Decision Feedback Equalizer for StarCore ${ }^{\text {TM }}$-Based DSPs

By Ahsan Aziz

It is well known that a maximum likelihood sequence equalizer (MLSE) is the optimum equalizer for a typical intersymbol interference (ISI) channel. Unfortunately, the complexity of the MLSE equalizer increases exponentially with the channelmemory length. To reduce this computational load, many suboptimal solutions have been developed. Decision feedback equalizers (DFE) are a good sub-optimal solution. With the introduction of faster DSPs, such as Freescale's StarCore ${ }^{\mathrm{TM}}$ based, computationally-intense algorithms can now be easily implemented. The DFE can be implemented as a combination of simple FIR filters. This application note presents a method for computing the DFE coefficient and a method for implementing the algorithm on Freescale's StarCore-based DSPs.

CONTENTS

1 Decision Feedback Equalization Theory 2
2 Derivation of DFE Filter Coefficients 4
3 Implementation of the Algorithm 6
3.1 DFE Implementation on the SC140 Core 8
3.2 Main Calling Routine 9
3.3 Forming the Matrix 9
3.4 Cholesky Factorization and Back Substitution 14
4 Results 26
5 Conclusion 29
6 References 29

1 Decision Feedback Equalization Theory

Channel equalizers are either linear or non-linear, as shown in Figure 1. Non-linear equalization is needed when the channel distortion is too severe for the linear equalizer to mitigate the channel impairments. An example of a linear equalizer is a zero-forcing equalizer (ZFE), and, as the name implies, it forces ISI to become zero for every symbol decision. A zero-forcing equalizer enhances noise and results in performance degradation. On the other hand, a minimizes mean square error-linear equalizer (MMSE-LE) minimizes the error between the received symbol and the transmitted symbol without enhancing the noise. Although MMSE-LE performs better than ZFE, its performance is not enough for channels with severe ISI. An obvious choice for channels with severe ISI is a non-linear equalizer.

Figure 1. Linear and Non-Linear Process for Equalization of Transmission Channel
It is well know that a maximum likelihood sequence equalizer (MLSE) gives optimum performance. It tests all possible data sequences and chooses the data with the maximum probability as the output. Generally, the Viterbi algorithm provides a solution to the problem with MLSEs of a finite-state, discrete-time Markov process. However, the computational complexity of an MLSE increases with channel spread and signal constellation size. The number of states of the Viterbi decoder is expressed as M^{L}, where $\mathrm{M}=$ the number of symbols in the constellation, and $\mathrm{L}=$ the channel-spread length -1 . Therefore, a typical 8-PSK constellation with a channel span of 5 , translates to a $8^{4}=4096$, state Viterbi decoder, which makes it unsuitable for cost effective implementation. In this situation, the obvious choice is to use sub-optimal solutions such as a DFE or a DFE followed by a Viterbi equalizer.

A decision feedback equalizer makes use of previous decisions in attempting to estimate the current symbol with a symbol-by-symbol detector. Any tailing ISI caused by a previous symbol is reconstructed and then subtracted. The DFE is inherently a non-linear device, but by assuming that all the previous decisions were correct, a linear analysis can be made. There are different variations of DFEs. The choice of which type of DFE to use depends on the allowable computational complexity and required performance. Considered in this application note is an MMSE-DFE (Minimum Mean Square Error) consisting of a:

- linear, anti-causal, feed forward filter, $\mathrm{F}(\mathrm{D})$
- linear, causal, feedback filter, $1-B(D)$, with bo=1
- simple detector (threshold block)

The input to the feedback filter is the decision of the previous symbol (from the decision device). Figure $\mathbf{2}$ shows the layout of the DFE.

Figure 2. DFE Block Diagram
The ideal, infinite-length feed-forward filter is a noise whitening filter that results in an overall response with minimum phase. Choosing an infinite-length filter eliminates the delay optimization, because the overall response, consisting of transmit, channel, receiver, sampler, and FF filters is simply a filter with minimum phase. The first tap in the overall response is the main tap. Spectral factorization is a very important concept used in deriving DFE taps. A finite version of the infinite tap DFE is derived in [1]. The Cholesky factorization theory is a useful tool in deriving the finite-length equivalent to the infinite-length DFE. Terms used in DFE development are described as follows:

1. A filter response $F(D)$, is canonical if it is:

- causal ($f_{k}=0$, for $k<0$)
- monic ($f_{0}=1$)
- minimum phase

2. If $F(D)$ is canonical then $F^{*}\left(D^{-*}\right)$ is:

- anti-causal
- monic
- maximum-phase

3. An $\mathrm{n} \times \mathrm{n}$ symmetric matrix, A, is positive definite if all diagonal elements and submatrices of A are positive definite. The definition for a positive definite matrix is expressed in Equation 1.

$$
X \neq 0 \Rightarrow X^{T} A X=\sum_{i=1}^{n} \sum_{i=1}^{n} a_{i j} x_{i} x_{j}>0
$$

4. Matrices with constant entries along a diagonal are called Toeplitz matrices. Equation 2 expresses a Toeplitz matrix with the number three as the constant entry along the diagonal.

$$
T=\left[\begin{array}{lll}
3 & 4 & 0 \\
2 & 3 & 4 \\
1 & 2 & 3
\end{array}\right], T \text { is Toeplitz }
$$

2 Derivation of DFE Filter Coefficients

The name MMSE-DFE implies that the DFE coefficients are derived under MMSE criteria. Consider the development, where b_{k} and w_{k} are the feedback and feed forward filter coefficients derived in minimum-mean-square-sense, by making the error orthogonal to the received sequence. Equation 3 represents the received signal as, $y(t)$, the channel-input data symbols as, x_{k}, and the channel-impulse response as, $h(t)$; where $n(t)$ is additivewhite Gaussian noise and T is the symbol duration.

$$
y(t)=\sum_{m}^{x_{m}} \cdot h(t-m T)+n(t)
$$

If l oversampling is used, then the sampled channel-output is expressed in Equation 4. For our implementation, l is set to 1 , and channel memory is expressed as v in the equations.

$$
y_{k}=\sum_{m=0}^{v} h_{m} \cdot x_{k-m}+n_{k}
$$

Equation 5

$$
\begin{gathered}
\boldsymbol{y}_{\boldsymbol{k}}=\left[\begin{array}{c}
y\left(k+\frac{(l-1)}{l} T\right) \\
\circ \\
\circ \\
y(k T)
\end{array}\right] \equiv\left[\begin{array}{c}
y_{l-1, k} \\
\circ \\
\circ \\
y_{0, k}
\end{array}\right] \\
\boldsymbol{h}_{\boldsymbol{m}}=\left[\begin{array}{c}
h\left(m+\frac{(l-1)}{l} T\right) \\
\circ \\
\circ \\
h(m T)
\end{array}\right] \equiv\left[\begin{array}{c}
h_{l-1, m}, m \\
\circ \\
\circ \\
h_{0, m}
\end{array}\right] \\
\boldsymbol{n}_{\boldsymbol{k}}=\left[\begin{array}{c}
n\left(k+\frac{(l-1)}{l} T\right) \\
\circ \\
\circ \\
n(k T)
\end{array}\right] \equiv\left[\begin{array}{c}
n-1, k \\
\circ \\
\circ \\
n_{0, k}
\end{array}\right]
\end{gathered}
$$

By combining N_{f} successive l-tuples of samples y_{k} :
Equation 6

A more compact representation of Equation 6 is expressed in Equation 7.

$$
\boldsymbol{y}_{k+N f-1, k}=\boldsymbol{H} \boldsymbol{x}_{k+N f-1, k-v}+\boldsymbol{n}_{k+N f-1, k}
$$

The equalizer output error is expressed in Equation 8.

$$
\text { ariskframe? } x_{k}, k-v-w \text { ?asteriskframe } ? y_{k}
$$

The w ${ }^{*}$ feed forward filter taps are expressed in Equation 9.

$$
?=\left[w \text { ?asteriskframe }_{-}^{-(N f-1)}{ }^{w ? \text { ?asteriskframe? }}\right.
$$

For a decision delay of Δ, the corresponding MMSE is expressed in Equation 10.
Equation 10

$$
\left|\left.\right|^{2}\right\}=E\left\{e_{k} \cdot e_{k} \text { ?asteriskframe } ?\right\} E\left\{\left(x_{k-\Delta}-w Y_{k}+b x_{k-\Delta-1}\right)\left(x_{k-\Delta}-w Y_{k}+b x_{k-\Delta-1}\right)\right. \text { ?asteriskfrar }
$$

Equation 11 shows where \boldsymbol{b} is the vector of the coefficients for the feedback FIR filter and $\mathrm{x}_{\mathrm{k}-{ }_{\Delta-} \text { is the vector of }}$ the data symbols in the feedback path.

