
MOTOROLA
Semiconductor Application Note

Order by AN1921/D
(Motorola Order Number)

Rev. 1.0, 04/2001

© Motorola, Inc., 2001

In
te

rf
ac

e
E

xa
m

pl
es

 U
si

ng
 th

e
E

m
be

dd
ed

 S
D

K

General DSP568xx
Interface Examples using
the Embedded SDK
Joseph R. Pasek

1. Introduction
The purpose of this application note is to describe the process
of interfacing different devices to the Motorola DSP56824
processor using Motorola’s Embedded SDK and
Metrowerks’ C compiler. This is in addition to the devices
available on the DSP’s EVM card described in the associated
SDK documentation. Examples include interfacing to LCDs,
Keypads, ADCs and pressure sensors.

It is assumed that the reader has some familiarity with both
the Metrowerks’ IDE and Motorola’s Embedded Software
Development Kit (SDK).

2. LCD and Keypad User Interface
Description

As the DSP568xx family assumes more microcontroller
roles, it must be capable of working in the embedded
environment, on occasion requiring some form of user
interface. This user interface is usually characterized by some
combination of LCD, LEDs, buttons, and keypad. The
combination used in this note is the LCD and 4x4 keypad.

The LCD used here is NetMedia’s Serial LCD+, which is a
4x20 LCD serial display. It is an off-the-shelf unit (see
Figure 1) with several interesting features. In addition to the
LCD display, the Serial LCD+ provides a keypad interface,
an eight channel 10-bit A/D converter, an EEPROM and
RS-232 interface.

Contents

1. Introduction.....................................1

2. LCD and Keypad User Interface
Description.................................1

3. Interfacing to Serial Devices Using
the SPI Port7

4. Integrating Devices With the EVM
Board..15

Appendices

A. Details of NewMedia’s Serial
LCD+.......................................20

B. TI’s TLC2543...............................24

C. Header Files TLC2543.h and
lcd.h ...27

D. Determining the Pressure
Transducer’s Altitude Pressure
Adjustment...............................28

E. Motorola’s MPX4115A Integrated
Pressure Sensor........................29

2 Interface Examples Using the Embedded SDK �

LCD and Keypad User Interface Description

Figure 1. NetMedia’s 4x20 LCD Device with RS-232 Serial and Keypad Support

The keypad is a membrane-encased, low-cost touch pad and is shown in Figure 2.

Figure 2. Low Cost Membrane Covered 4x4 Keypad that Interfaces to LCD+

All examples described here use the Motorola DSP56824 EVM board, illustrated in Figure 3. The
board provides a developer with the means of both learning to know the processor featured and the
capability to prototype designs. The board provides both PC parallel port and JTAG interfaces for
software development.

LCD and Keypad User Interface Description

� Interface Examples Using the Embedded SDK 3

Figure 3. The DSP56824EVM board used in this note, with annotations added

The DSP56824 provides a number of interfaces: Port A provides for access to external memory
located on the EVM. It also provides another interface, referred to as Port B, which has 16 general
purpose I/O lines. Each of the lines are user-controlled and can be directed as either input or output.
The lower eight lines can generate interrupts based on the rising or falling edge of a signal. A third
interface, referred to as Port C, can be either GPIO lines or can be allocated to timers, two SPI (Serial
Peripheral Interfaces) ports and an SSI (Synchronous Serial Interface) port.

The SPI port is an independent, serial communication subsystem that allows the DSP56824 to
communicate synchronously with peripheral devices such as LCD drivers, A/D and D/A subsystems,
and microprocessors. The SPI can be configured as either a master or a slave device with high data
rates. In master mode, a transfer is initiated when data is written to the SPI data register (SPDR). In
slave mode, a transfer is initiated by the reception of a clock signal.

Clock control logic allows a selection of clock polarity and a choice of two fundamentally different
clocking protocols to accommodate most available synchronous serial peripheral devices. In some
cases, the phase and polarity are changed between transfers to allow a master device to communicate
with peripheral slaves having different requirements. When the SPI is configured as a master, software
selects one of eight different bit rates for the clock.

On the DSP56824EVM board, the chip’s SPI1 port is optionally interfaced by means of the jumpers
placed at the board’s J2 header to MAXIM’s MAX3100 UART. In this case, the MAX3100 provides
an interface between the SPI and RS-232 interfaces.

The EVM provides a 9-pin Sub-D connector to attach a serial cable. Direct access to the SPI1 is
possible by removing the jumpers at J2. Table 1 describes the pins found at J2.

SPI0 Port Access – J1

Serial (RS-232) tied to SPI1 Port by J2
Access to
DSP’s SPI1
port
controlled by
jumpers on J2

4 Interface Examples Using the Embedded SDK �

LCD and Keypad User Interface Description

The Metrowerks’ C compiler/IDE for the Motorola DSP568xx is used to produce the example code in
C which demonstrates usage of the LCD/keypad. This code is shown in Code Example 1 and uses
Motorola’s Embedded SDK serial and EVM board support libraries. The SDK’s serial library
accommodates the MAX3100 UART chip that is interfaced to the EVM board’s DSP56824’s SPI1
port. Additional support for the EVM board is provided by the SDK’s bsp library; for more details, see
the Embedded SDK documentation. The support to these libraries are provided by the included
serial.h and bsp.h header files.

