LINEAR PRODUCTS

DATA SHEET

μ**A733/733C**Differential video amplifier

Product specification IC11

April 15, 1992

Philips Semiconductors

PHILIPS

Differential video amplifier

μ**Α733/733C**

DESCRIPTION

The 733 is a monolithic differential input, differential output, wide-band video amplifier. It offers fixed gains of 10, 100, or 400 without external components, and adjustable gains from 10 to 400 by the use of an external resistor. No external frequency compensation components are required for any gain option. Gain stability, wide bandwidth, and low phase distortion are obtained through use of the classic series-shunt feedback from the emitter-follower outputs to the inputs of the second stage. The emitter-follower outputs provide low output impedance, and enable the device to drive capacitive loads. The 733 is intended for use as a high-performance video and pulse amplifier in communications, magnetic memories, display and video recorder systems.

FEATURES

- 120MHz bandwidth
- 250kΩ input resistance
- Selectable gains of 10, 100, and 400
- No frequency compensation required
- MIL-STD-883A, B, C available

PIN CONFIGURATION

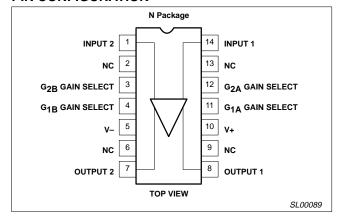


Figure 1. Pin Configuration

APPLICATIONS

- Video amplifier
- Pulse amplifier in communications
- Magnetic memories
- Video recorder systems

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE	ORDER CODE	DWG#
14-Pin Plastic Dual In–Line Package (DIP)	-55°C to +125°C	μΑ733N	SOT27-1
14-Pin Plastic Dual In–Line Package (DIP)	0 to +70°C	μΑ733CN	SOT27-1

CIRCUIT SCHEMATIC

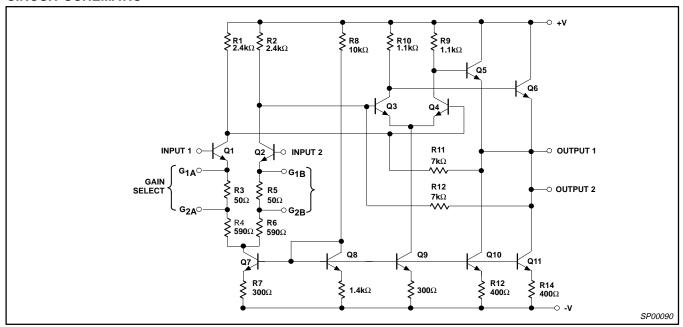


Figure 2. Circuit Schematic

Differential video amplifier

 μ A733/733C

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT			
V_{DIFF}	Differential input voltage	±5	V			
V _{CM}	Common-mode input voltage	±6	V			
V _{CC}	Supply voltage	±8	V			
l _{OUT}	Output current	10 m.				
T _J	Junction temperature	+150 °C				
T _{STG}	Storage temperature range	-65 to +150 °				
T _A	Operating ambient temperature range					
	μA733C	0 to +70	°C			
	μΑ733	-55 to +125	°C			
P _{D MAX}	Maximum power dissipation,	1420	mW			
	25°C ambient temperature (still-air) ¹					

NOTE:

DC ELECTRICAL CHARACTERISTICS

 $T_{A}\text{=+25}^{\circ}\text{C}, \ V_{S}\text{=}\pm6\text{V}, \ V_{CM}\text{=}0, \ unless \ otherwise \ specified. \ Recommended \ operating \ supply \ voltages \ V_{S}\text{=}\pm6.0\text{V}.$