Equation 11

$$
\boldsymbol{b}=\left[\begin{array}{lll}
1 & b_{0} & \cdots b_{N b}
\end{array}\right]
$$

Applying the orthogonal principle by making the error orthogonal to the output we get Equation 12.
Equation 12

$$
Y_{k} \text { ?asteriskframe?\} }
$$

In other words, the optimum error sequence is uncorrelated with the observed data. This simplifies to Equation 13, which gives the relation between the DFE feedback and feed forward filter coefficients

Equation 13

$$
\text { ime } ? R_{x y}=w ? \text { asterisl }
$$

The FIR MMSE-DFE autocorrelation matrix is expressed in Equation 14.
Equation 14

Where $\mathbf{R}_{\mathrm{nn}}=N_{0} \mathbf{I}_{\mathrm{Nf}}$ and where N_{0} is the noise power, and where I is an identity matrix, the input-output crosscorrelation matrix, where S_{x} is the signal power as expressed in Equation 15.

Equation 15

The mean-square error is expressed in Equation 16.
Equation 16

$$
\left.\boldsymbol{R}_{y y}^{-\mathbf{1}} \boldsymbol{R}_{y x}\right)=S_{x}\left[\begin{array}{lll}
\mathbf{0} & \boldsymbol{I}_{v+1}
\end{array}\right]\left[\boldsymbol{I}_{N f+\mathrm{v}}-\boldsymbol{H} \text { ?asteriskframe? }\left(\boldsymbol{H} \boldsymbol{H} \text { ?asteriskframe? }+\frac{1}{S N R} \boldsymbol{I}_{N f+\mathrm{v}}\right)^{-1} \boldsymbol{H}\right]\left[\begin{array}{c}
\mathbf{0} \\
\boldsymbol{I}_{\mathrm{v}+1}
\end{array}\right]
$$

Simplifying Equation 16 by using the matrix inversion lemma ${ }^{2}$ results in Equation 17.

1. (.) $)^{*}$ is the complex conjugate transpose

$$
\left.\boldsymbol{I}_{N f+v^{-}} \boldsymbol{H} \text { ?asteriskframe? }\left(\boldsymbol{H} \boldsymbol{H} \text { ?asteriskframe? }+\frac{1}{S N R} \boldsymbol{I}_{N f+v}\right)^{-1} \boldsymbol{H}\right]\left[\begin{array}{c}
\mathbf{0} \\
\boldsymbol{I}_{v+1}
\end{array}\right]=N_{0}\left[\begin{array}{ll}
\mathbf{0} & \boldsymbol{I}_{v+1}
\end{array}\right]\left(\left(\boldsymbol{H} \boldsymbol{H} \text { ?asteriskframe? }+\frac{1}{S N R} \boldsymbol{I}_{N f+v}\right.\right.
$$

The middle term in the right-hand side of Equation 18, is defined as a Cholesky factorization, where LDL' is the Lower-Diagonal-Upper.

$$
\text { kframe } \boldsymbol{\boldsymbol { R } _ { n n } ^ { - \mathbf { 1 } } \boldsymbol { H } = (\boldsymbol { R } _ { x x } - \boldsymbol { R } _ { x y } \boldsymbol { R } _ { y y } ^ { - \mathbf { 1 } } \boldsymbol { R } _ { y x }) ^ { - 1 } = \frac { 1 } { S N R } \boldsymbol { I } _ { N f + \mathrm { v } } + \boldsymbol { H } \text { ?asteriskframe } \boldsymbol { H } = \boldsymbol { L } , ~ (t)}
$$

Where \mathbf{L} is a lower-triangular monic matrix, \mathbf{D} is a diagonal matrix shown in Equation 19.
Equation 19

$$
\begin{aligned}
\boldsymbol{D} & =\left[\begin{array}{llc}
d_{0} & \cdots & 0 \\
0 & \ldots & 0 \\
0 & \cdots & d_{N_{f}+v-1}
\end{array}\right] \\
\boldsymbol{L} & =\left[\begin{array}{lll}
l_{0} & \cdots l_{N_{f}+v-1}
\end{array}\right]
\end{aligned}
$$

Because \mathbf{L} is a monic matrix, its columns constitute a basis for the $\left(\mathrm{N}_{\mathrm{f}}+\mathrm{v}\right)$ dimensional vector space. It is shown in [1] that the optimal setting for \mathbf{b} is column \mathbf{L} which corresponds to the highest value of " d " in the diagonal matrix. When the feedback coefficients are located, the solution expressed in Equation 20, gives the optimal setting for \mathbf{w}, the feed forward coefficient.

Equation 20

$$
\mathrm{ime} \boldsymbol{Q}_{o p t}=\boldsymbol{b} \text { ? asteriskfran }
$$

The first coefficient of \boldsymbol{b} is always unity, therefore a simple back substitution method can be used to solve for the feed forward coefficients. This process for derivation of DFE filter coefficients, eliminates the need for the matrix inversion. It has been seen that the:

- number of taps in the feedback filter $N_{b}=v, \quad N_{f}>N_{b}$
- optimum delay Δ is between v and $\mathrm{N}_{\mathrm{f}}+v$

2. The matrix inversion lemma:
H ?asteriskframe? $\left(H H \text { ?asteriskframe? }+\frac{1}{S N R} I_{N_{f}}\right)^{-1} H=\left(H H \text { ?asteriskframe? }+\frac{1}{S N R} I_{N_{f}}\right)^{-1} H$?asteriskframe? H

3 Implementation of the Algorithm

This section presents an implementation of the algorithm using Matlab and the corresponding DSP implementation techniques. The Matlab implementation uses practical requirements of a typical communication system (such as; GSM), with the goal of implementing the algorithm on the SC140 core. Table 1 presents the design parameters.

Table 1. Parameter Considerations for Communication Systems

Parameter Considered	Parameter Value	Comments
channel-impulse response	N/A	Assumed available
Channel memory	channel-impulse response length 1	
Complex channel-impulse response length	5	The length of the channel-impulse response for GSM
Estimate of the SNR	N / A	Assumed available
Feed forward filter length	8	Chosen arbitrarily, typically enough for GSM channel. The only constraint is that the size of the convolution matrix must be a multiple of 4.
Optimum feedback taps by delay optimization	Minimizes ISI and maximizes SNR at the decision point	
SNR	$5 \mathrm{~dB}-25 \mathrm{~dB}$	Typical range of operation Symbol spaced equalizer

The DSP software is tailored to the needs of the communication system using the DFE. Feedback and feed-forward filter coefficients for the DFE are obtained as follows:

1. Generate the convolution matrix H for an N_{f} tap feed forward filter $\left(\mathrm{N}_{\mathrm{f}}=8\right)$ and a complex channelimpulse response memory length v (typically obtained from a channel estimation block).
This combination produces a convolution matrix of size C. For our example it is 8×12.
2. Compute the matrix; $\mathbf{A}=\mathbf{H} \times \mathbf{H}+\left(1 / S N R _l i n\right) * \mathbf{I}$.

The (1/SNR_lin)*I creates a diagonal matrix with all the diagonal terms equal to $1 /$ SNR_lin. (SNR_lin $=$ SNR is expressed in linear scale). The $\mathrm{H} \times \mathrm{H}($ size $12 \times 12)$ matrix is a positive semi-definite matrix, with $N_{f}\left(N_{f}=8\right)$ numbers of positive eigan values, and four, zero eigan values (channel memory size $=4$). When the term $1 /$ SNR_lin is added to all the diagonal entries, the matrix becomes strictly positive-definite.
3. Compute the Cholesky factorization of Matrix \mathbf{A} using the outer product version of the factorization. This algorithm computes a lower triangular \mathbf{G}^{*}, such that $\mathbf{A}=\mathbf{G G}^{*}$. For all $\mathrm{i}>\mathrm{j}, \mathbf{A}(\mathrm{i}, \mathrm{j})$ is over-written by $\mathbf{G}(\mathrm{i}, \mathrm{j})$.
Code Listing 1 shows the Matlab code for steps 1-3.

