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Overview  

 

1.1  Overview

 

The MPC107 is the newest generation of the PowerPC PCI/Memory controller family. The MPC107 is
upwardly compatible with the MPC106 at a software level, preserves all the essential hardware features of
the MPC106, and adds many new features, including:

• Integrated memory data bus registers

• Integrated on-the-fly ECC correction

• Two additional ROM/Flash chip selects (RCS2, RCS3)

• Fewer restrictions on RCS1 accesses

• Integrated 5-port PCI arbiter

• Integrated 5- or 16- port interrupt controller

• Full PCI peripheral/target mode support, including IDSEL and INTA

• I
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C controller

The MPC107 also includes many other features, such as:

• DMA controller

• Programmable timers

• Watchpoint registers (debug registers)

• I

 

2

 

O controller

These features assist in designing embedded systems, but since they typically do not require any special
hardware support, they may be used or ignored, as determined by the system architecture.  shows a
comparison of a typical MPC106-based system and the equivalent system based on the MPC107.

 

Figure 1. System Architecture Comparison

MPC106 System

PowerPC

CPU

MPC106

M
em

or
y

LBS I/O

M
em

or
y

MPC107 System

I/O

I/OArbIntr.

DigitalDNA
here

MPC107

B
uf

fe
rs

Clock

PowerPC

CPU

MotorolaMotorola

Motorola Motorola

*



 

MPC107 Design Guide

 

  3

 

Processor Interface

 

In general, designers who are familiar with the MPC106 will find that the MPC107 increases performance,
eases design effort, and decreases overall board space. Designers new to the PowerPC family will find that
the MPC107 supplies almost all of the interface circuitry needed for the PowerPC processors, with the
remainder being the familiar sort of signals all embedded systems need (power, reset, etc.).

 

1.2  Processor Interface

 

The MPC107 provides all the interface signals needed to interface between the PowerPC processor and
other devices (such as SDRAM, ROM, PCI, etc.). In general, there will be a one-to-one connection between
the MPC107 and the CPU; at most there would be three loads (the MPC107, two CPUs and a local-bus-slave
device). Table 1 lists all needed connections between the MPC107 and processor bus devices.

There are other signals such as MCP, INT, and HRESET which are provided by the MPC107 and connected
to the PowerPC CPU; however these signals are not part of the 60X bus protocol so refer to Section 1.8,
“Interrupt Controller” on page 23 and Section 1.10, “Reset” on page 32, respectively, for information on
special pins.

 

1.3  Local Bus Slave

 

The local bus slave (LBS) is a means by which a user-created I/O device can accept 60X bus cycles with
minimal intervention by the MPC107 (which otherwise handles all 60X bus transactions). Designers who
need a high-speed I/O channel or special types of memories (FIFOs, dual-port SRAMs, etc.) may use the
LBS to control such devices.

Designing an LBS interface is covered in more detail in the application note, “Designing a Local Bus Slave
I/O Controller,” and so will not be covered in detail here. In terms of system design, however, the LBS

 

Table 1. MPC107 Processor Bus Connections 

 

MPC107 Pin
PowerPC CPU 

Pin

External 
Pull-up 

Required?
Description

 

A(0:31) same No

 

1

 

1  

 

Pull-ups on the address bus are optional and only needed where power consumption is a concern during 
instances where the PowerPC CPU and MPC107 are in a low-power idle state (where the address bus is rarely 
driven). If these circumstances do not apply, the address bus pull-ups are not needed.

Address bus

DH(0:31), DL(0:31), 
DP(0:7)

same No Data Bus (note: not the same as the 
MDH/MDL/PAR memory bus).

TSIZ(0:2), TBST same No Address info (size, burst)

TT(0:4) same Yes Address types (read, write, atomic, cache)

CI, GBL, WT, same No Address coherency

TS, TA, TEA same Yes Address/Data tenure start and completion

AACK, ARTRY same Yes Address tenure completion signals

BR0, BG0, DBG0 BR, BG, DBG Yes Bus request/grant

BR1, BG1, DBG1 BR, BG, DBG Yes Bus request/grant (optional second CPU)

none ABB, DBB 

 

2

2  

 

Not implemented on the MPC7400 or other G3 processors.