Code Example 1. LCDsimple.c, code used to demo DSP control and use of LCD/keypad

// LCDsimple.c program tests the interface to a serial port LCD and keypad

#include "port.h"
#include "io.h"
#include "bsp.h"

#include "fcntl.h"
#include "serial.h"
#include "stdio.h"
#include "string.h"

int main()
{
 UWord16 I;
 int Uart;
 UWord16 NewUartState;
 char astring[]={" DSP-LCD/Keypad test\n"};
 int sum;
 char input, inputarray[8];
 UWord16 NewScr[2]= {12,0};
 UWord16 BackLightOn[2] = {14,0};
 UWord16 LightLevel[2] = {2,70};
 UWord16 DispContrast[2] = {3,100};
 UWord16 DispKeypad[2] = {24,1};
 char bstring[40];
 char LF[]={10,0}, CR[]={’E’};
 UWord16 ii;

Table 1: Signal description at J2 header between SPI1 and MAX3100 Uart

J2

Pin # DSP Signal Pin # UART Signal

1 MISO1/PC4 2 DOUT

3 MOSI1/PC5 4 DIN

5 SCK1/PC6 6 SCLK

7 SS1/PC7 8 CS

9 IRQA 10 IRQB

11 GND 12 GND

LCD and Keypad User Interface Description

� Interface Examples Using the Embedded SDK 5

 UWord16 BS[]={8,0};

 /* Open Serial Device */

 Uart = open(BSP_DEVICE_NAME_SERIAL_0, 0);

 /* Define some of the attributes of the MAX3100 UART - note BAUD
 rate is set to 9600 */

 NewUartState = MAX3100_FIFO_DISABLE | \
 MAX3100_INT_ENABLE_DATA | \
 MAX3100_IR_DISABLE | \
 MAX3100_STOPBIT_1 | \
 MAX3100_PARITY_NONE | \
 MAX3100_WORD_8BIT | \
 MAX3100_BAUD_9600;

 /* Modify DSP56824 EVM’s MAX3100 UART characteristics */

 ioctl(Uart, SERIAL_DEVICE_RESET, &NewUartState);

Code Example 1 continues below.

As shown in the code LCDsimple.c, processing starts by a call to open(), which allocates a handle
(UART) to the application for the RS-232 serial port to which the SPI1 is interfaced. The control
variable, NewUartState, is initialized to define the attributes of the interface to the MAX3100 UART
chip and is directed to the MAX3100 by a call using the function ioctl().

Code Example 1, continued:

printf("State = %x \n", NewUartState);

 write(Uart, BackLightOn, 2); /* Turn-on LCD’s Backlight */
 write(Uart, LightLevel, 2); /* Adjust LCD’s Backlight level */
 write(Uart, DispContrast, 2); /* Adjust LCD’s Display contrast */
 write(Uart, NewScr, 1); /* Wipe clean LCD’s Display */
 write(Uart, DispKeypad, 2); /* Setup keypad - beep with each key
press */

 sum = write (Uart, astring, 16);
 printf(" sum = %d \n", sum);

 sum = read (Uart, &input, 1);
 printf(" input = %d keypad = %d \n", sum, input);

 sum = 0;

 for (I=0; I < 10; I++)
 {
 write(Uart, NewScr, 1);
 sprintf(astring, " %d ", I);
 write (Uart, astring, strlen(astring));

 }

 strcpy(bstring, "Keypad: hit any key.");
 strcat(bstring, LF);
 write(Uart, bstring, strlen(bstring));
 sum = read (Uart, &input, 1);

6 Interface Examples Using the Embedded SDK �

LCD and Keypad User Interface Description

 strcpy(bstring, "Input at keypad (’0000 (CR)’ to exit) ");
 strcat(bstring, LF);
 write(Uart, bstring , strlen(bstring));

 strcpy(bstring, "Hit key to start");

strcat(bstring, LF);
 write(Uart, bstring , strlen(bstring));
 write(Uart, NewScr, 1);

 /* The following loop polls keypad input */

 ii = 0;
 while (true)
 {
 read(Uart, &inputarray[ii], 1);
 if (inputarray[ii] == CR[0])
 {
 sprintf(bstring,"\n");
 write (Uart, bstring, strlen(bstring));
 inputarray[ii] = 0;
 sprintf(bstring, "Input - %s ", inputarray);
 strcat(bstring, LF);
 printf(" %s", bstring);
 ii = 0;
 }
 else
 {
 write(Uart, &inputarray[ii], 1);

ii++;
 }
 if (strcmp(inputarray,"0000") == 0) break;
 }

 write(Uart, NewScr, 1);
 strcpy(bstring, " Done! ");
 write(Uart, bstring, strlen(bstring));
}

Next, a series of calls using write() directs commands to the LCD. The commands issued are to:

• Turn on the LCD’s backlight

• Adjust the light level

• Adjust the display contrast

• Clear the display area

• Set up the keypad

In this example, selected attributes cause the keypad to both beep with each keypad entry and
immediately display (Echos) the entry on the LCD. More detailed information about the LCD used
here is found in Appendix A.

A call to write() next directs the string that announces the test to the LCD. The number of characters
passed (sum) is passed to printf() and displayed in the IDE’s text window.

A call to read() yields whatever key was struck on the keypad. The ASCII code of the keypad
character struck is passed to printf().

The keypad’s key assignments are shown in Figure 4.

Interfacing to Serial Devices Using the SPI Port

� Interface Examples Using the Embedded SDK 7

Figure 4. Keypad’s Key Assignment Values

A polling loop is executed which takes input from the keypad and displays the value passed to the
program in the printf() text window. When the user enters a string and presses the E [Enter] key, the
string is displayed in the IDE’s text window. After entering values, the user exits the loop by entering
“0000”, followed by [Enter]. The display will clear and the string “Done!” will appear.

3. Interfacing to Serial Devices Using the SPI Port

The previous section described the LCD/keypad interface and operation from the SPI1 port via the
MAX3100 UART. The connection to the UART and, in turn, the EVM’s RS-232 serial port was
established, with the default jumpers left in place at the EVM’s J2 header. The DSP’s SPI0 is
interfaced to a serial EEPROM via the jumpers left in place on the J1 header. Removing the jumpers
and connecting wires to pins 1,3,5, and 7 permits the user to directly interface another SPI device to the
DSP; see Table 2.