SYMBOL	BARAMETER	TEST CONDITIONS		μ Α733C	;	μ Α733			
STIVIDOL	PARAMETER	TEST CONDITIONS	Min	Тур	Max	Min	Тур	Max	UNIT
	Differential voltage gain	$R_I = 2k\Omega$, $V_{OUT} = 3V_{P-P}$							
	Gain 1 ²		250	400	600	300	400	500	V/V
	Gain 2 ²		80	100	120	90	100	110	V/V
	Gain 3 ³		8	10	12	9	10	11	V/V
	Gain 1 ¹			40			40		
BW	Gain 2 ²			90			90		MHz
	Gain 3 ³			120			120		
t _R		$V_{OUT} = 1V_{P-P}$							
	Gain 1 ¹			10.5			10.5		ns
	Gain 2 ²			4.5	12		4.5	10	ns
	Gain 3 ³			2.5			2.5		ns
t _{PD}		$V_{OUT} = 1V_{P-P}$							
	Gain 1 ¹			7.5			7.5		ns
	Gain 2 ²			6.0	10		6.0	10	ns
	Gain 3 ³			3.6			3.6		ns
R _{IN}									
	Gain 1 ²			4.0			4.0		kΩ
	Gain 2 ²		10	30		20	30		kΩ
	Gain 3 ³			250			250		kΩ
	Input capacitance ²	Gain 2		2.0			2.0		pF
I _{OS}	Input offset current			0.4	5.0		0.4	3.0	μΑ
I _{BIAS}	Input bias current			9.0	30		9.0	20	μΑ
V _{NOISE}	Input noise voltage	BW=1kHz to 10MHz		12			12		μV_{RMS}
V_{IN}	Input voltage range		±1.0			±1.0			V
CMRR									
	Gain 2	V _{CM} =±1V, f≤100kHz	60	86		60	86		dB
	Gain 2	V _{CM} =±1V, f=5MHz		60			60		dB

3

1992 Apr 15

The following derating factors should be applied above 25°C: N package at 11.4mW/°C

Differential video amplifier

 $\mu A733/733C$

DC ELECTRICAL CHARACTERISTICS (Continued)

SYMBOL	DADAMETER	TEGT CONDITIONS		μ Α7330	;	μ Α733			
SYMBOL	PARAMETER	TEST CONDITIONS	Min	Тур	Max	Min	Тур	Max	UNIT
SVRR	Supply voltage rejection ratio Gain 2	$\Delta V_S = \pm 0.5 V$	50	70		50	70		dB
	Output offset voltage	R _L = ∞							
	Gain 1 ¹			0.6	1.5		0.6	1.5	V
	Gain 2 and 3 ^{2, 3}			0.35	1.5		0.35	1.0	V
V _{CM}	Output common-mode voltage	R _L = ∞	2.4	2.9	3.4	2.4	2.9	3.4	V
	Output voltage swing, differential	$R_L=2k\Omega$	3.0	4.0		3.0	4.0		V _{P-P}
I _{SINK}	Output sink current		2.5	3.6		2.5	3.6		mA
R _{OUT}	Output resistance			20			20		Ω
I _{CC}	Power supply current	R _L = ∞		18	24		18	24	mA
THE FOLLO	OWING SPECIFICATIONS APPLY OVER	RTEMPERATURE	0°C	≤ T _A ≤	70°C	-55°C		125°C	
			Min	Тур	Max	Min	Тур	Max	UNIT
	Differential voltage gain	$R_I = 2k\Omega$, $V_{OUT} = 3V_{P-P}$							
	Gain 1 ¹		250		600	200		600	V/V
	Gain 2 ²		80		120	80		120	V/V
	Gain ³		8		12	8		12	V/V
R _{IN}	Input resistance								
	Gain 2 ²		8			8			$k\Omega$
Ios	Input offset current				6			5	μΑ
I _{BIAS}	Input bias current				40			40	μΑ
V _{IN}	Input voltage range		±1.0			±1.0			V
CMRR	Common-mode rejection ratio								
	Gain 2	V _{CM} =±V, F≤100kHz	50			50			dB
SVRR	Supply voltage rejection ratio								
	Gain 2	$\Delta V_S = \pm 0.5V$ $R_L = \infty$	50		l	50			dB
Vos	Output offset voltage	R _L = ∞							
	Gain 1 ¹				1.5			1.5	V
	Gain 2 and 3 ^{2, 3}				1.5			1.2	V
V _{DIFF}	Output voltage swing, differential	$R_L = 2k\Omega$	2.8			2.5			V _{P-P}
I _{SINK}	Output sink current		2.5			2.2			mA
Icc	Power supply current	R _L ±∞	1		27			27	mA

1992 Apr 15

Gain select pins G_{1A} and G_{1B} connected together.
 Gain select pins G_{2A} and G_{2B} connected together.
 All gain select pins open.