Yes Bus busy (unused by MPC107)
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should be designed so as to minimize the overall capacitive loading of the data bus. This might require, for
example, that large I/O system need buffering, or provide isolate address and control signal decoding in an
FPGA or PAL.

 

1.4  Clocks

 

A significant improvement offered by the MPC107 over previous solutions is the integration of a full
clocking system, which given a single PCI clock input, can synthesize all the clocks needed by a typical
embedded system:

• 2 processor bus clocks CPU_CLK(0:1)

• 1 local bus slave clock CPU_CLK(2)

• 4 memory bus clocks SDRAM_CLK(0:3)

• 5 PCI bus clocks PCI_CLK(0:4)

In addition, the MPC107 includes a DLL adjustment that makes it easy to add or remove delay from memory
clock signals. This allows the designer to adjust the timing window of SDRAM signals to compensate for
heavily loaded systems, or to achieve PC100 compliance. The clock can be configured in many ways, but
most systems will use one of two architectures based upon whether the MPC107 is an agent or a host. It is
important to realize that the descriptions below reflect only the most widely used arrangements, many others
are certainly possible. The CPU and SDRAM clocks are independent of the PCI clock arrangement and will
be discussed separately.

 

1.4.1  Host Mode Clocking

 

When configured as a host, a typical system will use the PCI clock buffer to drive all PCI agents as well as
itself (with the PCI_SYNC_IN input). When the clocks are routed to equal lengths, the PCI requirements
regarding allowable clock skew are easily met, and all devices should be synchronized. Figure 2 shows an
example of a typical host-mode MPC107 system.

 

 

 

Figure 2. Host Clock Architecture
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This architecture uses a 33 MHz oscillator (or frequency synthesizer) to create the baseline PCI clock. The
clock is distributed equally to the MPC107 core logic via PCI_SYNC_IN as well as the PCICLK pins of the
other PCI devices.

 

1.4.2  Agent Mode Clocking

 

When configured as an agent, the MPC107 will typically be part of a larger system, whether as a component
on an embedded board, or as a PCI card plugged into a motherboard. As such, it is usually not expected to
provide skew-controlled clocks to all other PCI devices on the PCI bus, but instead receives a clock from
another source. For this environment, the PCI clock tree is not usually used. Figure 3 shows an example of
a typical agent-mode MPC107 system.

 

 

 

Figure 3. Agent Clock Architecture

 

Agents usually receive a clock signal (PCICLK) generated elsewhere in the system which drives the
PCISYNC_IN pin. Because there is a small amount of delay from OSC_IN to PCICLK(0:4), it is not
normally recommended that PCICLK flow through the PCI clock buffer, as this would increase the overall
system skew. If absolutely required, it may be possible to do so by correspondingly shortening the PCICLK
trace. On an embedded motherboard there is usually more flexibility about clock trace lengths as opposed
to a PC-type plug-in PCI card.

 

1.4.3  Memory Clocks

 

The MPC107 provides four clocks signals, SDRAM_CLK(0:3), which can be used to drive one or more
SDRAM components. The MPC107 controls these clocks with a digital locked loop (DLL) which can be
used to adjust the relationship between clocks and SDRAM control signals or data. Such deliberate skewing
of clocks is often required to compensate for a heavily loaded memory bus, or to communicate with
SDRAM components which do not exactly match the AC timing provided by the MPC107. The usual
method of creating skew is to add PCB trace length to clocks This is especially true in the case of PC100
SDRAM components or modules, which require additional output hold time.
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The DLL in the MPC107 is similar to a PLL except that it divides the clock period into discrete intervals,
in this case into 128 intervals. The DLL drives the SDRAM_SYNC_OUT signal and measures the number
of intervals until the clock is detected on the SDRAM_SYNC_IN pin. As trace length is added to the
feedback path (SDRAM_SYNC_OUT to SDRAM_SYNC_IN), the DLL numerically adjusts the delay to
the next clock edge so that the SDRAM_CLK signals starts sooner, relative to the internal bus clock
(referred to as “sys_logic_clk”).