Code Listing 1. Matlab Code to Compute the Cholesky Factorization

```
function [L, D, A, U]=outer_cholesky (A)
n=size(A,1);
    for k=1:n-1
        A (k,k) =sqrt (A (k,k));
        A (k+1:n,k)=A (k+1:n,k)/A (k,k);
        for j=k+1:n
            i=j:n;
            A(i,j)=A(i,j)-A(i,k)*\operatorname{conj}(A(j,k));
        end
    end
```

1. Factor matrix A into $\mathbf{L D L}{ }^{*}$, where \mathbf{L} is a lower-triangular monic matrix and \mathbf{D} is a diagonal matrix.

When complete, column of \mathbf{L}, corresponding to the highest diagonal element of \mathbf{D}, gives the optimum feedback filter taps (Matlab code for this is omitted here).
2. Compute the optimum feed forward taps. Because \mathbf{L} is a monic matrix, back substitution is an easy way to solve for the feed forward filter taps. Code Listing 2 shows how the back substitution routine is implemented in Matlab.

The feedback and the feed forward taps are then used in the channel equalizer to equalize all the received symbols within a frame of data (the channel is assumed to be quasi-static).

Code Listing 2. Matlab Back Substitution Routine

```
l=L; % Lower Triangular Monic Matrix
chan_mem=4;
h=channel_h;
%%%%%%%%%%%%%%%%% BSM
d_opt=d_opt*scale_factor^2;
sC=4;% scale factor used in DSP implementation
v = zeros(1,delay);
v(delay) = 1/sc;
temp_v=0;
l=l/SC;
%LOOP 1
for kk = delay :-1 :2;
    sum_v=0;
for jj = kk : delay
    temp_v = -l(jj, kk-1)*V(jj);
    sum_\overline{v}}=\mp@subsup{S}{SC*SC*temp_v+ sum_v;}{
end
    v(kk-1) = (sum_v)/sc;
end
w_opt = zeros(1,Nf);
%LOOP 2
for j = 1:Nf
        sum_w = 0;
            for k = 1 : (min(chan mem, delay-j) + 1)
                                    tw (k) = (v(k+j-1))*conj (h(k));
                                    sum_w = sum_w + tw (k);
end
            disp('writing coeff now')
        w_opt(j) = ((1/d_opt)*sum_w*sc)
                            disp('Wrote the above coeff')
end
```


3.1 DFE Implementation on the SC140 Core

A decision feedback equalizer can be efficiently implemented on the SC140 core because this core has four arithmetic logic units (ALUs) and special instructions for computing complex numbers and performing matrix operations. Setting constraints on the channel-impulse response and the number of filter taps improves the efficiency of the DSP implementation on the SC140 core. The constraints are:

- All the entries of the channel-impulse response must be less than one.
- The length of the channel-impulse response and the length of the feed forward filter tap must be constrained so that the size of the convolution matrix becomes a multiple of four. The size of the convolution matrix is given by $\left(\mathrm{N}_{\mathrm{f}} \times \mathrm{N}_{\mathrm{f}}+\mathrm{v}\right)$, where v is the channel memory length ($v=$ channelimpulse length -1).
The DFE coefficients are computed through several assembly routines that are called from a main assembly calling routine. Figure 3 illustrates the flow of the assembly program.

Figure 3. DSP Implementation Process Flow Chart

3.2 Main Calling Routine

The main calling routine, main_equalizer.asm, allocates all the memory and defines the globally used variables. This routine contains the complex-channel-impulse response and the linear-scaled value of SNR.

3.3 Forming the Matrix

Al data must be properly scaled to less than one. If the matrix, $\mathbf{H} * \mathbf{H}+\mathbf{I}(1 / \mathrm{SNR})$ has entries less than one, the Cholesky factor has entries less than one throughout the computation, greatly reducing the numeric dynamic range of the algorithm and making it easier to implement in a fixed-point DSP. To achieve this scaling, two constraints are introduced:

1. The channel-impulse response, must be normalized. Better results are achieved if normalization is done with care, by using the minimum scale factor that just allows the highest values in the channelimpulse response to be less than one. Normalization can be achieved by searching through the elements of the channel-impulse response generation block and normalizing with respect to the highest entry. This remains as a design parameter for the channel-impulse response and is not addressed here.
2. The output of the matrix multiply block is scaled by right shifting each entry of the matrix multiply by ceil $\left(\log _{2}\left[\#\right.\right.$ of rows in $\left.\left.\left(\mathbf{H}^{*} \mathbf{H}\right)+(1 / \mathrm{SNR}) \mathbf{I}\right]\right)$. This scaling ensures that all entries are less than one. For this specific implementation example the scale factor is $1 / 16$.

3.3.1 Generating the Convolution Matrix

The assembly program, convxtm_matrix.asm, takes the complex channel-impulse response and generates the transpose of the convolution matrix (similar to using the Matlab command, transpose (H), where $\mathbf{H}=\mathbf{c o n v x t m}\left(\mathbf{c h a n n e l} \mathbf{h}, \mathbf{N}_{\mathbf{f}}\right)$). The transpose of matrix \mathbf{H} is shown in Equation 21.

Equation 21

$$
\operatorname{transpose}(H)=\left[\begin{array}{ccccccc}
h_{0} & 0 & \ldots & 0 & 0 & \ldots & 0 \\
h_{1} & h_{0} & 0 & \ldots & 0 & 0 & \ldots \\
h_{2} & h_{1} & h_{0} & \ldots & \ldots . . & \ldots \\
0 & \ldots & 0 & 0 & 0 & \ldots & h_{v}
\end{array}\right]
$$

All complex numbers of the implementation are stored in the memory as indicated in Equation 22.
Equation 22

$$
\left[\begin{array}{c}
\operatorname{Re}\left(^{\circ}\right) \\
\operatorname{Im}\left(^{\circ}\right) \\
\cdots
\end{array}\right]
$$

In the DSP implementation, the channel-impulse response is assumed to be stored in memory (that is; provided by the channel-impulse response block). A memory space of size $\left(\mathrm{N}_{\mathrm{f}}^{*}\left(\mathrm{~N}_{\mathrm{f}}+\mathrm{v}\right) * 2 * 2\right)$ is zeroed out to store the convolution matrix (channel-impulse response length $=5$ and feed forward length $=8$), so the complex-conjugate transpose of the convolution matrix is size 12×8. Each entry has a real and an imaginary part and each element is stored in 16-bit memory (2 bytes). Two pointers (address registers) are used. One pointer points to "channel_h" and is used to read the complex channel-impulse response and the other pointer is used to point to "conv_matrix" and to write the data to the convolution matrix. At the start of the iteration, a pointer points to the start of the memory, where the convolution matrix is stored, and the matrix is filled column-wise with the channel-impulse response, as shown in Equation 23. Each element of the complex channel-impulse response is read one element at time, using move. 2 f (reads data from memory to register). The program uses moves. 2 f to write each complex data from the register into memory.

The address register pointing to the memory that contains the complex-impulse response, $\mathrm{h}_{0} \ldots \mathrm{~h}_{4}$, is set as modulo. This causes the pointer to wrap around before filling each column of the convolution matrix transpose when it reaches the last entry of the channel-impulse response in the array, "channel_h". Expressions used in the assembly code shown in Code Listing 1 are defined as:

1. r0: \#channel_h (Modulo 2)
2. r1: \#conv_matrix
3. r2: holds the start location for each column in the \#conv_matrix

Code Listing 3. Assembly Code Used to Fill the Convolution Matrix

```
    loopstart0
add col
    doensh1 #CHANNEL_MEM ; loop1 repeat
    ; #CHANNEL_MEM times
    ; d0=Re[channel_h(1)]
                                    ; and
                                    ; d1=Im[channel_h(1)]
loopstart1
    move.2f (r0)+,d0:d1 moves.2f d0:d1,(r1)+n1; d0=Re[channel_h(1)]
                                    ; d1=Im[channel_h(1]]
                                    ; move d0 and d1 (r1)
                                    ; r1->r1+4*n1
    loopend1
    moves.2f d0:d1,(r1)+n1
    adda n2,r2 ; r2->r2+$24
    tfra r2,r1; r1->r2=next
    ; diagonal element
    loopend0
```


3.3.2 Matrix Multiply Block

The matrix multiply block efficiently generates the matrix product $\mathbf{H}^{*} \times \mathbf{H}$. To simplify this implementation, given a matrix \mathbf{M}, if read row-wise, the result is \mathbf{M} and if read column-wise, the result is $\mathbf{M}^{\mathbf{T}}$. The operation to be performed in this application is $\mathbf{H}^{*} \times \mathbf{H}$. Recall that $\mathbf{H}^{\mathbf{T}}$ was generated instead of \mathbf{H}, primarily to assist in this