Table 2: Signal Description at J1 Header between SPI0 and EEPROM

J1

Pin # DSP Signal Pin # EEPROM Signal

1 MISO1/PC0 2 SD1

3 MOSI1/PC1 4 SD0

5 SCK1/PC2 6 SCK

7 SS1/PC3 8 CS

9 GND 10 GND

A321

EH0

4

7 C

B

9

6

8

5

D

Cable to LCD

8 Interface Examples Using the Embedded SDK �

Interfacing to Serial Devices Using the SPI Port

The TI TLC2543 SPI device is interfaced to the DSP’s SPI0 port by means of the EVM’s J1 header
pins. The TLC2543 is a MUXed 11-channel, 12-bit analog-to-digital converter. Control of the
TLC2543 chip is performed when the application code sends a command word to it. A description of
the TLC2543 command word appears in Appendix 2.

The C code is written using Motorola’s Embedded SDK’s SPI library and the BSP library. Using a
prototype board (see Figure 5) to support the TLC2543, all required connections are made to provide
power, reference voltages and ground to the ADC. See Figure 6 for a schematic. Jumper wires are
placed between J1’s 1,3,5, and 7 pins and the CLKIN, DATAIN, DATAOUT, and CS on the TLC2543
(see Figure 6 and Table 3).

Figure 5. View of Prototype Board Showing the Motorola Absolute Barometric Sensor
and TLC5423 ADC

The C code procedure (InitTLC2453.c) is used to establish and test the interface between the
SPI0 and the ADC. Code Example 2, InitTLC2543.c, shows operation of TLC2543 from
SPI0.

Table 3: Connections between SPI0 (J1) EVM Header and TLC2543 Chip

J1 Header Signal TLC2543 lines

MISO1/PC0 DATAOUT (16)

MOSI1/PC1 DATA IN (17)

SCK1/PC2 I/O CLOCK (18)

SS1/PC3 CS (15)

Interfacing to Serial Devices Using the SPI Port

� Interface Examples Using the Embedded SDK 9

Figure 6. Integrated Pressure and TLC2543 Connections on Prototype Board

Code Example 2. InitTLC2543.c

/* InitTLC2543.c - Procedure used to test interface to TLC2543 -
12-bit analog-to-digital converter with serial control and 11 analog
inputs. The DSP56824’s SPI0 port is employed. The software is
developed for the DSP56824 EVM environment. Jan 26, 2001*/

#include "io.h"
#include "fcntl.h"
#include "bsp.h"
#include "spi.h"
#include "stdio.h"
#include "string.h"
#include "port.h"
#include "timer.h"
#include "types.h"
#include "math.h"

void main(void)
{

spi_sParams SpiParams;

 int SPIMaster;

struct timespec OneMillisecond = {0,1000000};

 UWord16 ADcmd = 0x8c00;
 static UWord16 Datain, DataStore[70];
 Word16 i, ii;
 static Word32 sum, mean;
 static Word16 Vcount;

5 Volt
Power Supply

I/O CLOCK

DATA OUT

CS (SS)

1

TLC2543

0.33 µF

1.0 µF

0.01 µF

Baro. Pressure
Transducer
MPX4114A

750 Ω

DATA IN

10 Interface Examples Using the Embedded SDK �

Interfacing to Serial Devices Using the SPI Port

static Word16 BaroPress;

 SpiParams.bSetAsMaster = 1; /* SPI0 is set as master */

SPIMaster = open(BSP_DEVICE_NAME_SPI_0, 0, &SpiParams);

/* Set bit clock rate so sampling rate */
 ioctl(SPIMaster, SPI_PHI_DIVIDER_32, NULL);

 /* Set Data format for 16 bit */
 ioctl(SPIMaster, SPI_DATAFORMAT_RAW, NULL);

 /* SS can be left low between successive SPI bytes */
 ioctl(SPIMaster, SPI_CLK_PHASE_SS_CLEAR, NULL);

 /* TLC2543 is commanded to use analog input 0,
 Output data length = 16 bits,

 Output data format = MSB first, unsigned integer */

 for(; ;)
 {

 sum = 0;
 for (i = 0; i < 64; i++)
 {

/* send command word to TLC2543 */
write(SPIMaster, &ADcmd, sizeof(UWord16));

/* read input from TLC2543 */
read(SPIMaster, (UWord16 *)&Datain, sizeof(UWord16));

Datain = Datain >> 4;

/* process sleeps for Tenth of sec */
nanosleep(&OneMillisecond, NULL);

DataStore[i] = Datain;
sum += Datain;

}

mean = (sum >> 6);
Vcount = mean;

/* The coded equation is an adaption of an
equation taken from the Integrated Pressure sensor
Tech Note. The equation relates the voltage out
(Vout) with the pressure (P) and (Voltage supplied) Vs.

Vout = Vs * (0.009*P - 0.095)

where P is pressure in kPa

Rewriting the equation for P yields,

P = (Vout/Vs + 0.095)/0.009

In this set-up for the TLC2543 Vcc = REF+ = Vs. This
implies that max. voltage is V ~ ADC no. of bit = 2ˆ12
= 4096. The ADC delivers a count (Vcount) between 0 and 4096.
This allows the above expression to be written as

Interfacing to Serial Devices Using the SPI Port

� Interface Examples Using the Embedded SDK 11

P = 0.0271*Vcount + 10.555 (kPa)

Since the sensors measures absolute pressure the units can
be converted to more recognizable units of millibars. The
conversion factors is 1 millibar = 100 Pa applied to the
last equation yields

P = 0.271*Vcount + 105.55

which is source of coded equation. The four shifts
in the coded form of equation produce an approximation
of 0.2715 */

BaroPress = (Vcount >> 2) + (Vcount >> 6) + (Vcount >> 8)
+ (Vcount >> 9) + 105;

}

close(SPIMaster);

}

When compiled and executed on the target EVM, the code in Code Example 2 shows that data flows
bi-directionally between the application code and the ADC chip, using the DSP’s SPI0 port.

The Embedded SDK header files spi.h and bsp.h appear in procedure InitTLC2543.c and provide the
data structures and other defines required for this code to interface to the processor in general and to
the SPI port in particular. The data structure SpiParams is defined from the data type
spi_sParams. The variable SPIMaster is used to store the SPI ports handle. In this example, the
variable ADcmd is both defined and set to a value 0x8c00. ADcmd is the command word sent to the
TLC2543 ADC chips data input. In the upper 8-bit portion of the word, it specifies use of the eighth
analog input port on the ADC; a 16-bit word format, MSB first; and unsigned integer format for
output.