Why sooner? The assumption is that the clock and data traces to the SDRAM are all of equal length, but that
the control signals are more heavily loaded (often true), or that additional output hold time is needed for
SDRAM. The usual way of compensating for such issues is to add trace delay to the SDRAM clocks, but
this can take a lot of board space with four or more clocks. By adding the trace delay to the feedback path
alone, less board space is required, design is easier, and routing the board is easier. An example of the effect
of lengthening SDRAM feedback path is shown in Figure 4.

 

Figure 4. SDRAM Feedback Path Overview

 

To understand the MPC107 DLL clock generator, it is essential to realize that the DLL has absolutely no
effect whatsoever on the AC timing of any SDRAM signal. All MPC107 signals are synchronous to the
internal core bus clock, sys_logic_clk, regardless of what length feedback path is used. The only signals
affected by the DLL are SDRAM_CLK(0:3), CPU_CLK(0:2) and SDRAM_SYNC_OUT.

 

1.4.4  Clocking and SDRAM Memory Systems

 

Section 1.5.2 covers the connections of the memory system; these are relatively straightforward but clocks
need special treatment - they are the heart of an SDRAM memory system. Assuming good layout techniques
are used and the traces for the SDRAM controls, data and clocks are kept relatively equalized (traces routed
to the same lengths, to within 

 

± 

 

10%), then the DLL of the MPC107 can be used to set the timing for the
SDRAM components.

To determine the timing adjustments, it is necessary to determine what effect PCB trace length and SDRAM
component loads have on the propagation delay. This application note is not going to rehash an entire book’s
worth of electromagnetic wave equation derivations; instead, the appendix has several good references for
a designer to refer to in checking that the assumptions used here are a good match for the design. If not,
slight modifications these equations will be needed.
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Clocks

 

Using these values, the only other data we need is:

• Bus speed 66–100 MHz

• Maximum memory trace length (clocks, controls, and data) 2–15 cm

• Capacitive loads (number and quantity) 5–100 pF

The first two can usually be determined (or predetermined). The latter is generally obtained from the data
sheet, however in the case of SDRAM DIMM sockets, the user may install a module of varying loading
factors. The designer using DIMMs and allowing user-upgrades should design to the worst-possible loading
using.Table 3.

Two equations have to be dragged in from the references, however. The first is a simple reminder that
capacitive loads should be treated as a distributed load over the total trace length, as shown in the following
equation (as opposed to just a lumped value):

In addition, a second equation for determining the line delay of the trace (both inherent in the copper traces
and due to the capacitive loading) is needed:

 

Table 2. Assumed PCB Electrical Parameters

 

 Trace 
Height

Trace 
Width

 Impedance
Z

 

0

 

 Inductance
L

 

0

 

Capacitance
C

 

0

 

Propagation Delay

 

0.005 0.005 63.83 

 

Ω

 

3.93 nH/cm 0.91 pF/cm 58.06 ps/cm

9.97 nH/in 2.31 pF/in 147.47 ps/in

 

Table 3. Typical SDRAM DIMM Module Capacitance

 

DIMM Type
SDRAM 

Component 
Width

Typical Capacitance

NotesControls: CKE, 
WE, CS, etc.

Clock DQ, DQM

 

unbuffered 4 bits 70 pF 40 pF 20 pF 1, 3

unbuffered 8 bits 50 pF 30 pF 12 pF 1

unbuffered 16 bits 30 pF 15 pF 5 pF 1

registered any 7.5 pF 26 pF 9 pF 2, 4

 

Notes:

 

1. Loads are per-bank. For dual-bank DIMMs, multiply loads by 2.
2. Loads are per-bank for DQ and CLK0. All others remain constant.
3. Not generally recommended due to large loading.
4. Preferred for large memory arrays.
5. No guarantees that these values are worst-case.

CO′ CO

NO CL⋅

length
-------------------+=

delay LO CO′⋅ ps/cm( )=
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Using the information and equations listed above, we can see what sort of designs are possible, as shown in
Table 4.