Implementation of the Algorithm

matrix multiply block. If $\mathbf{H}^{\mathbf{T}}$ is read row-wise, the result is $\mathbf{H}^{\mathbf{T}}$ and if $\mathbf{H}^{\mathbf{T}}$ is read column-wise, the result is $\left(\mathbf{H}^{\mathbf{T}}\right)^{\mathbf{T}}=\mathbf{H}$. For example, to multiply two matrices of size $\left[\left(\mathrm{N}_{\mathrm{f}}+v\right) \times \mathrm{N}_{\mathrm{f}}\right] \times\left[\mathrm{N}_{\mathrm{f}} \times\left(\mathrm{N}_{\mathrm{f}}+v\right)\right]$, identified as Matrix 1 and Matrix2, four address registers are used as follows:

- One address register in modulo mode, pointing to Matrix 1 (moving in the direction of ptrA in Equation 24 on page 13)
- One address register in linear mode, pointing to Matrix2 (moving in the direction of ptrB in Equation 24 on page 13)
- One address register in linear mode, for intermediate address calculation
- One address register in linear mode, pointing to the output matrix "mult_out"

The matrix multiply block performs the matrix multiply operation as follows:

1. $\mathrm{N}_{\mathrm{f}} \mathbf{m a c}$ operations are performed between one row of Matrix 1 and one column of Matrix 2 to produce one row entry of the output Matrix. Two complex values are read at a time from each matrix using the move. $\mathbf{4 f}$ instruction and four mac operations are performed in parallel.
2. N_{f} mac operations are performed between the same previous row of the Matrix 1 and the next column of Matrix2. Note here that pointer to Matrix1 needs to be modulo to wrap around the same row. The pointer to Matrix 2 needs to be linear to advance to the next column in Matrix2. This is shown in the following example to demonstrate how the first row of the output is generated.

where:

$$
\mathrm{M} 1_{\mathrm{R} 1}=\text { Matrix }_{\text {Row } 1} \quad \mathrm{M} 2_{\mathrm{C} 1}=\text { Matrix } 2^{\text {Column } 1}
$$

3. Advance the pointer to the next row in the Matrix 1, redefine the modulo address register, and repeat step 2 to generate the next row of output. The final matrix is filled by rows. Before the data is written to memory, the output of the last mac operation is scaled by a right shift of (ceiling \{ $\log _{2}[\#$ of summation]\}). Therefore, the amount of right shift for the implementation is four (that is, asrr \#4,dn, where dn holds the data that is written to memory). An offset greater than the modulo size cannot be added to the modulo register, so another intermediate register (r4) is used and updated linearly to point to the next row of Matrix1. Then the value of the intermediate register is transferred to the address register (r0) and its corresponding base resister (r8) using the assembly instruction $\mathbf{t f r a} \mathbf{r 4 , r 0}$ and $\mathbf{t f r a r 4 , r 8}$. The hardware loop called NN_loop performs this register update in the assembly code as shown in Code Listing 5.

$$
\xrightarrow[\mathrm{ptrA}]{\operatorname{Transpose}(H)}\left[\begin{array}{llllllll}
& \begin{array}{lllllll}
\mathrm{ptrB} \\
h_{0} & 0 & 0 & 0 & 0 & 0 & 0 \\
\\
h_{1} & h_{0} & 0 & 0 & 0 & 0 & 0 \\
0 \\
h_{2} & h_{1} & h_{0} & 0 & 0 & 0 & 0
\end{array} \\
h_{3} & h_{2} & h_{1} & h_{0} & 0 & 0 & 0 & 0 \\
h_{4} & h_{3} & h_{2} & h_{1} & h_{0} & 0 & 0 & 0 \\
0 & h_{4} & h_{3} & h_{2} & h_{1} & h_{0} & 0 & 0 \\
0 & 0 & h_{4} & h_{3} & h_{2} & h_{1} & h_{0} & 0 \\
0 & 0 & 0 & h_{4} & h_{3} & h_{2} & h_{1} & h_{0} \\
0 & 0 & 0 & 0 & h_{4} & h_{3} & h_{2} & h_{1} \\
0 & 0 & 0 & 0 & 0 & h_{4} & h_{3} & h_{2} \\
0 & 0 & 0 & 0 & 0 & 0 & h_{4} & h_{3} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & h_{4}
\end{array}\right]
$$

Code Listing 4. Main Kernel for Matrix Multiply Block
move.4f $(r 0)+, d 0: d 1: d 2: d 3 m o v e .4 f(r 1)+, d 4: d 5: d 6: d 7$
loopstart2
N_loop:
; load real/imag of transpose (H) and H
[mac d0,d4,d8 mac d0,d5,d9
mac d2,d6,d10 mac d2,d7,d11
]
[mac d1,d5,d8 mac -d1,d4,d9
mac d3,d7,d10 mac $-d 3, d 6, d 11$
]
[add d8,d10,d12 add d9,d11,d13
move.4f $(r 0)+, d 0: d 1: d 2: d 3$ move.4f $(r 1)+, d 4: d 5: d 6: d 7$; load real/imag of] loopend2
; load real/imag of
; transpose(H) and H

Code Listing 5. Address Register Updates for Matrix Multiply Block
move.l \#mult_out,r3
dosetup0 NN_loop dosetup1 P_loop
dosetup2 N_loop
move.l \#conv_matrix,r0
move. 1 \# $\$ 000008, \mathrm{MCTL}$
doen0 \#COL_CONV_MATRIX tfra r0,r1 ; r1->r1 and doen0
; loop0 repeat \# of col times
; of convolution matrix
tfra r0,r4
move.l \#conv_matrix,b0
move.l \#ROW_CONV_MATRIX_4X,m0 ; Set modulo size of r0 to \# of
; rows in conv_matrix*4

Implementation of the Algorithm

NN_loop:
loopstart0
doen1 \#COL_CONV_MATRIX ; loop1 repeat \# of col in

P_loop:

```
loopstart1
[ doen2 #ROW_CONV_MATRIX_over2 clr d8 ; loop2 repeat # of row/2, d8=0
clr d9 clr d10 ; d9=0, d10=0, d11=0
clr d11
]
move.4f (r0)+,d0:d1:d2:d3 move.4f (r1)+,d4:d5:d6:d7; load real/imag of
    ; transpose(H) and H
```

 loopstart2
 N_loop:

```
loopend2
[ asrr #CONV_MATRIX_SCALE,dl2asrr #CONV_MATRIX_SCALE,d13 ; scale the multiply
        suba #8,r0
    ; back up r0 by 8
]
[ rnd d12,d12rnd d13,d13 ; round entries before storing
suba #8,r1 ; back up r1 by 8
]
[ moves.2f d12:d13,(r3)+ ; write results to memory
clr d8 clr d9
clr d10 clr d11
]
loopend1
move #conv_matrix,r1 adda #ROW_CONV_MATRIX_4X,r4,r4; r1->#conv_matrix
; r4->r4+32
loopend0
```

At the exit from this routine all the addressing modes are set back to linear. In this matrix multiply block $1 /$ SNR (SNR in linear scale) is also added to all the diagonal elements of the output matrix, mult_out. This block completes the generation of the matrix expressed in Equation 25.

Equation 25

$$
\boldsymbol{H} \times \boldsymbol{H}+\frac{1}{S N R} \boldsymbol{I}
$$

3.4 Cholesky Factorization and Back Substitution

Cholesky factorization is the core routine for computing the DFE coefficient. This routine computes the Cholesky factorization of the matrix illustrated in Figure $\mathbf{3}$ on page 9. The input to the routine is $\mathbf{A}=\mathbf{H} \times \mathbf{H}+\left(1 / \mathrm{SNR} _\right.$lin $) \mathbf{I}$ and the output of the routine is the feed forward and feedback filter taps.

3.4.1 Cholesky Factorization

The first step in finding the feed-forward and the feedback taps is to compute the lower triangular Cholesky factor of matrix \mathbf{A} (formed by replacing the lower triangle of the original matrix \mathbf{A} by its Cholesky factor). This section describes how the Cholesky factorization is implemented on the SC140 core. Two iterations of the algorithm are presented. Iteration refers to the outermost loop. Iteration 1 refers to the entire operation as long as column 1 is the base column, BASE_COL. Similarly, Iteration 2 refers to the entire operation when column 2 is the base column, BASE_COL.