To indicate that the DSP’s SPI0 port will be the master device, a field (.bSetAsMaster) in the data
structure SpiParams is set . A call is made to open() to allocate the SPI0 port, a handle to the port is
returned in the variable SPIMaster. Several calls to the procedure ioctl() are used to further refine the
SPI0 port’s attributes. The first call sets the bit block rate from the PHI clock by providing a divisor
term, SPI_PHI_DIVIDER_32. This controls the clock rate of the timing pulses by dividing the clock
rate by 32. Next, the command word SPI_DATAFORMAT_RAW specifies that data transfers
between the SPI and the slave device will be 16 bits long. The next call to ioctl() specifies that the
generated SS signal directed to the chip’s CS port be left low between the word’s byte components.

All the SPI port’s attributes have been set. An infinite loop now follows to exercise the link between
the SPI0 and the TLC2543 ADC. To average out the possible errors in the reading of the integrated
pressure sensor, MPX4115A, 64 measurements of the ADC are done, one millisecond apart. For a
description of the MPX4115A integrated pressure sensor, see Appendix E.

The loop that performs the actual measurement consists of a call to write() to send the variable ADcmd
to the TLC2543. A call to read() follows to read the previous sampling period’s count from the sensor.
The result is placed in Datain. The data (Datain) read must be shifted to the right by 4 bits, since it is a
12-bit result placed in a 16-bit word. A call to nanosleep() puts the process to sleep for one
millisecond.

12 Interface Examples Using the Embedded SDK �

Interfacing to Serial Devices Using the SPI Port

Using the IDE’s debug capability, the last 64 readings are stored in the array DataStore[] for user
review. The current sample is also accumulated in the variable sum to perform a batch averaging when
64 recent samples have been read.

Outside the 64 sample loop, the mean is determined and placed in the variable Vcount. Next, the
current atmospheric or barometric pressure (BaroPress) is computed.

The coded equation is an adaptation of an equation taken from the MPX4115A Integrated Pressure
Sensor Tech Note. The equation relates the voltage out (Vout) with the pressure (P) in kiloPascals and
(Voltage supplied) Vs.

 Vout = Vs * (0.009*P - 0.095)

 where P is pressure in kPa

Rewriting the equation for P yields,

 P = (Vout/Vs + 0.095)/0.009

In this set-up for the TLC2543, Vcc = REF+ = Vs. This implies that maximum voltage is V ~ ADC
number of bits = 2^12 = 4096. The ADC delivers a count (Vcount) between 0 and 4096. This allows
the above expression to be written as:

 P = 0.0271*Vcount + 10.555 (kPa)

Since the sensor measures absolute pressure, the units can be converted to the more recognizable units
of millibars. The conversion factor is 1 millibar = 100 kPa. When applied to the last equation, it yields:

 P = 0.271*Vcount + 105.55

which is the source of the expression implemented in the code. The coded expression employs 4 shifts
and 4 adds to yield the pressure in millibars.

There are several ways to visualize what is happening. The first is to halt (not kill) the process from the
Metrowerks’ IDE debug window. Once the process is halted, the contents of the DataStore[] array can
be viewed by selecting the View menu and selecting the Global Variables Window.

After the Global Variables Window appears, select Inttlc2543 from the list on the left. In the right half
of the window, select the plus sign to the left of the listed variable name, DataStore, and the current
contents of the array will appear. The range of values to be found there will fall between 3000 and
4000, depending on the user’s altitude above sea level and weather conditions. If the DataStore[] does
not contain a number in this range, check the connection between the EVM’s SPI0 header and the
ADC with the schematic in Figure 6 and connection references in Table 3. The computed atmospheric
pressure (BaroPressure) is also found in the right side of the Global Variables Window. The expected
range should be between 800 and 1100.

Another means of checking the proper operation of this test requires access to an oscilloscope and
leaving the test procedure executing on the EVM board. Placing a probe on the I/O clock line and
triggering on the rising edge of the I/O CLOCK line pulse, should yield a signal similar to that shown
on the lower line in Figure 7, which represents the SPI-generated clock pulses sent to ADC. Leaving
the first probe on the I/O clock line (triggering on the clock pulses) and placing a second probe on the
SPI0 MOSI line, will yield the signals seen in Figure 8, where the command byte is seen on the upper
line and ADcmd =0x8C00.

Interfacing to Serial Devices Using the SPI Port

� Interface Examples Using the Embedded SDK 13

Figure 7. SPI-generated Clock Pulses

Figure 8. Command Byte (ADcmd = 0x8C00)

14 Interface Examples Using the Embedded SDK �

Interfacing to Serial Devices Using the SPI Port

Again triggering on the clock lines’ pulses and moving the second probe to the SPI0 header’s, Slave
Select (SS) line yields the signal seen in Figure 9. The SS is applied to the TLC2543 CS pin. When the
signal goes low, processing is enabled on the ADC chip.

Figure 9. Probe Placed on the SPI0 Header SS Signal Line

Integrating Devices With the EVM Board

� Interface Examples Using the Embedded SDK 15

If the interface between the SPI0 and the TLC2543 is correct, the ADC output data should be
seen as shown in the upper signal in Figure 10. This figure shows the ADC output data signal
obtained by applying the second oscilloscope probe to the SPI0’s MISO port. The exact
appearance of this signal is highly dependent on the nature of the data being digitized by the
ADC on the prototype board; in contrast, the signals’ appearances in Figure 10, Figure 11, and
Figure 12 are fairly static in appearance over the period of the run.

If output data does not appear as expected, check all connections. Make sure that the ground systems
are securely connected on all subsystems if noise occurs. This advice applies to all circuits discussed in
this paper.