As you might expect, the key to achieving a high-speed memory design is to minimize the capacitive loading
and trace length; registered DIMMs have become invaluable for just this reason. Once the data have been
determined, we can examine the timing of the memory system.

As expected, the capacitive load on case “C” was far too high to achieve 100 MHz; even 83 MHz operation
was well beyond its capabilities. For cases where 100 MHz is possible, Figure 5 shows an example of timing
factors as information flows between the MPC107 and the SDRAM.

 

Table 4. Example SDRAM Designs

 

Case “A”
2 Registered DIMMs

Case “B”
Single SODIMM module

Case “C”
3 Unbuffered DIMMs

 

DIMM type registered unbuffered unbuffered

SDRAM type any 16-bit 4 bits

PCB Trace 8.9 cm 6.4 cm 12.7 cm

Co’ 0.91 pF/cm +
(2 DIMMs * 7.5 pF)
/ 8.9 cm

0.91 pF/cm +
(1 SODIMMs * 30 pF)
/ 6.4 cm

0.91 pF/cm +
(4 DIMMs * 70 pF)
/ 12.7 cm

2.60 pF/cm 5.60 pF/cm 22.96 pF/in

Trace delay sqrt(3930 pH/cm * 2.60 
pF/cm)

sqrt( 3930 pH/cm * 5.60 pF/cm) sqrt(3930 pH/cm * 22.96 pF)

101 ps/cm 148 ps/cm 300 ps

TOF 899 ps 947 ps 3814 ps

Prognosis Excellent Good Poor

 

Table 5. Memory Timing Analysis

 

Factor Case “A” Value Case “B” Value Case “C” Value

 

Cycle Time 10000 ps 10000 ps 10000 ps

Clock-to-output - 5500 ps - 5500 ps - 5500 ps

Jitter - 150 ps - 150 ps - 150 ps

Time-of-flight - 899 ps - 947 ps - 3814 ps

Input Setup - 2000 ps - 2000 ps - 2000 ps

Input Hold - 1000 ps - 1000 ps - 1000 ps

Margin 451 ps 403 ps - 2464 ps

 Max Bus Speed 100 MHz 100 MHz 78 MHz
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Figure 5. Memory Timing for 100 MHz

 

1.4.5  Expanding Memory Clocks

 

Four clock are sufficient to directly drive two DIMM modules (two physical banks each), four registered
DIMMs (one clock per module), or four discrete SDRAM components. If this is insufficient, the memories
or modules must share clock signals; in such a case, the extra capacitive loading on the clock traces will
cause the time-of-flight (TOF) to be correspondingly longer. Using the feedback path, this effect can be
removed by lengthening the trace as described in Table 2. This longer feedback path will cause the SDRAM
clocks to “launch” earlier so that they will arrive along with the memory address and control signals.

If sharing is not sufficient, a clock regeneration device, also known as a zero-delay buffer, may be used to
replicate some of the clocks so that more are available, as shown in Figure 6.
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Figure 6. Clock Expansion Using Zero-Delay Buffers

 

Typical zero-delay buffers generate output clocks that are aligned to within 350ps of the input clock, which
of course is not really zero, but can be adjusted to effectively zero by lengthening the MPC107 DLL
feedback path. This effectively treats the delay through the zero-delay buffer as extra trace length, so the
feedback path is lengthened using the formula:

where 58 ps/cm (147 ps/in) is the propagation time of our example PCB trace (refer to Table 2 for
assumptions).

Note that similar zero-delay buffers are included on registered SDRAM DIMMs. If a system restricts the
type of memory usable to registered DIMMs, it may be possible to eliminate the extra zero-delay buffers.

 

1.4.6  CPU Clocks

 

The MPC107 also supplies three clocks which can be used to clock two processors and one local-bus slave
device, as needed. An unfortunate side-effect of the MPC107 clock generator architecture is that the CPU
clocks are actually generated by the SDRAM clock DLL, so CPU clocks are always synchronous to the
SDRAM clocks. When the DLL feedback is used to adjust the timing relationship between the
SDRAM_CLK and the SDRAM, the processor bus will be inadvertently affected.

