values (that is, n = 0, 1, . 
. . , N / 2 – 1) are computed and stored in a look-up table for future reference. The values from this look-up table are 
then used in the following cosine computation:

 Equation 6

The look-up table is accessed via modular addressing, and the evenness or oddness of the remainder of (kn + lk) / 
(N / 2) indicates whether the positive or negative value of the cosine is used. An even remainder indicates the 
positive value of the cosine, and an odd remainder indicates the negative value. Therefore, the training signal x(n) 
is composed by simple superposition of scaled discrete cosine values taken from a look-up table of c(n), n = 0, 1, . 
. . , N / 2 – 1.

2.3   Transmitting the Training Signal
After the training signal x(n) is generated, it is periodically transmitted across the channel through the hybrid, and 
the average of the receive signal (echo signal + noise) is computed. N samples of the transmit signal x(n) make up 
one transmit frame, and a user-specified number of frames (M) determines how many times the signal is repeatedly 
transmitted. The buffer storing the signal is accessed circularly. Multiple transmissions of the same data frame are 
important for mitigating spurious noise and improving estimation accuracy.
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When the receive frame is obtained, it is used to compute the average, that is, the low-pass filter (LPF), of the 
receive signal (y(n)). In this computation, the receive samples from at least the first two frames and the last two 
frames are usually ignored due to boundary effects of the linear convolution and do not represent valid circular 
convolution.

2.4   Calculating the Impulse Response
To find the frequency response of the hybrid impulse response, the discrete Fourier transforms of x(n) and y(n) 
must be computed (that is, X and Y). A standard code for computing these transforms via FFTs is available in [8], 
but optimized libraries for StarCore DSP cores are freely available on the Freescale Semiconductor website listed 
on the back cover of this document. The Hest frequency response is the result of dividing Y by X. Because the 
magnitude of the training signal x(n) frequency response is 1 (that is, |X| = 1), dividing by X is the same as 
multiplying by its complex conjugate. Calculating the frequency response this way eliminates costly division 
operations and therefore is the method used in the code. The hest impulse response estimate is then found by taking 
the inverse discrete Fourier transform of the Hest frequency response. 

2.5   Emulating Target Impulse Responses
As discussed in Section 1, after a physical hybrid impulse response is estimated, you can selectively emulate 
another hybrid circuit by compensating the existing echo and then injecting a desired echo signal. As Figure 4 
shows, a target impulse response ht(n) is easily emulated by defining z(n) = (ht(n) – hest) * r0(n), where hest is the 
estimate of the physical hybrid circuit impulse response. In this process, ht(n) can be any linear filter, not 
necessarily time-invariant. This method was validated in real time with a carrier-class network echo canceller using 
different target impulse responses.

2.6   Considerations for Real-Time Implementation
Implementing FFT-based channel estimation in real time requires careful control of other modules, such as the 
ECAN. As described in Section 2.2, during the training phase, the ECAN must be disabled and r0(n) must be 
suppressed. The following algorithm summarizes the resulting steps:

1. For every channel, generate a zero-mean, white Gaussian noise training signal x(n) using the following 
equation:

 Equation 7

where the Φk are independent, identically distributed random variables having uniform distribution 
between 0 and 2π. (Φk ~ U(0,2π), ∀k). The r0(n) receive signal is suppressed by setting r(n) = x(n) – 
r0(n) in Figure 4 so that the resulting spectrum of x(n) is flat (that is, unit gain per frequency) during 
the training period (M ⋅ N samples), regardless of the spectrum of r0(n).

2. Periodically transmit x(n), read the receive signal y(n), and compute the averaged receive signal y(n), 
that is, a low-pass filtered version of y(n). 

The x(n) signal is transmitted periodically so that the receive signal y(n) is a circular convolution with 
the channel impulse response h. This allows use of point-by-point multiplication of discrete Fourier 
transforms (DFTs) in step 4 to obtain the frequency response of the channel. During the training, the 
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ECAN must be disabled (see Figure 4). Notice that the signals are converted from serial to parallel 
(S/P) and from parallel to serial (P/S), as needed. 

3. Compute the DFT of x(n), which is typically pre-computed, and y(n): X = FFT[x(n)] and Y = 
FFT[y(n)].

4. Use X and Y to compute H= FFT[hest]: Hest = Y / X = Y ⋅ X*, since |X|=1, where (⋅)* denotes a complex 
conjugate.

5. Get the impulse response estimate of the hybrid circuit, which is the channel impulse response (CIR), 
by taking the inverse discrete Fourier transform of Hest: hest = IFFT[Hest].