Differential video amplifier

μA733/733C

TYPICAL PERFORMANCE CHARACTERISTICS

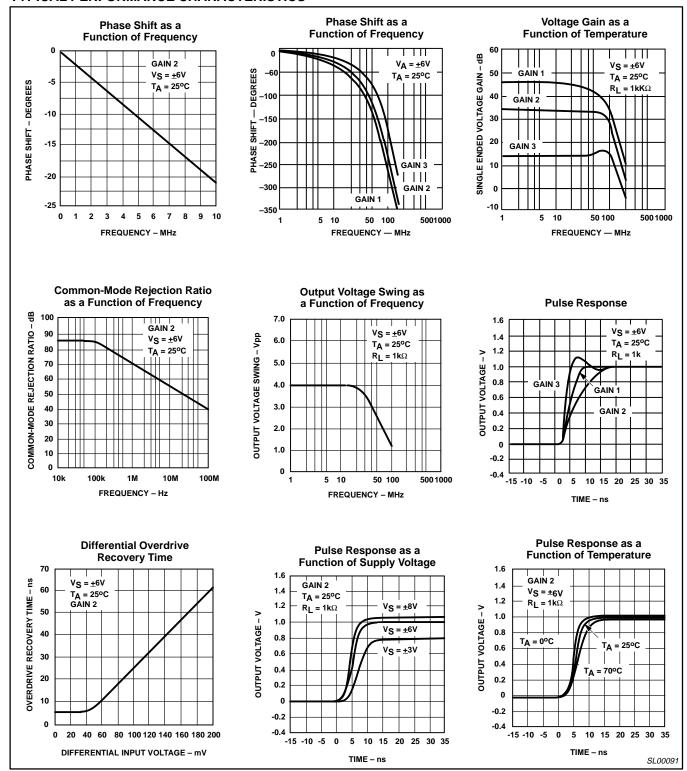


Figure 3. Typical Performance Characteristics

1992 Apr 15 5

Differential video amplifier

μA733/733C

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

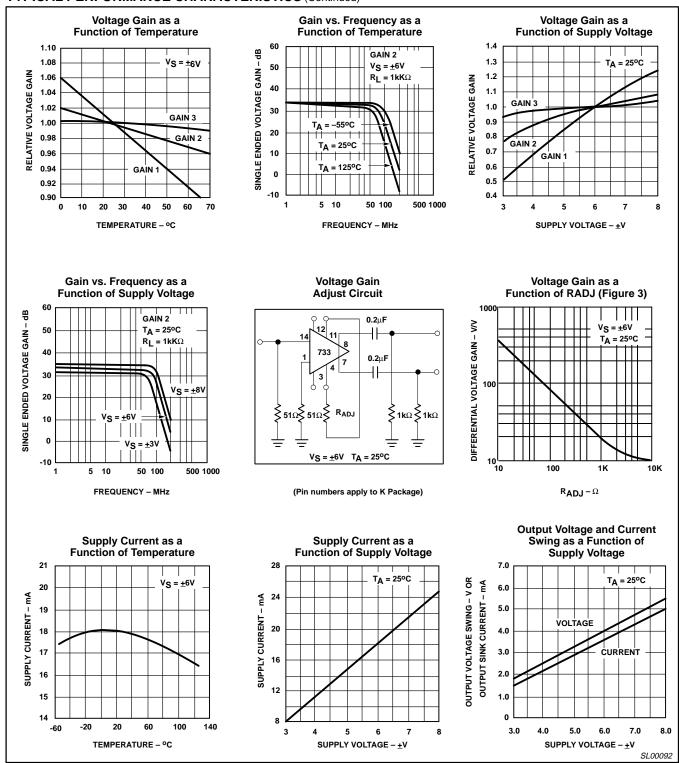


Figure 4. Typical Performance Characteristics (cont.)