Figure 10. ADC Data

4. Integrating Devices With the EVM Board
Earlier sections of this note established the ease of interfacing to various devices, such as an
LCD/keypad display and an 11-channel, 12-bit analog-to-digital converter. Remember that in the
descriptions of interfacing the MPX4115A with the TLC2543 and the DSP, the barometric
measurements were collected, but the debugger was required to see the results. By combining the
LCD/keypad and the ADC located on the DSP’s SPI0 port, it is now possible to show, in nearly
real-time, the measurements collected and processed on the LCD display, using the code shown in
Code Example 3. This code, IntFaceBaro.c, shows use of both LCD/keypad and TLC2543 ADC chip,
interfaced to an atmospheric transducer.

Code Example 3. IntFaceBaro.c

/* IntFaceBaro.c - Procedure used to interface to TLC2543 - 12-bit analog-
 to-digital converter with serial control and 11 analog inputs. The
 DSP56824 SPI0 port is employed. The software is developed for the
 DSP56824 EVM environment. Jan 26, 2001 */

16 Interface Examples Using the Embedded SDK �

Integrating Devices With the EVM Board

#include "io.h"
#include "fcntl.h"
#include "bsp.h"
#include "spi.h"
#include "stdio.h"
#include "serial.h"
#include "string.h"
#include "port.h"
#include "timer.h"
#include "types.h"
#include "math.h"
#include "lcd.h"
#include "TLC2543.h"

void BaroAdj(int , Word32 *);

void main(void)
{

 spi_sParams SpiParams;

 int Uart;
 UWord16 NewUartState;
 char TitleString1[] = {"DSP Interface Demo"};
 char TitleString2[] = {" Barometric Meas.\n"};
 char astring[20];
 static char inputarrry[8];

 struct timespec TenthSecond = {0, 100000000};
 struct timespec OneMillisecond = {0,1000000};

 int SerialMaster;
 static UWord16 ADcmd;
 static UWord16 Datain, DataStore[70];
 Word16 i, ii;
 static Word32 sum;
 static Word32 Vcount;

 static Word32 BaroPress, BAdj;

 SpiParams.bSetAsMaster = 1; /* SPI0 is set as master */

 SerialMaster = open(BSP_DEVICE_NAME_SPI_0, 0, &SpiParams);

 /* Open Serial Port via SPI1 and Uart */

 Uart = open(BSP_DEVICE_NAME_SERIAL_0, 0);

 NewUartState = MAX3100_FIFO_DISABLE | \
 MAX3100_INT_ENABLE_DATA | \
 MAX3100_IR_DISABLE | \
 MAX3100_STOPBIT_1 | \
 MAX3100_PARITY_NONE | \
 MAX3100_WORD_8BIT | \
 MAX3100_BAUD_9600;

Integrating Devices With the EVM Board

� Interface Examples Using the Embedded SDK 17

 ioctl(Uart, SERIAL_DEVICE_RESET, &NewUartState);

 /* Set bit clock rate so sampling rate */
 ioctl(SerialMaster, SPI_PHI_DIVIDER_32, NULL);

 /* Set Data format for 16 bit */
 ioctl(SerialMaster, SPI_DATAFORMAT_RAW, NULL);

 /* SS can be left low between successive SPI bytes */
 ioctl(SerialMaster, SPI_CLK_PHASE_SS_CLEAR, NULL);

 /* TLC2543 is commanded to use analog input 8,
 Output data length = 16 bits,
 Output data format = MSB first, unsigned */

 ADcmd = TLC2543_port_8 | \
 TLC2543_data_16 | \
 TLC2543_MSB_first | \
 TLC2543_Unipolar;

 write(Uart, NewScr, 1);
 write(Uart, TitleString1, strlen(TitleString1));
 write(Uart, TitleString2, strlen(TitleString2));
 /* determine if there are any user keypad entries */

 PosCursor[1] = 42; /* Set Cursor position in LCD */

 write(Uart, PosCursor, 2);

 write (Uart, "Adj. for site alt\n", 18);
 ii=0;
 read (Uart, &inputarray[ii], 1);

 if (strcmp(inputarray, "A") == 0)
 {
 BaroAdj(Uart, &BAdj);
 write(Uart, NewScr, 1);
 write(Uart, TitleString1, strlen(TitleString1));
 write(Uart, TitleString2, strlen(TitleString2));
 }

 ii = 0;
 for(; ;)
 {
 sum = 0;
 for (i = 0; i < 64; i++)
 {
 /* send command word to TLC2543 */
 write(SerialMaster, &ADcmd, sizeof(UWord16));

 /* read input from TLC2543 */
 read(SerialMaster, (UWord16 *)&Datain, sizeof(UWord16));

 Datain = Datain >> 4;

18 Interface Examples Using the Embedded SDK �

Integrating Devices With the EVM Board

 /* process sleeps for 1 msec. */
 nanosleep(&OneMillisecond, NULL);

 DataStore[i] = Datain;
 sum += Datain;

 }
 Vcount = (sum >> 6);

 // BaroPress = (Vcount >> 2) + (Vcount >> 6) + (Vcount >> 8)
 // + 105;

 /* Compute Barometric pressure in millibars, the following
 expression uses 32-bit arithmetic and 10 bits left shift on
 all coefficients, equation scaled for millibars and a
 12 bit ADC is
 P = 0.271267*Vcount + 105.56
 Original equation taken from MPX4115A Tech Data sheet. */

 BaroPress = (278 * Vcount + 108093) >> 10;

 BaroPress += BAdj;

 PosCursor[1] = 42; /* Set Cursor position in LCD */
 write(Uart, PosCursor, 2);

 /* Send result to LCD */
 sprintf(astring, "P = %ld mbars", BaroPress);
 write(Uart, astring, strlen(astring));
 }

 close(SerialMaster);