A simple MATLAB script corresponding to these steps is listed as follows (for simplicity, r0(n) = 0, such that x(n) 
= r(n)):

N    = 2^10; % Set maximum echo path span to 128 ms 
X    = ones(1, N);

X(2 : N / 2) = exp(2 * pi * j * rand(1, N / 2 -1)); % Define Random phase 
X(N : -1 : N/2 + 2) = conj(X(2 : N / 2)); % Impose Hermitian symmetry 
x    = real(ifft(X)); % Generate the training signal

M    = 100; % Number of frames to be transmitted 
xx   = zeros(1, M * N); 
for m = 1 : M  % Generate training sequence  

xx((m - 1) * M + (1 : N)) = x; 
end

ho   = load(‘hybrid_impulse_response.txt’); % Reference impulse response

y    = conv(xx, ho); % Generate expected receive signal 
y    = y(1, 1 : M * N); 
SNR  = 30;  % Target SNR (in dB) 
d    = sqrt(mean(y.^2)) * 10^(-SNR / 20) * randn(1, M * N); 
yd   = y + d; % Inject additive noise to achieve target SNR

ya   = zeros(1, N); 
for m = 1 : M   % Main estimation loop 

ya = ya + ya((m - 1) * M + (1 : N)) / M; 
end

Ya   = fft(ya); % Generate the FFT of the average receive signal 
hest = real(ifft(Ya .* conj(X))); % Estimate hybrid impulse response

ye   = conv(xx, hest);  % Generate estimated receive signal 
ye   = ye(1, 1 : M * N); 
e    = yd - ye;  % Estimate residual echo (error signal) 
ep   = 10*log10(mean(e.^2)) + 6.2;  % Estimate residual echo power (dBm0) 
erle = 20*log10(norm(ho) / norm(ho - hest));  % Estimate ERLE (dB)

2.7   Typical Results
Figure 6 and Figure 7 illustrate typical results obtained with the method described here, using the MATLAB 
script. Figure 6 illustrates a multi-window impulse response generated by cascading multiple hybrid circuits. 
Additive white Gaussian noise is injected at w(n) (see Figure 4) to simulate an SNR = 30 dB. The resulting 
estimate presented an accuracy of at least 9 bits, estimated as follows: 

log2 h hest– ∞( )
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The training signal is composed of M = 100 periods of 128 ms frames at a sampling rate of 8 KHz (that is, N = 128 
× 8 = 1024 samples). Two estimates of echo return loss enhancement (ERLE) are also computed, both indicating an 
ERLE of about 44 dB. Figure 7 illustrates similar results, but with noise injected to simulate an SNR = 0 dB. 
Notice that the intrusive method can achieve at least 6 bits of precision and an ERLE of about 20 dB under this 
high noise condition. Similar performance would be difficult to achieve with non-intrusive standard methods, such 
as NLMS-based channel estimation techniques.

Figure 6.   Example of Estimated Multi-Window Impulse Response Under SNR = 30 dB

Figure 7.   Example of Estimated Multi-Window Impulse Response Under SNR = 0 dB
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3 Remote Diagnostics on StarCore
This section describes an implementation of the remote diagnostic architecture presented in Section 2 on a 
Freescale StarCore MSC8101 DSP. Extensive real-time tests demonstrated that the remote diagnostic software 
requires fewer than 2.0 million cycles per second (MCPS), on average, for a target impulse response with up to a 
128 ms span. Hybrid circuit impulse response estimation and emulation are a major part of the remote diagnostic 
functionality, but other basic measurements are included. 

A flexible application programming interface (API) dynamically enables/disables hybrid estimation and emulation, 
providing signal levels in dBm0—such as r0(n), si(n), and s0(n)—and providing hybrid impulse response 
information, such as ERL, bulk delay, and active portion of the impulse response. These are a small subset of the 
possible remote diagnostic features in comparison to those discussed in [3], but they are critical indicators of 
possible anomalies in the communication network. Proprietary schemes integrated in a media gateway system can 
use these measurements to monitor ECAN performance (see Figure 4). Alert messages are generated when 
troubling conditions are detected, such as a level of s0(n) much larger than the level of si(n), which is inconsistent 
with expected ECAN behavior. Furthermore, when the remote diagnostic device is integrated within a packet 
telephony development platform such as the prototype illustrated in Figure 3, it can emulate any target hybrid 
impulse response—for example, one of the 8 G.168 hybrid models. It can also emulate time-varying impulse 
responses, thus providing valuable help in acoustic echo canceller development and testing. 

The FFT and inverse 1-D fast Fourier transform (IFFT) processing block handled most of the required processing 
load, so it is discussed further. We also used other common code optimization strategies, such as precomputing the 
training signal and storing it in look-up tables and efficient multi-sample processing of the FIR filtering step [10] 
required for echo estimation and emulation. High-level C optimization of the FFT/IFFT increased the efficiency of 
the impulse response estimation process. The speed-up efforts were conducted in two phases: system-level 
optimization and kernel-level optimization.

3.1   System-Level Optimization
The original FFT/IFFT was performed in floating-point operations, which are not very efficient on fixed-point 
processors. Therefore, we converted the FFT/IFFT block to fixed-point, imposing precision limitations. To validate 
the functionality of the new code with ease, we defined a preprocessor so that the user can select either the fixed- or 
floating-point FFT/IFFT implementation.