The solution to this is to add the same amount of delay to the CPU clock that is added to the SDRAM_SYNC
feedback path. Since 1 ns of feedback trace length causes the SDRAM_CLK signals to begin 1 ns early
(relative to the internal bus clock), adding 1 ns of trace length to the CPU_CLK signals will re-synchronize
the CPU clocks so that they arrive at the destination in sync with the internal MPC107 bus clock.
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Memory Architecture

Figure 7. Resynchronizing CPU Clocks

 

Figure 7 shows how adding to the CPU_CLK traces (of delay t

 

EXTRA

 

) restores the synchronization needed
to communicate with PowerPC processors.

 

1.5  Memory Architecture

 

The MPC107 contains a high-speed SDRAM/DRAM memory controller and a ROM controller. The
memory interface is completely separate from the processor bus, so that heavy loading on the SDRAM bus
will not affect the processor bus. In addition, the memory interface of the MPC107, unlike the MPC106, has
internal registered buffers which allow it to increase performance and to implement “on-the-fly” ECC. Since
EDO is more-or-less a subset of SDRAM, it will not be covered further. 

 

1.5.1  Banks

 

A momentary digression on the use of the term “bank.” The meaning of “bank” varies depending upon what
level of a memory system you are looking at. Within the SDRAM memory silicon, the term is used to
describe devices which can maintain 2-to-4 open pages simultaneously (no activation delay). This is the
meaning of bank as used to set the MCCR1 register in the MPC107: 64 Mbit/4-banks, 64 Mbit/2-banks, etc.
The MPC107 uses this information to drive the bank address pins (BA(0:1)) properly. The term “internal
bank” is also often used.

At the level of a memory module (SODIMM, DIMM, etc.), the term bank is used to describe the number of
independently selectable groups of SDRAM components. A standard SDRAM module contains 64-bits of
memory using components of various widths (4, 8 or 16 bits). Each bank of memory is controlled by a pair
of chip select pins (CS0 and CS2 for 64-bit modules), which are connected together to configure the module
as a 64-bit bus. To increase density, some modules have a second, independent set of components controlled
by a second pair of chip selects (CS1 and CS3). This is described in the I

 

2

 

C SPD EEPROM as a second
“bank”, and such devices are referred to as “dual-bank” modules, as opposed to “single-bank” modules.

Lastly, the MPC107 refers to a bank as one of eight possible groups of memory, each of which is controlled
by a separate chip select pin (CS(0:7)). MPC107 banks have different sizes and types and can be positioned
at various addresses, but have common timing.

Note that a dual-bank DIMM is typically wired up to two MPC107 banks, as shown in section  on page 12.
When DIMMs are connected in this fashion, what happens when single-bank DIMMs are inserted? The
result is that the MPC107 bank controlling CS1 is unused; to get a contiguous range of memory, the starting
and ending addresses of banks 2-7 should be adjusted to skip over unused physical banks.

10 ns0 ns

SDRAM_SYNC_IN
sys_logic_clk

5 ns

CPU_CLK0

CPU_CLK0

at MPC107
tEXTRA=1.0

tLOOP=1.0

SDRAM_SYNC_OUT

at CPU



 

12

 

MPC107 Design Guide  

Memory Architecture  

1.5.2  Memory Connections
Connecting memory to the MPC107 is fairly straightforward, with the exception of the SDRAM clock
signals, which have been discussed in section 1.4.3 on page 5. Otherwise, most signals on the MPC107 have
the same name as the signals on the memory devices/modules, and can be connected one-to-one.  shows a
typical MPC107 memory connection. The remaining signals such as SDA, SCK, SA(0:2), etc. are either
standard I2C controls for module information or are unused.