Iteration 1:

1. Compute $\operatorname{sqrt}(\mathrm{a}(1,1))$ and $1 / \mathrm{sqrt}(\mathrm{a}(1,1))$.

The first step in filling up the matrix is replacing $a(1,1)$ by $\operatorname{sqrt}(a(1,1))$. Then each element of the first column of the marix \mathbf{A} is multiplied by $1 / \mathrm{sqrt}(\mathrm{a}(1,1))$ and these new values replace the existing first column of matrix A in DSP memory. This process is shown by the lighter-shaded column which is called the "BASE_COL" shown in the Figure 4.

```
`}a(1,\sqrt{}{\textrm{a}(1,1)},2) 2) a(1, 3) a(1, 4) a(1, 5) a(1,6) a(1, 7) a(1, 8) a(1, 9) a(1, 10) a(1, 11) a(1, 
a(2,1) a(2, 2) &(2, 3) a(2, 4) a(2, 5) a(2, 6) a(2, 7) a(2, 8) a(2, 9) a(2, 10) a(2, 11) a(2, 1
a(3,1) a(3, 2) a(3, 3) a(3, 4) a(3, 5) a(3, 6) a(3, 7) a(3, 8) a(3, 9) a(3, 10) a(3, 11) a(3, 1
a(4, 1) a(4, 2) a(4, 3) a(4, 4)\a(4, 5) a(4,6) a(4, 7) a(4, 8) a(4, 9) a(4, 10) a(4, 11) a(4, 1
a(5, 1) a(5, 2) a(5, 3) a(5,4) a(5, 5) \ (5, 6) a(5, 7) a(5, 8) a(5, 9) a(5, 10) a(5, 1(1)) a(5, 1
a(6,1) a(6, 2) a(6, 3) a(6,4) a(6, 5) a(6, a(6, 7) a(6, 8) a(6, 9) a(6, 10) a(6, 11) a(6, 1
a(7, 1) a(7, 2) a(7, 3) a(7, 4) a(7, 5) a(7, 6) a(7, 7> a(7, 8) a(7, 9) a(7, 10) a(7, 11) a(7, 1
a(8,1) a(8,2) a(8,3) a(8,4) a(8,5) a(8,6) a(8, 7) a(8, 8) a(8, 9) a(8, 10) a(8, 11) a(8, 1
a(9, 1) a(9, 2) a(9, 3) a(9, 4) a(9, 5) a(9, 6) a(9, 7) a(9, 8) a(9, Y) a(9, 10) a(9, 11) a(9, 1
a(10 1) a(10. 2) a(10. 3) a(10. 4) a(10. 5) a(10.6) a(10. 7) a(10. 8) a(10. 9) a(im. W) a(10. 11) a(10.
```

Figure 4. First Step in Computing the Cholesky Factor
2. Perform the operation:
$A(i, j)=A(i, j)-A(i, k) * \operatorname{conj}(A(j, k))$
This implies replacing the second column (starting from the diagonal dash line) with the (first iteration; $\mathrm{k}=1, \mathrm{j}=2$, and $\mathrm{i}=2$) newly computed values:
$A(2: 12,2)=A(2: 12,2)-A(2: 12,1) * \operatorname{conj}(A(2,1))$
The darker-filled column in the matrix in Figure 4, shows the newly replaced columns. In the assembly code, the start location of $A(2: 12,2)$ is stored in a register named, CURRENT_COL, and the start location of $A(2: 12,1)$ is stored in a register named, BASE_ROW. The "BASE_ROW" contains the starting row location in the "BASE_COL" as the algorithm proceeds.
$[a(1,1) \quad a(1,2) \quad a(1,3) a(1,4) \quad a(1,5) \quad a(1,6) \quad a(1,7) a(1,8) a(1,9) a(1,10) a(1,11) a(1,12)]$
$a(2,1) \quad a(2 \otimes 2) / 4,2) \quad a(2,4) \quad a(2,5) \quad a(2,6) \quad a(2,7) \quad a(2,8) \quad a(2,9) a(2,10) a(2,11) \quad a(2,12)$
$a(3,1) \quad a(3 * 2) \log 3) ~ a(3,4) \quad a(3,5) \quad a(3,6) a(3,7) a(3,8) a(3,9) a(3,10) a(3,11) a(3,12)$
$a(4,1) \quad a(4 * 2) a(4,3) \quad a(4,4) \cup a(4,5) \quad a(4,6) \quad a(4,7) \quad a(4,8) a(4,9) a(4,10) a(4,11) \quad a(4,12)$
$a(5,1) \quad a(5 * 2) \log 5,3) a(5,4) a(5,5) _(5,6) a(5,7) a(5,8) a(5,9) a(5,10) a(5,1(1)) a(5,12)$
$4=$

$a(8,1) \quad a(8 * 2) \log 8,3) \quad a(8,4) \quad a(8,5) \quad a(8,6) a(8,7) a(8,-8) a(8,9) a(8,10) a(8,11) a(8,12)$
$a(9,1) \quad a(9 * 2)$

Figure 5. Second Step in Computing the Cholesky Factor
3. Perform the same set of operations as in step 2 between the first "base column" and the third column and this time replace the content of the third column with the results of the computation. This is represented in the matrix in Figure 6 on page 16 by the darker-filled column. This processes continues until all the columns in the 12×12 matrix have been replaced with the results of the computation (under the dashed-diagonal line). Iteration 2: (In this step the second column becomes the "BASE_COL")
4. Perform the same operation as step 2 of Iteration one between the second and third columns, continuing until all the columns in the 12×12 matrix are replaced.

This process is shown in Figure 7. As in step 1 of Iteration 1, the first objective is to compute $1 / \operatorname{sqrt}(\mathrm{a}(2,2))$ and $\operatorname{sqrt}(\mathrm{a}(2,2))$. The diagonal element is then replaced by $\operatorname{sqrt}(\mathrm{a}(2,2))$ and all the contents of the second column (the new "base column") starting at the element below the diagonal line are multiplied by $1 / \operatorname{sqrt}(\mathrm{a}(2,2))$ and replaced in memory by the new results. This is the updated "base column" to be used in the second iteration of the algorithm. These address changes are made in loop_d of the assembly code. After $\mathrm{N}_{\mathrm{f}}-1$ iteration the whole matrix (below the dashed-diagonal line) is replaced by its Cholesky factor. This process requires N^{3} complex operations. Where $\mathrm{N} \times \mathrm{N}$ is the size of the square matrix.

Figure 6. Third Step in Computing the Cholesky Factorization
Note: In loop_a the BASE_ROW is moved to the next column, but in loop_c, it is moved down by one row, without changing the column location. In the assembly code, all loops and the address calculation are highlighted.

```
`a(1, \Gamma) &(1,2) a(1, 3) a(1, 4) a(1, 5) a(1, 6) a(1, 7) a(1, 8) a(1, 9) a(1, 10) a(1, 11) a(1,
a(2, 1) a(2, 2) a(2, 3) a(2, 4) a(2, 5) a(2,6) a(2, 7) a(2, 8) a(2, 9) a(2, 10) a(2, 11) a(2,
a(3,1) a(3,2) a($)
a(4, 1) a(4, 2) a(4%)
a(5,1) a(5, 2) a(4.b)
a(6,1) a(6,2) a(6%)
a(7,1) a(7, 2) a(W)F@(7, 4) a(7, 5) a(7, 6) a(T, 7- a(7, 8) a(7, 9) a(7, 10) a(7, 11) a(7,
a(8,1) a(8,2) a(8%%)
a(9, 1) a(9, 2) a(\mathscr{F})
```