#define MOT_REM_DIAG_FFT_FIX16  1 // Enable(1) -> use 16-bit fix-pointed FFT 
// Disable(0) -> use floating point FFT

During the channel estimation step, a random sequence with known probability distribution is generated in real-
time and periodically transmitted through the hybrid circuit. A new training signal is generated per channel 
estimation task. However, the training signal can instead be precomputed, in both the time and frequency domains, 
and stored in look-up tables. If look-up tables are in use, the random sequence generator can be turned off, reducing 
the total number of FFT/IFFT operations from three to two. A preprocessor macro is defined so that the user can 
choose the fixed- or real-time generated random sequence.

#define MOT_REM_DIAG_FIX_TRAINING_SEQ 1 // Enable(1) -> use fixed training sequence    
// Disable(0) -> use real-time self-generate  
// training sequence for every frame



Packet Telephony Remote Diagnostics on the StarCore SC140 Core, Rev. 1

12 Freescale Semiconductor

Remote Diagnostics on StarCore

During FFT/IFFT operations, the received signal and estimated channel impulse response are purely real signals; 
that is, their imaginary portions are all zeroes. To increase computational efficiency, the real data set can be split 
into two subsets [8], [9] for the real and imaginary parts, forming an equivalent complex data of half the original 
size. Then a complex FFT/IFFT of half the original data size can be performed. The result is pre- and post-
processed to recover the original real data from the complex data.

3.2   Kernel-Level Optimization
The FFT/IFFT bit-reverse operations use a look-up table for in-place bit-reverse processing. Only values that must 
be swapped are stored in the look-up table. The real and imaginary parts of the signal are 16-bit data, so the whole 
complex data points are stored in 32-bit groups. In other words, the data swap is performed in 32-bits. The bit-
reverse operation can also be implemented through the Metrowerks® compiler-specific br_inc() macro. This 
macro uses the hardware bit-reverse mechanism provided by the SC140 DSP core to change the index through bit-
reverse operations. Unfortunately, the in-place bit-reverse operation cannot be implemented directly. An additional 
buffer with specific alignment must be allocated. This approach speeds up the bit reverse operation by 
approximately 170 cycles per 10 ms frames at the expense of data placement flexibility and an additional 32 bytes. 
The FFT implementation performs the radix-2 decimation-in-time (DIT) computation with a butterfly kernel 
operation illustrated in Figure 8.

Figure 8.   Radix-2 Decimation-in-Time (DIT) FFT Butterfly Using In-Place Computation

In assembly-level optimization, two butterflies can be computed in the kernel. In C-level implementation, only one 
butterfly is computed in the kernel. The butterfly processing steps are rearranged so that the overall computation is 
reduced from six to four (see Table 1). Only operations on the real portion of the complex data are considered. The 
imaginary portion has the same number of operations.

Another portion of the kernel decomposes N/2-point complex FFT/IFFT data into N-point real FFT/IFFT data. The 
decomposition formula is presented Equation 8. Fk is the FFT of the original real data and Gk is the FFT of the 
complex data corresponding to half the real data size.

Table 1.   Butterfly Computation of the Real Portion of Complex Data

Optimized Computation Instructions Normal Computation Instructions

A + BW MAC, MAC A + BW MAC, MAC

(A + BW)/2 SHR A – BW MSU, MSU

(A – BW)/2
[A– (A + BW)/2]

SUB (A + BW)/2 SHR

(A – BW)/2 SHR

(A + BW)/2

–1 (A – BW)/2

A

B W
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 Equation 8

It is much more efficient to compute two data points in parallel. Another point of computation is N/2 – k, which 
shares the same twiddle factor as point k:

 Equation 9

Finally, the FFT/IFFT kernel has a triple nested loop, one loop for looping through the number of processing nodes 
within a butterfly set, another for processing through the number of butterfly sets, and a third for looping through 
the number of FFT/IFFT stages, which depends on the number of computation points. A pragma statement 
provides the loop counter boundary range information to the compiler for more aggressive loop optimization.

#pragma loop_count (1,64)

4 Conclusion
Remote diagnostics are an important maintenance application in packet telephony systems for monitoring, and 
sometimes correcting, anomalies affecting performance of voice or data communication services. This application 
note presents an intrusive remote diagnostic device that dynamically estimates and emulates hybrid circuits in 
packet telephony systems. This device uses a robust FFT-based channel identification scheme to estimate the actual 
impulse response hest of a hybrid circuit and then dynamically emulate a target hybrid circuit impulse response 
ht(n) by injecting an echo signal based on the effective impulse response heff (n) = ht(n) – hest. Typical performance 
results for this remote diagnostic device demonstrate the robustness of its contribution in packet telephony systems. 
Finally, selected code optimization strategies make effective use of the key parallel architecture features of the 
StarCore DSP. The remote diagnostic device was efficiently implemented and extensively tested in real time on the 
Freescale StarCore-based DSP, requiring less than 2.0 million cycles per second (MCPS), on average, for a target 
impulse response of up to 128 ms span. The remote diagnostic device was validated with a carrier-class network 
echo canceller as it emulated various target impulse responses, regardless of the actual hybrid circuit(s) in the 
system. This device is demonstrated to be a valuable component in developing and deploying packet telephony 
systems, especially when proper control is provided over the communication network
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