Figure 8. MPC107 Memory Connections

There are three particular considerations to keep in mind when connecting the memory system:

• Each physical bank of memory must connect to one and only one CS line
• Memory data connects to the memory data bus (MDH/MDL/PAR), not the processor data

bus (DH/DL/DP)
• The DQM signals must match with the corresponding byte lane:

DQM0 ⇔ ΜDH(0:7)
DQM1 ⇔ ΜDH(8:15)
DQM2 ⇔ ΜDH(16:23)
DQM3 ⇔ ΜDH(24:31)
DQM4 ⇔ ΜDL(0:7)
DQM5 ⇔ ΜDL(8:15)
DQM6 ⇔ ΜDL(16:23)
DQM7 ⇔ ΜDL(24:31)

The association between DQM and MDH/MDL is important when the MPC107 is in non-ECC/non-parity
memory modes, since it requires the ability to modify a single byte. In ECC or parity modes, all DQMs are
driven to the same value since only 64-bit quantities are read or written, so in that one case the DQMs can
be freely associated.
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The remaining memory connections can be connected from point-to-point. Table 6 shows a list of the
interconnections between the MPC107 and a typical DIMM or SODIMM module. Note that, unlike most
PowerPC buses, the memory buses (with the exception of the data bus) use industry-standard little-endian
notation, where A0 is the least-significant-bit of the addresses.

Table 6. MPC107 Memory Address Pin Connections

MPC107 Signal Pin
SDRAM 
Name

JEDEC 168 pin 
SDRAM DIMM

JEDEC 144-pin 
SDRAM SODIMM

Notes

SDMA(13:0) E10, F9, D9, F8, E8, 
D8, B8, E7, C7, B7, A7, 
B6, A6, A5

A(13:0) 132, 126, 123, 38, 121, 
37, 120, 36, 119, 35, 
118, 34, 117, 33 

72, 70, 112, 111, 109, 
105, 104, 103, 34, 32, 
30, 33, 31, 29

5

SDBA(0:1) A9, A8 BA(0:1) 122, 39 106, 110

DQM(7:0) D11, F12, C2, B3, 
A10, A11, B1, A2

DQM(7:0) 131, 130, 113, 112
47, 46, 29, 28

118, 117, 26, 24, 
117, 115, 25, 23

CS0 E6 CS 30+45 69 1

CS1 C4 CS 114+129 71 1

CS(2:7) D5, E4, 
C10, F11, B10, B11

CS 30+45 or 114+129 69 or 71 1

SDRAS B4 SDRAS 115 65

SDCAS D4 SDCAS 111 66

WE A3 WE 27 67

CKE A12 CKE 63+128 62+68 3

MDH(0:31) M6, L4, L6, K2, K4, K5, 
J4, J6, H4, H5, G3, G5, 
G6, F5, F1, E1, B14, 
D15, B15, E16, D16, 
C16, D18, D17, B17, 
F18, E19, E20, B19, 
B20, B21, A22

D(0:31) 2, 3, 4, 5, 7, 8, 9, 10, 11, 
13, 14, 15, 16, 17, 19, 
20, 55, 56, 57, 58, 60, 
65, 66, 67, 69, 70, 71, 
72, 74, 75, 76, 77

3, 5, 7, 9, 13, 15, 17, 
19, 37, 39, 41, 43, 47, 
49, 51, 53, 83, 85, 87, 
89, 93, 95, 97, 99, 121, 
123, 125, 127, 131, 
133, 135, 137

4

MDL(0:31) M5, L1, L2, K1, K3, J1, 
J2, H1, H2, H6, G2, G4, 
F4, G1, F2, E2, F14, 
F15, A16, F17, B16, 
A17, A18, A19, B18, 
E18, D19, F19, A20, 
C19, D20, A21

D(32:63) 86, 87, 88, 89, 91, 92, 
93, 94, 95, 97, 98, 99, 
100, 101, 103, 104, 139, 
140, 141, 142, 144, 149, 
150, 151, 153, 154, 155, 
156, 158, 159, 160, 161

4,  6,  8, 10, 14, 16, 18, 
20, 38, 40, 42, 44, 48, 
50, 52, 54, 84, 86, 88, 
90, 94, 96, 98, 100, 
122, 124, 126, 128, 
132, 134, 136, 138