}

/* This procedure is called when it is determined that the user desires
 to enter a correction to the barometric pressure measurement to
 compensate for the altitude above sea-level of the sensor.
 It is expected that the user will provide the pressure adjustment in
 Millibars. */

void BaroAdj(int Uart, Word32 *padj)
{
 char astring[]={"Baro Height Adj\n"};
 char bstring[]={"Enter (mb) = "};
 char iarray[8];
 int icount, temp, i, tenpow;

 write(Uart, NewScr, 1);
 PosCursor[1] = 22;
 write(Uart, PosCursor, 2);
 write(Uart, astring, strlen(astring));
 PosCursor[1] = 42;
 write(Uart, PosCursor, 2);
 write(Uart, bstring, strlen(bstring));

Integrating Devices With the EVM Board

� Interface Examples Using the Embedded SDK 19

 icount = 0;
 while (true)
 {
 read(Uart, &iarray[icount], 1);
 if (iarray[icount] == CR[0]) break;
 if ((iarray[icount] >= ’0’) && (iarray[icount] < ’9’))
 {
 write(Uart, &iarray[icount], 1);
 icount++;
 }

 }

 iarray[icount] = 0;
 sscanf(iarray, "%d", &temp);

 *padj = (Word32)temp;
}

The IntFaceBaro.c code’s header files includes two new header files: lcd.h and TLC2543.h, which
provide the defines necessary to ease the use of the LCD/keypad and the TLC2543 ADC chip. The
new header files are shown in Appendix C.

Set up the serial and SPI0 ports as in earlier examples. A message is displayed on the LCD to indicate
the demo, and asks the user for input. In this case, to insert a pressure adjustment, input an “A” and “E”
(=CR); for keypad key assignment values, see Figure 4. Another screen is generated when the
procedure BaroAdj() requests the pressure adjustment; BaroAdj() works only for positions at or above
sea level. The adjustment value is added to the measured value. Appendix D. provides information on
determining this barometric pressure adjustment. If the user selects any other key, the procedure
displays the barometric pressure from the MAX4115A without adjustment.

The barometric pressure results appear on the display. Since the barometric pressure changes rather
slowly, you can show a rapid change of pressure by using a straw to blow into the tube-like extension
that projects perpendicular to the MAX4115A cylindrical body. While blowing, you should see the
barometric pressure value change on the LCD. Using the straw to blow across the pressure device’s
tube should decrease the pressure, an example of theVenturi Effect.

20 Interface Examples Using the Embedded SDK �

Integrating Devices With the EVM Board

Appendix A. Details of NewMedia’s Serial LCD+

The Serial LCD+ is a 4x20 LCD display with a built-in bi-directional serial interface. The unit is
controlled using standard RS-232 serial signals from a host computer or micro-controller. The LCD+
supports the following serial data rates: 1200, 2400, 4800, 9600, 19200, 38400, and 57600 baud.

A.1 Pin Definitions

Figure A-1 shows a top down of the LCD+ (the view with the LCD display module removed). The pin
definitions are denoted.

A.2 Serial I/O
The serial I/O header is made up of five connections; Table A-1 defines the pins.

A.3 Power Input
The power input section consists of four through holes (Solder pads). The two holes marked GND are
grounds. The hole marked +5.5V to +15V is tied to the LCD+ module’s onboard regulator. The hole
marked +5V ties to the +5V buss and is used to bypass the LCD+ onboard regulator when a regulated
+5V source is supplied.

A.4 ADC Inputs
The eight ADC inputs are labeled 1 – 8. By default, all ADC inputs are set to read voltage in the 0 to
+5V range.

A.5 Relay Driver Outputs
There are nine Relay Driver connections, labeled on the underside of the board as R1-8 and
RLY_VDC. The connections labeled R1-8 are the relay driver chip outputs; the RLY+VDC
connection provides access to the ULN2803A driver chip’s internal back EMF protection diodes.

A.6 Matrix KeyPad Input
The keypad input connections (visible in Figure A-1) are the upper-most eight of the 8x2 header
connection. The lower eight of the 8x2 header connection (not visible in Figure A-1) are used by the
factory for programming and should remain unconnected.

Table A-1. Serial I/O pin definitions

Pin # Description

1 TX serial output - nearest to top in Figure 1

2 RX serial input – next pin below TX

3 Not connected

4 GND – connected to host comp/µc serial ground

5 A courtesy +5V courtesy connection (max 20 mA)

Integrating Devices With the EVM Board

� Interface Examples Using the Embedded SDK 21

Figure A-1. LCD+ Pin-Outs

A.7 Interfacing the LCD+
The LCD+ can be controlled using any computer or microprocessor supporting 1200-57600 baud data
rates with a 8,N,1 data format (8 data bits, No parity, 1 stop bit).

A.8 Keypad Interface
The keypad interface supports matrix keypads up to 4x4 in size (16 keys). Instead of predefining the
keypad key serial data format as 0 through 15, each of the keypad’s keys is serially represented by a
user-definable byte value. This user-definable value (Tag) is stored within the LCD+ EEPROM as a
0-15 byte array. Each byte of the array corresponds to a key on the keypad (i.e. key 0 corresponds to
byte 0 of the array). Whenever a key is pressed, the stored byte representation for that key number is
sent serially.

A.9 Keypad Options
Various keypad options are supported by six user-definable options or modes. To set these modes,
send a CTRL-X, followed by your command byte containing the desired modes. As shown in
Table A-2, placing a 1 in any of the bits turns its corresponding option on, and a 0 turns it off. Control
Codes for the LCD+ are shown in Table A-3.