Figure 7. First Step of Iteration 2

Code Listing 6. Cholesky

Decision Feedback Equalizer for StarCore ${ }^{\text {TM }}$-Based DSPs, Rev. 1

Implementation of the Algorithm

loopend1		; move d3 to memory (imag result) ; pointer r0->r0+\$30, point to ; next element in the column ; end loop_b
;****End loop_b***** end_loop_b:		
tfra BASE_ROW,r0 adda \#N_1,r0,r0	dosetupl loop_c	; r0->prevoius diagonal address ; r0->r0+\$34 address for current ; diagonal
tfra r0,r1	tfra r0,CURRENT_COL	; save location of the current ; diagonal element in CURRENT COL
[suba \#4,r1 dosetup2 loop_d	$\operatorname{tfr} \mathrm{d} 8, \mathrm{~d} 9$; r1-> (CURRENT_COL-\$4) =
1		; previous col=BASE_COL ; d9=d8 (counter)
tfra r1,BASE_COL	doen1 d9 ; BASE_COL->r1	


```
move.2f (r1),d0:d1 ; for j=k+1:n d0=real(A(j,k)) dl=imag(A(j,k))
[ move.2f (r1),d4:d5
tfra r0,r4
clr d6 clr d7 ; d4=Re([A(j:n,k)] &
] ; d6=0 and d7=0
; r4->r0
[ mac d0,d4,d6 mac d0,d5,d7
]
[ mac d1,d5,d6 mac -d1,d4,d7
move.2f (r0),d2:d3 ; d6 & d7 = Re & Im
    ]
    [ sub d6,d2,d10 sub d7,d3,d1
] ; d10 & d11 = Re & Im [A(i,j)]
```

tfr d10,d15

; base col.), loop_c for l=k+1:n
loopstart1
loop_c:
doen2 d9 move.2f (r1),d0:d1 ; for $j=k+1: n \quad d 0=r e a l(A(j, k)) d 1=i m a g(A(j, k))$
[move.2f (r1) +n0,d4:d5
tfra r0,r4
clr d6 clr d7
; $\mathrm{d} 5=\operatorname{Im}(\mathrm{A}(\mathrm{j}: \mathrm{n}, \mathrm{k}))$
] ; d6=0 and $d 7=0$
; r4->r0
mac d0,d4,d6
[mac d1,d5,d6
move.2f (r1) n 0 0, $\mathrm{d} 4: \mathrm{d} 5$
]
[sub d6,d2,d10
move.2f (r0)+n0,d2:d3
]
loopstart2
loop_d:

```
    [ mac d0,d4,d6 mac d0,d5,d7
    moves.2f d10:d11,(r4)+n0
    ]
    mac d1,d5,d6 mac -d1,d4,d7 ; [A(i,k)*conj (A(j,k))]
    ; d10=Re(A(i,j))
    ; d11=Im(A(i,j))
    ; move d10,d11 in to memory
    [ sub d6,d2,d10
move.2f (r0)+n0,d2:d3
clr d6 clr d7
    ]
    loopend2 ; end of for loop j
    mac d1,d5,d6 mac -d1,d4,d7
    ; NOTE Taking -d1
    ; implements the conj operation
    ;*****End loop_d
    ; moves.2f d10:d11,(r4)+n0
end_loop_d:
    adda #N_1,CURRENT_COL,CURRENT_COL adda #N_1,CURRENT_COL,r0
                                    ; CURRENT_COL=CURRENT_COL+$34
        adda #N_0,BASE_COL,rladda #N_0,BASE_COL,BASE_COL ; k_COL=BA\overline{ASE_COL+$30}
                            ; r\overline{1}->BASE_COL , rO->CURRENT_COL
            loopend1
        ;****End loop_c******
        end_loop_c:
        sub #1,d8 adda #N_1,BASE_ROW,r0 adda #N_1,BASE_ROW,BASE_ROW
    ; r0->r0+$34,BASE_ROW->
    ; BASE_ROW+$34
    ; d8=d8-1 (counter) r0->BASE_ROW
    ; (r0 points to the next col. and
    ; BASE_ROW contains the start
    ; address for that col.
    loopend0 ; end loop_a
;****End loop_a
```


3.4.2 Back Substitution Algorithm

Back substitution is part of the Cholesky factorization routine, which takes the result of the Cholesky factored matrix and performs a back substitution solving a set of linear equations to get the final solutions for the optimum feed-forward and feedback taps. This section explains how the back substitution was implemented on the SC140 core by comparing the assembly implementation with its corresponding Matlab implementation presented in Code Listing 2.

LOOP 1 (Refers to LOOP 1 of Matlab code in Code Listing 2)

1. The column corresponding to the maximum value in the diagonal of Matrix \mathbf{A} (the lower triangular Cholesky factor) is located. This gives the location of the optimum feedback filter coefficients, and its index gives the optimum decision delay. Locating the index with the maximum diagonal value in the Cholesky factored matrix is done by the assembly routine find_max.asm and is explained in Section 3.4.3, Finding the Optimum Delay, on page 23.

In the Matlab code, the monic matrix \mathbf{L} (\mathbf{L} _matrix) of the $\mathbf{L D L}$ * Cholesky factor is generated by multiplying each column of matrix \mathbf{A} by the reciprocal of the diagonal entry for that column. In the assembly routine, a new array called \mathbf{L} _matrix is formed in the same way but only a subset of matrix \mathbf{L} is generated in the DSP implementation. To clarify this point, Figure $\mathbf{8}$ on page 20 depicts an example showing the elements of matrix \mathbf{A} that are used in forming the $\mathbf{L}_{\mathbf{\prime}}$ matrix (here the optimum delay is assumed to be 8). The e direction of the arrow shows how the contents of \mathbf{L}_{-}matrix are arranged in memory. The $\mathbf{L}_{\mathbf{\prime}}$ matrix array is filled with elements $1(8,7), 1(7,6), 1(8,6), 1(6,5), 1(7,5)$, $1(8,5) \ldots$ where $l(i, j)=a(i, j) / a(j, j)$.

Figure 8. Generating L_Matrix for Back Substitution
2. The entries of L_matrix are processed and the results are stored in an intermediate array, \mathbf{v} (same notation as the Matlab code).

Note that in the Matlab code, the array labeled \mathbf{v} is filled from the back (that is; the first element computed is the last entry in \mathbf{v}). In the DSP routine, the \mathbf{v} array is filled in the opposite way, that is, the first value computed is the first element in array \mathbf{v}. Therefore, at the end of filling array \mathbf{v}, the pointer points to the last element of the array \mathbf{v}. Filling the array in this direction is helpful because the next loop, the loop that computes w_opt, can read the entries from array \mathbf{v} by simply decrementing the address register by one each time.

Code Listing 7. DSP Code that Generates the L_Matrix

```
;*****************************************************************************
```

loopstart0
loop_address_setting:
move.f (r0), d1 doen1 d8
jsr one_over_x

loopstart1

loop_compute:
adda n0,r0
move. 2f (r0), d4: d5
mpy $d 4, d 0, d 6$ mpy $d 5, d 0, d 7$
start for loop to fill up
; L_matrix
r0->next element in the col.
d4=real and d5=image od the
elements down the col.
d6=real(1/diagonal)*elements in
the same col.
d7=imag(1/diagonal)*elements in

```
```

```
forloop for moving pointer to
```

```
forloop for moving pointer to
previous col. in the cholesky
previous col. in the cholesky
matrix
matrix
dl=diagonal elenemt, d8=counter
dl=diagonal elenemt, d8=counter
d0=1/diagonal element, d2=scale
d0=1/diagonal element, d2=scale
factor
```

factor

```
```

asrr d2,d6 asrr d2,d
asrr \#2,d6 asrr \#2,d7
moves.2f d6:d7,(r1)+
loopend1
;****End loop_address_setting

```
```