1992 Apr 15 6

Differential video amplifier

μA733/733C

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

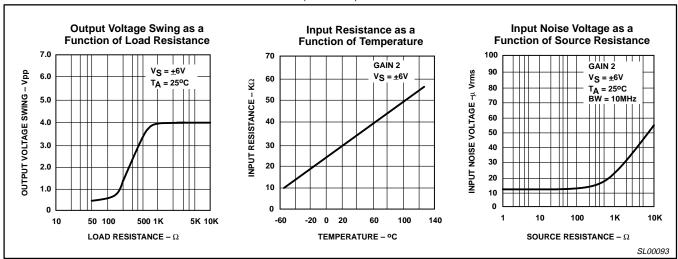


Figure 5. Typical Performance Characteristics (cont.)

TEST CIRCUITS $T_A=25^{\circ}C$, unless otherwise specified.

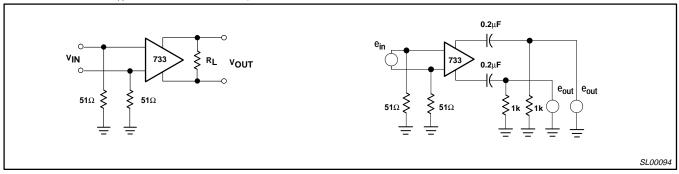
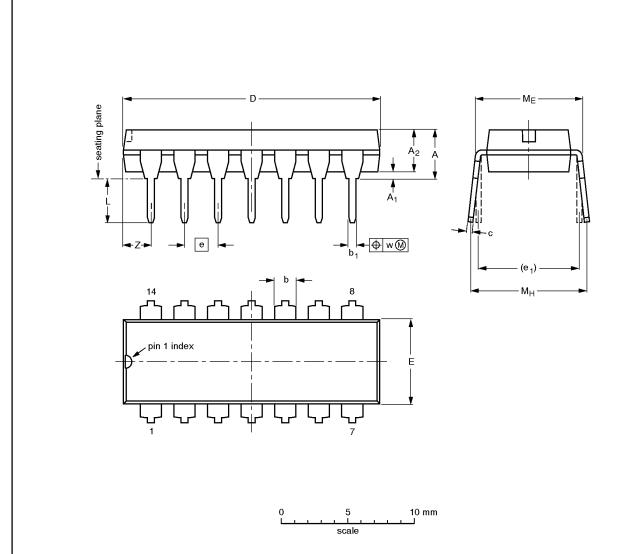


Figure 6. Test Circuits


1992 Apr 15 7

Differential video amplifier

 $\mu A733/733C$

DIP14: plastic dual in-line package; 14 leads (300 mil)

SOT27-1

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	С	D ⁽¹⁾	E ⁽¹⁾	е	e ₁	L	ME	Мн	w	Z ⁽¹⁾ max.
mm	4.2	0.51	3.2	1.73 1.13	0.53 0.38	0.36 0.23	19.50 18.55	6.48 6.20	2.54	7.62	3.60 3.05	8.25 7.80	10.0 8.3	0.254	2.2
inches	0.17	0.020	0.13	0.068 0.044	0.021 0.015	0.014 0.009	0.77 0.73	0.26 0.24	0.10	0.30	0.14 0.12	0.32 0.31	0.39 0.33	0.01	0.087

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	RENCES		EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE
SOT27-1	050G04	MO-001AA				92-11-17 95-03-11

Differential video amplifier

μA733/733C

	DEFINITIONS						
Data Sheet Identification	Product Status	Definition					
Objective Specification	Formative or in Design	This data sheet contains the design target or goal specifications for product development. Specifications may change in any manner without notice.					
Preliminary Specification	Preproduction Product	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.					
Product Specification	Full Production	This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes at any time without notice, in order to improve design and supply the best possible product.					

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

LIFE SUPPORT APPLICATIONS

Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices, or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips Semiconductors and Philips Electronics North America Corporation Products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381

Philips Semiconductors and Philips Electronics North America Corporation register eligible circuits under the Semiconductor Chip Protection Act.

© Copyright Philips Electronics North America Corporation 1992

All rights reserved. Printed in U.S.A.