22 Interface Examples Using the Embedded SDK �

Integrating Devices With the EVM Board

Table A-3. LCD+ Control Codes

Table A-2. LCD+ Keypad Options Table

Mode Byte Name Description

B0 “Key Beeps” Beep buzzer during each key press

B1 “Key Press Format” Send one byte for key down and one for key up

B2 “LCD Echo” Echo key press data ASCII representation to LCD display

B3 “Mask Key Presses” Display all key presses as asterisks on LCD

B4 “Auto Backlight” Turns on backlight with any key press and off 4 seconds
after last key press

B7 “Delayed Response” Provide 3.0ms delay in response to a command.
Required for interfacing with BS2

Control
Code

Function Total bytes needed +
Command_Data

Return
Data

Ctrl-A Cursor Home 1 Byte(0x01) None

Ctrl-B Set/Adjust Backlight Brightness 2 Bytes (0x02) + 0-255 None

Ctrl-C Set/Adjust Contrast 2 Bytes (0x03) + 0-255 None

Ctrl-D Hide Cursor 1 Byte (0x04) None

Ctrl-E Underline Cursor 1 Byte (0x05) None

Ctrl-F Block Cursor 1 Byte (0x06) None

Ctrl-G Sound Bell/Buzzer 1 Byte (0x07) None

Ctrl-H Backspace 1 Byte (0x08) None

Ctrl-I Horizontal Tab 1 Byte (0x09) None

Ctrl-J Line Feed 1 Byte (0x0a) None

Ctrl-K Reverse Line Feed 1 Byte (0x0b) None

Ctrl-L Form Feed/Clear Screen 1 Byte (0x0c) None

Ctrl-M Carriage Return 1 Byte (0x0d) None

Ctrl-N Backlight On 1 Byte (0x0e) None

Ctrl-O Backlight Off 1 Byte (0x0f) None

Ctrl-P Set Cursor Position 2 Bytes (0x10) + 0-79 None

Ctrl-Q Clear Column 1 Bytes (0x11) None

Ctrl-R Set Relays 2 Bytes (0x12) + 0-255 None

Ctrl-S Define Custom Character 10 Bytes (0x13) + 0-7 + 8 Bytes None

Ctrl-T Download Keypad Tags 17 Bytes (0x14) + 16 New keys None

Integrating Devices With the EVM Board

� Interface Examples Using the Embedded SDK 23

Ctrl-U Set Baud Rate 2 Bytes (0x15) + 0-6 None

Ctrl-V Read ADC Inputs 2 Bytes (0x16) + 1-8 2 Bytes

Ctrl-W Change Bell/Buzzer Frequency 2 Bytes (0x17) + 0-255 None

Ctrl-X Set Keypad Modes 2 Bytes (0x18) + 0-255 None

Ctrl-Y Read Keypad Input as Port 1 Byte (0x19) 1 Byte

Ctrl-Z Get LCD+ EEPROM Settings 1 Byte (0x20) 20 Bytes

None Display Custom Character 1 Byte (0x80) None

24 Interface Examples Using the Embedded SDK �

Integrating Devices With the EVM Board

Appendix B. TI’s TLC2543
The following data is taken from TI’s TLC2543 data sheet. It is included only to provide information
that the reader may need to understand the code described in this note.

The TLC2543 is a 12-bit switched-capacitor, successive approximation, ADC converter. Each device
has three control inputs (chip select (CS), the I/O clock and the address input (DATA INPUT)) and is
designed for communication with the serial port of a host processor or peripheral through a serial
3-state output.

The device has an on-chip 14-channel multiplexer that can select any of 11 inputs or any of three
internal self-test voltages. The sample-and-hold function is automatic. At the end-of-conversion
(EOC), output goes high to indicate that conversion is complete. A switched-capacitor design allows
low-error conversion over the full operating temperature range.Figure B-1 shows the pin-outs of the
20- pin DIP version of the chip used in this note.

Figure B-1. TLC2543 DIP Version Pin-Outs

B.1 Operating Principles
If the CS is high, the I/O CLOCK and DATA INPUT are disabled and DATA OUT is in a
high-impedance state. When the CS goes low, the conversion sequence begins by enabling the I/O
CLOCK and DATA INPUT and removes the DATA OUT from the high-impedance state.

The data input is 8 bits long and is primarily a command item exercising control over the features of
the chip. The following table describes the fields of the data input.

1

2

3

4

5

6

7

8

9

10 11

12

13

14

15

16

17

18

19

20AIN0

AIN1

AIN2

AIN3

AIN4

AIN5

AIN6

AIN7

AIN8

AIN9GND

AIN10

REF-

REF+

CS

DATA OUT

DATA INPUT

I/O CLOCK

EOC

VCC

Integrating Devices With the EVM Board

� Interface Examples Using the Embedded SDK 25

The I/O CLOCK sequence applied to the I/O CLOCK terminal transfers this data to the input data
register.

The I/O CLOCK during this transfer shifts the previous conversion result from the output data register
to DATA OUT. I/O CLOCK receives the input sequence of 8, 12, or 16 clock cycles long depending
on the data-length selection in the input data register. Sampling of the analog input begins on the fourth
falling edge of the input I/O CLOCK sequence and is held after the last falling edge of the I/O CLOCK
sequence. The last falling edge of the I/O CLOCK sequence also takes EOC low and begins the
conversion.

B.2 Data Input
The data input is internally connected to an 8-bit serial-input address and control register. The register
defines the operation of the converter and the output data length. The host provides the data word with
MSB first. Each data bit is clocked in on the rising edge of the I/O CLOCK sequence. Table B-2
provides the details for the data input-register format.

Table B-1. Fields of Data Input

Field Description

D7-D4 Analog Channel Address

D3-D2 Data Length

D1 Output MSB or LSB First

D0 Unipolar or Bipolar Output

Table B-2. Input-Register Format

FUNCTION SELECT
INPUT DATA BYTE

 ADDRESS BITS L1 L0 LSBF BIP

D7 D6 D5 D4
(MSB)

 D3 D2 D1 D0
(LSB)