the same col.
scale d6 and d7 by the devide
routine scale factor
scale the entry of L_matrix
before saving to memory to
prevent overflow
write results to L_matrix
end forloop L_matrix
d8=d8+1, BASE_ROW=BASE_ROW-\$34
end forloop for moving pointer
to previous col. in the cholesky
matrix

```

\section*{LOOP 2}
1. In this part of the algorithm, data is read from two different locations in memory:
- " \(\mathbf{v}\) " (starting at the location of the last entry in \(\mathbf{v}\) )
—"channel_h" (starting at the first element of the impulse response)
The \(\mathbf{v}\) matrix is arranged in Matlab as shown in Equation 26 (for our example with, an optimum delay \(=8\) and chan_mem \(=4\) ).
\[
\boldsymbol{V}=[v(8) v(7) v(6) v(5) v(4) v(3) v(2) v(1)]
\]

Equation 26
During the execution of LOOP 2 (following the same notation as the Matlab routine) data is read out as shown in Table 2. Note that the number of elements read in each iteration depends on the \(\min (\) chan_mem, jj\()+1\), where jj is decremented by one from a value of \(\mathrm{N}_{\mathrm{f}}\) every iteration.

Table 2. Read Out of Loop 2 Data
\begin{tabular}{|l|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Iteration } & & & & & \\
\hline \hline First & \(\mathrm{v}(8)\) & \(\mathrm{v}(7)\) & \(\mathrm{v}(6)\) & \(\mathrm{v}(5)\) & \(\mathrm{v}(4)\) \\
\hline Second & \(\mathrm{v}(7)\) & \(\mathrm{v}(6)\) & \(\mathrm{v}(5)\) & \(\mathrm{v}(4)\) & \(\mathrm{v}(3)\) \\
\hline Third & \(\mathrm{v}(6)\) & \(\mathrm{v}(5)\) & \(\mathrm{v}(4)\) & \(\mathrm{v}(3)\) & \(\mathrm{v}(2)\) \\
\hline Fourth & \(\mathrm{v}(5)\) & \(\mathrm{v}(4)\) & \(\mathrm{v}(3)\) & \(\mathrm{v}(2)\) & \(\mathrm{v}(1)\) \\
\hline Fifth & \(\mathrm{v}(4)\) & \(\mathrm{v}(3)\) & \(\mathrm{v}(2)\) & \(\mathrm{v}(1)\) & \\
\hline Sixth & \(\mathrm{v}(3)\) & \(\mathrm{v}(2)\) & \(\mathrm{v}(1)\) & & \\
\hline Seventh & \(\mathrm{v}(2)\) & \(\mathrm{v}(1)\) & & & \\
\hline Eighth & \(\mathrm{v}(1)\) & & & & \\
\hline
\end{tabular}

However, in the DSP code this process is done slightly different. Data is arranged in the \(\mathbf{v}\) array in the DSP as shown in Equation 27. As the algorithm progresses, data is read out every iteration as shown in Table 3.
\[
\boldsymbol{V}=\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & v(1) v(2) v(3) v(4) v(5) v(6) v(7) v(8)
\end{array}\right]
\]

Equation 27

Table 3. Read Out of Loop 2 Data in the SC140
\begin{tabular}{|l|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Iteration } & & & & \\
\hline \hline First & \(\mathrm{v}(8)\) & \(\mathrm{v}(7)\) & \(\mathrm{v}(6)\) & \(\mathrm{v}(4)\) & \(\mathrm{v}(5)\) \\
\hline Second & \(\mathrm{v}(7)\) & \(\mathrm{v}(6)\) & \(\mathrm{v}(5)\) & \(\mathrm{v}(4)\) & \(\mathrm{v}(3)\) \\
\hline Third & \(\mathrm{v}(6)\) & \(\mathrm{v}(5)\) & \(\mathrm{v}(4)\) & \(\mathrm{v}(3)\) & \(\mathrm{v}(2)\) \\
\hline Forth & \(\mathrm{v}(5)\) & \(\mathrm{v}(4)\) & \(\mathrm{v}(3)\) & \(\mathrm{v}(2)\) & \(\mathrm{v}(1)\) \\
\hline Fifth & \(\mathrm{v}(4)\) & \(\mathrm{v}(3)\) & \(\mathrm{v}(2)\) & \(\mathrm{v}(1)\) & 0 \\
\hline Sixth & \(\mathrm{v}(3)\) & \(\mathrm{v}(2)\) & \(\mathrm{v}(1)\) & 0 & 0 \\
\hline Seventh & \(\mathrm{v}(2)\) & \(\mathrm{v}(1)\) & 0 & 0 & 0 \\
\hline Eight & \(\mathrm{v}(1)\) & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}

Stuffing four zeros (eight complex elements for this particular example) makes the code easier to write and more optimal, because this eliminates the need for address manipulation that is required to implement \(\min (\) chan_mem, j ) +1 .

\section*{Code Listing 1. Back Substitution}
```

move.l \#L_matrix,r1
move.l \#v,r2
move.f \#.25,d0 clr dl
moves.2f d0:d1,(r2)
move.l n3,d0 move.w \#\$1,d12
losetup0 kk_loop tfra r2,BASE_ROW

```
loopstart0
kk_loop
    doen1 d12
    [ move.2f (r1)+,d0:d1move.2f (r2)-,d2:d3
        clr d4 clr d5
    ]
    loopstart1
jj_1oop
CC
    mac \(-d 0, d 2, d 4\) mac \(-d 0, d 3, d 5\)
    \(\operatorname{mac} d 1, d 3, d 4 \quad \operatorname{mac}-d 1, d 2, d 5\)
    asll \#4,d4 asll \#4,d5
    move.2f (r1)+,d0:d1 move.2f (r2)-,d2:d3
        ; remove the scaling by 4
        ; (Note: all the elements were
        ; scaled by 1/4, therefore the
        ; product was scaled by 1/16)
    add \(d 4, d 6, d 6\) add d5,d7,d7
    clr d4 clr d5
    loopend1
    [ asrr \#2,d6
    asrr \#2,d7
```

 adda #$4,BASE_ROW adda #$4,BASE_ROW,r2
] ; move pointer to next address to
 ; fill up the new value of v
ox2

```
    add \#1,d12 suba \#4,r1 moves.2f d6:d7,(r2) clr d6 clr d7
loopend0

    ; NOTE: at the end of kk_loop "start_location" contains the location for
    ; the last element in v

\subsection*{3.4.3 Finding the Optimum Delay}

This section describes the assembly routine to find the optimum delay and explains how to implement it on the SC140 core. A special SC140 instruction, max2, helps implement this type of array search very efficiently. The \(\boldsymbol{m a x} 2\) instruction finds the maximum number between two sets of 16 -bit numbers. However, this assembly routine requires the size of the input array to be in multiples of eight. In our example there are 12 diagonal values. To resolve this problem, d_array, which contains all the diagonal values, is first zero padded to make the total size of the array equal to 16 . The \(\boldsymbol{\operatorname { m a x }} \mathbf{2}\) instruction then finds the maximum number between two sets of 16 -bit numbers. This routine works as follows:

The vector d_array has \(\mathrm{N}_{\mathrm{f}}+v\) elements indexed: \(0,1,2, \ldots,\left(\mathrm{~N}_{\mathrm{f}}+v+4\right)-1\). The vector is divided into eight sets:
set \#0 contains elements with index \(-0,8,16, \ldots\)
set \#1 contains elements with index \(-1,9,17, \ldots\)
set \#2 contains elements with index \(-2,10,18, \ldots\)
o
o
o
set \#7 contains elements with index \(-7,15,23, \ldots\)
In the first loop, Loop_1, the local maximum value in each of the eight sets is found.
The index of each local maximum is not known at the end of the kernel.
Maximum of set \#0 is at d4.1, maximum of set \#1 is at d4.h,
Maximum of set \#2 is at d5.1, maximum of set \#3 is at d5.h,
Maximum of set \#4 is at d6.1, maximum of set \#5 is at d6.h,
Maximum of set \#6 is at d7.1, maximum of set \#7 is at d7.h.
In the second loop, Loop_2, the global maximum is found from the local maxima. The set containing this global maxima is then located. This set has only \(\left(\mathrm{N}_{\mathrm{f}}+\mathrm{v}+4\right) / 8\) elements). Next, we scan the set and locate the index of the element that is equal to the global maximum. This is accomplished in the third loop, Loop_3.

\section*{Code Listing 8. Locating the Optimum Delay (find_max.asm)}
```

section .data local
global Ftemp
equ 16
align 4
DUMMY dc 0,0,0,0,0,0
Ftemp ds 3*4
endsec
section .text local
global find_max_delay
find_max_delay type func
move.w \#d_array,r0
move.w \#<2,n3
move.w \#d_array+8,r1
move.w \#Ftemp,r2
move.w \#Ftemp+4,r3
move.21 (r0) +n3,d0:d1
Loop1_1:
loopstart3
[max2 d0,d4
max2 d2,d6
move.2l (r0)+n3,d0:d1
]
loopend3
[max2 d0,d4 max2 d1,d5
max2 d2,d6 max2 d3,d7
move.w \#d_array,d2
]
; The starting address for the subset with maximum is saved in d3
[
sxt.w d4,d4 asrw d4,d0 tfr d2,d3 tfr d2,d1
move.l d5,(r2) move.2l d6:d7,(r3)
]
[
cmpgt d4,d0 max d0,d4 add \#<2,d2
move.w (r2)+,d0 move.w \#<8,n3
]
loop_2:
loopstart3
[cmpgt d4,d0 max d0,d4
tfrt d2,d3 add \#<2,d2 move.w (r2) +,d0
]
loopend3
[cmpgt d4,d0 max d0,d4
tfrt d2,d3 add \#<2,d2 move.w \#<16,d5
]
[
ift tfr d2,d3 add d2,d5,d4
iff add d3,d5,d4
]

```
```