Select Input Channel

 AIN0 0 0 0 0

 AIN1 0 0 0 1

 AIN2 0 0 1 0

 AIN3 0 0 1 1

 AIN4 0 1 0 0

 AIN5 0 1 0 1

 AIN6 0 1 1 0

26 Interface Examples Using the Embedded SDK �

Integrating Devices With the EVM Board

X = don’t care

 AIN7 0 1 1 1

 AIN8 1 0 0 0

 AIN9 1 0 0 1

 AIN10 1 0 1 0

Select Test Voltage

 (Vref+ - Vref-)/2 1 0 1 1

 Vref- 1 1 0 0

 Vref+ 1 1 0 1

Software Power Down 1 1 1 0

Output Data Length

 8 bits 0 1

 12 bits X 0

 16 bits 1 1

Output Data Format

 MSB first 0

 LSB first (LSBF) 1

Unipolar (binary) 0

Bipolar (BIP) Two’s Complement 1

Table B-2. Input-Register Format

Integrating Devices With the EVM Board

� Interface Examples Using the Embedded SDK 27

Appendix C. Header Files TLC2543.h and lcd.h

/* lcd.h some common material used with NewMedia LCD device */

 UWord16 NewScr[2]= {12,0};
 UWord16 BackLightOn[2] = {14,0};
 UWord16 LightLevel[2] = {2,70};
 UWord16 DispContrast[2] = {3,100};
 UWord16 DispKeypad[2] = {24,1};
 char LF[]={10,0}, CR[]={’E’};
 UWord16 BS[]={8,0};
 UWord16 PosCursor[]={16,0};

/* TLC2543.h include file to be used with the 11 port 12-bit ADC
 chip – TI’s TLC2543 */

#define TLC2543_port_0 0x0000
#define TLC2543_port_1 0x1000
#define TLC2543_port_2 0x2000
#define TLC2543_port_3 0x3000
#define TLC2543_port_4 0x4000
#define TLC2543_port_5 0x5000
#define TLC2543_port_6 0x6000
#define TLC2543_port_7 0x7000
#define TLC2543_port_8 0x8000
#define TLC2543_port_9 0x9000
#define TLC2543_port_10 0xA000

#define TLC2543_data_8 0x0400
#define TLC2543_data_12 0x0000
#define TLC2543_data_16 0x0C00

#define TLC2543_MSB_first 0x0000
#define TLC2543_LSB_first 0x0200

#define TLC2543_Unipolar 0x0000
#define TLC2543_Bipolar 0x0001

28 Interface Examples Using the Embedded SDK �

Integrating Devices With the EVM Board

Appendix D. Determining the Pressure Transducer’s
Altitude Pressure Adjustment

This section discusses the apparent error seen when using the MPX4115A Integrated Pressure Sensor.
The units of barometric pressure used here are in metric units (SI) millibars. If the demo is performed
at or near sea level, the displayed result should be identical to a reading provided by the local weather
service via either the internet or radio weather services. As a standard, all barometric pressure values
recorded and provided by the weather service are always referenced to sea level, regardless of the
altitude of the weather measuring station.

When the demo is performed at a location above sea level, a divergence takes place between the
demo-measured value and the current weather service value. The demo value will always be less and
will decrease as the height above sea level increases. Under these circumstances, the MPX4115A is
performing nothing more than an altimeter function. A mathematical relationship exists that relates the
height above sea level to the pressure measurement.

For any given location, there is a means of obtaining the correction for the altitude. One way is to
contact the local office of the weather service via its internet web site and observe the barometric
pressure readings provided. A second means requires listening to the local radio outlet of the weather
service (usually found around 162.0 MHz VHF using a NBFM radio) for the current barometric value.
With the current values, a correction term (∆) can be determined by the following expression:

∆ = Pweather_service - Pmeasured

The value (D) is a constant for a given location and it is added to the measured barometric value as
follows:

Psea-level = Pmeasure + ∆

The station pressure varies with altitude above sea level in accordance with the following expression:

Pstation = Psea-level * exp(-z/H)

where
 H = 7000
 z = height above sea-level (meters)

For example, a local radio station announces the barometric or sea level pressure as 1013 millibars (or
hectoPascals) and you live in the mountains at 1760 meters. Using the above equation, your station
pressure is 788 millibars. The ∆ correction in this case is 225 millibars.

Integrating Devices With the EVM Board

� Interface Examples Using the Embedded SDK 29

Appendix E. Motorola’s MPX4115A Integrated
Pressure Sensor

The following is taken from the MPX4115A Integrated Pressure Sensor Data sheet.

The Motorola MPX4115A series Manifold Absolute Pressure (MAP) sensor for engine control is
designed to sense absolute air pressure. Its operating pressure range is 15 to 115 kPa (2.2 to 16.7 psi)
which produces a voltage output of 0.2 to 4.8V.

Motorola’s MAP sensor, integrated on-chip, bipolar op-amp circuitry and thin film resistor network to
provide a high-output signal and temperature compensation. The small form factor and high reliability
of on-chip integration make the Motorola MAP sensor a logical and economical choice for the
automotive system designers.

Among its features:

• 1.5% maximum error over 0o to 85oC

• Ideally suited for microprocessor and microcontroller-based systems

• Temperature compensated from –40o to +125oC

Application examples:

• Aviation altimeters

• Industrial controls

• Engine control

• Weather stations and weather reporting devices

Figure E-1 shows the sensor output signal relative to pressure input. Typical minimum and maximum
output curves are shown for operation over 0 to 85oC temperature range. Output will saturate outside
of the rated pressure range. Figure E-2 depicts the version of the sensor employed with this demo and
also shows the pins to aid in proper use and installation.

30 Interface Examples Using the Embedded SDK �

Integrating Devices With the EVM Board

Figure E-1. Output vs. Absolute Pressure

Figure E-2. MPX4115A and Pin-Outs

NOTES:

� Interface Examples Using the Embedded SDK 31

 NOTES:

OnCETM is a registered trademark of Motorola, Inc.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the
suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola
data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including
“Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the
rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury
or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that
Motorola was negligent regarding the design or manufacture of the part. Motorola and M are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.

How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution: P.O. Box 5405, Denver, Colorado 80217.
1-303-675-2140 or 1-800-441-2447

JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center, 3-20-1 Minami-Azabu. Minato-ku, Tokyo 106-8573 Japan.
81-3-3440-3569

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate, Tao Po, N.T.,
Hong Kong. 852-26668334

Technical Information Center: 1-800-521-6274

HOME PAGE: http://motorola.com/semiconductors/dsp MOTOROLA HOME PAGE: http://motorola.com/semiconductors/

AN1921/D