sub d1,d3,d7 move.l d3,r1 move.l d4,r0
asr d7,d7 doensh3 \#<(N/8)-2
; The best index is saved in d7l
tfr d7,d6 move.w (r1),d4 move.w (r0)+n3,d0
; The maximum value is saved in d4l
cmpgt d4,d0 add \#<8,d6 max d0,d4 move.w (r0) +n3,d0
Loop_3:
loopstart3
[cmpgt d4,d0 max d0,d4
tfrt d6,d7 add \#<8,d6 move.w (r0)+n3,d0
]
loopend3
tfrt d6,d7
move.l d7,n3 ;load the delay index in to n3
rts
endsec

```

\subsection*{3.4.4 Square Root and Inverse Square Root}

The square root and inverse square root routine computes the sqrt(x) and \(1 / \mathrm{sqrt}(\mathrm{x})\). First, \(1 / \mathrm{sqrt}(\mathrm{x})\) is computed; multiplying it by x gives \(\operatorname{sqrt}(\mathrm{x})\). The \(1 / \operatorname{sqrt}(\mathrm{x})\) is computed by and iterative quadratic method as shown in Equation 28.

Equation 28
\[
U i+1=U i / 2 *\left(3-V^{*} U i * U i\right)
\]

After a few iterations, the results of the iterative quadratic method attain a good approximation of \(1 / \mathrm{sqrt}(\mathrm{V})\). For the purpose of implementation, Equation 28 is rewritten as \(0.5 \mathrm{U}_{\mathrm{i}+1}=0.25 * \mathrm{U}_{\mathrm{i}}-\mathrm{V}^{*} \mathrm{Ui}^{\wedge} 3\). Intermediate results must be scaled to ensure that the data going into the 16-bit multiplier yields good precession. The first step is to scale the input x by \(2^{\mathrm{x}}\) (where x must be even) so that it is a number less than one (but as close to one as possible). To obtain a scale factor \(\left(2^{\mathrm{x}}\right)\) for the input, x is made even by an and operation of the form and \#\$0000fffe, \(\mathbf{d 2}, \mathbf{d} \mathbf{2}\). This instruction ensures that \(\mathbf{d} \mathbf{2}\) is even. The usefulness of this becomes obvious in the following example, which expresses the relationship between the scale factor and the square root of the scale factor.

To compute the square root of x , we assume that a scale factor after a dynamic scaling on x (using the instruction clb ) results in 16 ( \(2^{4}\) or left shift by 4 ). After the left shift operation, the number is \(x \times 2^{4}\). Our goal is to compute \(\operatorname{sqrt}(x)\), which is \(\operatorname{sqrt}\left(x \times 2^{4}\right) / \operatorname{sqrt}\left(2^{4}\right)\). This is exactly equal to shifting sqrt \(\left(x \times 2^{4}\right)\) right by two. Our example shows that the square root of the scale factor can be obtained simply by dividing the shifts by two (that is; asrr \#1, d2). The input is scaled by SC, and the result is expressed in Equation 29.

Equation 29
\[
U i=1 / \operatorname{sqrt}\left(V^{*} \boldsymbol{S C}\right)=1 /\left[\operatorname{sqrt}(V){ }^{*} \operatorname{sqrt}(\mathbf{S C})\right]
\]

To find \(1 / \mathrm{sqrt}(\mathrm{V})\), we must multiply the result \(1 / \mathrm{sqrt}(\mathrm{V} * \mathbf{S C})\) by \(\operatorname{sqrt}(\boldsymbol{S C})\). As scale factors \(\mathbf{S C}\) are always chosen to be even shifts of two, the procedure in the example can be used to compute sqrt(SC).

\section*{Code Listing 9. Routine for Computing Square Root Inverse Square Root}
```

section .text local
global sqrt_and_invsqrt
sqrt_and_invsqrt type func
push d1 push d8
clb d0,d2 tfr d0,d4
and \#\$0000fffe,d2,d2
asrr d2,d0
asrr \#2,d0 move.f \#.75,d1
tfr d1,d3 dosetup3 loop1
loopstart3
loop1
clb d1,d10
asrr d10,d1
[mpy d1,d1,d5mpy d1,d0,d6
mpy d3,d1,d7 add d10,d10,d11
]
mpy d5,d6,d6 inc d10
asll d11,d6
sub d6,d7,d1
asll d10,d1 tfr d1,d9
loopend3
asrr \#1,d2 mpy d9,d4,d0
asrr d2,d1 asll d10,d0
asrr d2,d0 tfr d1,d4
pop d8 pop d1
rts
endsec

```

\section*{4 Results}

Figure 1- Figure 11 shows the Matlab and corresponding DSP results for the feedback and feed-forward filter taps for an arbitrary channel-impulse response. Channel impulse response \(=[(-0.5251-0.4487 \mathrm{i})(0.0953-0.2673 \mathrm{i})\) \((-0.2129-0.0084 i)(-0.3605-0.2713 i)(0.1874-0.3487 \mathrm{i})]\) and \(\mathrm{SNR}=20 \mathrm{~dB}\).


Figure 1. Real Part of the DFE Feed Forward Tap


Figure 9. Imaginary Part of the DFE Feed Forward Tap


Figure 10. Real Part of the DFE Feedback Tap


Figure 11. Imaginary Part of the DFE Feedback Tap
These results show that the DSP and the Matlab results agree within the allowable error range of 16 -bit arithmetic. The X axis represents the filter taps and the Y axis represents the magnitude of each filter tap. Note that the DSP feedback filter taps must be conjugated before they are used. The frequency response of the feedback and the feedforward filter obtained from the DSP implementation closely match the theoretical Matlab result. Storing the
intermediate result (that is, the element for which \(1 / \mathrm{sqrt}()\) is computed) in a data register instead of memory greatly improves the accuracy of the algorithm because storing small fractional numbers to memory (16-bit) increases the error. Keeping the result in a data register holds better precision as the data register uses 32-bit representation.

Because of error introduced in fixed-point calculations, the optimum delay may be more than one in some situations, but they always appear next to each other. Picking any one of the columns of the L_matrix (feedback coefficient and the corresponding feed forward coefficient) that has the same optimum delay (that lies between \(\mathrm{N}_{\mathrm{f}}-1\) to \(\mathrm{N}_{\mathrm{f}}-v\) ) gives good results in terms of BER of the overall communication system. Also, there are communication systems where it is safe to assume the optimal decision delay is \(\mathrm{N}_{\mathrm{f}}-1\). In such systems the computation can be further reduced by removing the routine that locates the optimal delay. The entire process of computing the DFE coefficient from the channel-impulse response required 7680 cycles for a DFE \((8,4)\). In this implementation example, the channel-impulse response length is assumed to be of length five.

\section*{5 Conclusion}

Decision feedback equalizers are very useful as sub-optimal solutions when the constellation size is large and the channel memory is long, which is true in many current and next-generation communications systems. That decision feedback equalizers are implemented as FIR filters makes them especially attractive for processors such as the SC140 core, which have multiple ALUs, because multi-sampling can be used to implement FIR filters very efficiently. The DSP implementation of Cholesky-based DFEs is a way to find the DFE coefficients using the concept of spectral factorization to eliminate the need for computationally expensive complex-matrix inversion. Also, simulation results show that optimizing the decision delay improves the decision point SNR, which in turn improves BER performance of the communication receiver. Our implementation optimizes the decision delay. The results obtained from the real-time SC 140 implementation are accurate within the precession of the 16 -bit computation.

\section*{6 References}
[1] "MMSE Decision-Feedback Equalizers: Finite-Length Results," Al-Dhahir, N.; Cioffi, J.M. IEEE Transactions on Information Theory. Volume: 414 , July 1995, pp. 961-975.
[2] "Efficient Computation of the Delay-Optimized Finite Length MMSE-DFE, Al-Dhahir, N.; Cioffi, J.M, IEEE Transactions on Signal Processing. Volume: 44 5, May 1996, pp. 1288-1292.

\section*{NOTES:}

\section*{NOTES:}

\section*{How to Reach Us:}

\section*{Home Page:}
www.freescale.com

\section*{E-mail:}
support@freescale.com
USA/Europe or Locations not listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
\(+1-800-521-6274\) or \(+1-480-768-2130\)
support@freescale.com

\section*{Europe, Middle East, and Africa:}

Freescale Halbleiter Deutschland GMBH
Technical Information Center
Schatzbogen 7
81829 München, Germany
+44 1296380456 (English)
+46 852200080 (English)
+49 8992103559 (German)
+33 169354848 (French)
support@freescale.com

\section*{Japan:}

Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120191014 or + 81354379125
support.japan@freescale.com

\section*{Asia/Pacific:}

Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T. Hong Kong
+800 26668080
For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405

Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@ hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale \({ }^{\mathrm{TM}}\) and the Freescale logo are trademarks of Freescale Semiconductor, Inc. StarCore is a trademark of StarCore LLC. All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc.2000, 2004.```