4

PAR(0:7) D2, C1, A15, A14, D1, 
D3, F13, C13

DP(0:7) 21, 22, 52, 53, 
105, 106, 136, 137

57, 59, 77, 79, 
58, 60, 78, 80

2

none none REGE 147 none

Notes:
1. For DIMMS, CS0 and CS2 should be connected to one CS pin to enable 64-bit data mode. CS1 and CS3 should 

be connected to a second CS pin if a second (physical) bank will be supported.
2. No known SODIMM module actually implements parity.
3. Connect pins together.
4. The MSB of the 32-bit data buses (MDH0 and MDL0) must be connected to the MSB of the SDRAM (D0) to 

preserve the association between DQM and MDH/MDL. The connections shown maintain this order.
5. Note that the memory address bus is “little-endian”, so A0 is the LSB.
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1.5.3  I2C EEPROM Data
DIMMs and SODIMMs contain an I2C EEPROM which contains a description of the SDRAM components
used on the assembly. This allows the memory controller to adjust the memory timing parameters in the
MPC107 MCCR(1:4) register to get the best performance. Using the I2C controller of the MPC107, it is
relatively easy to obtain the data from DIMMs and from one SODIMM. Since DIMMs have dedicated
address pins for the EEPROMs, all the I2C signals can be wired from point-to-point. Unfortunately,
SODIMMs do not have I2C EEPROM address pins, instead all EEPROMs have the address 0x50. If a
system uses more than one SODIMM, only one of the devices can be directly connected to the I2C bus.

There are two workarounds for this:

• Use only information from the first SODIMM.

• Use software-controlled switches to switch SCK between each SODIMM.

The latter method requires some general-purpose outputs to be available and requires a low-impedance
(bidirectional) switch for each SODIMM I2C port. The first method simply assumes that the timing
information will be based on the first (and only) SODIMM. This is not unreasonable, in fact, since the
MPC107 does not support variable timing for each bank (RDLAT, CL, ACTOPRE, etc. are all common).
The only variables which can differ on each bank are the size and type (2-bank/4-bank, 16Mb/64Mb) of
SDRAM; software can be used to discover such information. The only caveat is that the first SODIMM
should not be faster than the remaining devices, or too-aggressive timing would be used.

Figure 9.  I2C SODIMM Expansion

Typically, initialization code sets the SDRAM settings to “safe” values; slow but reliable operation at any
frequency or SDRAM speed. Then, once memory is available for use, and software can be more easily
written, the EEPROM can be read and processed. An example of this is in the DINK32 V12 debugger, where
the “except2.s” module, which handles reset initialization, sets the system for 32MB of SDRAM at a speed
of 3 clocks. This function is written in assembly language and does not have access to dynamic memory for
storage, so accessing an I2C and processing the results would be quite difficult. Once the debugger is
running, the “meminfo” command can be automatically invoked to adjust the memory timing based on I2C
data and the current memory bus clock speed. The source code for these modules are available on the web
at http://www.mot.com/SPS/PowerPC/teksupport/tools.
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1.5.4  ROM
The MPC107 supports up to four ROM devices for code and data storage. Most embedded systems will need
at least one ROM to boot from, and the remaining chip selects may be used as needed, including for general
I/O purposes (see Section 1.9, “I/O Interfacing” on page 28). While the ROM controller has some options
on the width of the ROMs used, it is not infinitely flexible. In particular, other than the 8-bit ROM modes,
which are handled in a special manner, the width of a ROM is always the same as the width of the SDRAM.
Table 7 shows the only allowable combinations.

No other combinations are possible; in particular, it is not possible to use 64-bit SDRAMs and 32-bit ROMs.

The ROM controller shares the memory address lines, bank selects, write enable, and the memory data
parity lines to create the ROM control signals (AR, FOE, WE) and adds the dedicated ROM control signals
(RCS(0:3) and FOE. Table 8 shows this remapping.

The ROM addresses are renamed “AR” instead of “A” because the latter is the standard name already used
for the PowerPC processor address bus. Note that since the ROM controller shares the address lines used by
the SDRAM controller, large ROM arrays can increase the capacitive loading and slow down the overall

Table 7. Allowable MPC107 ROM Sizes

DBUS(0:2) Setting ROM0 ROM1 ROM2 ROM3 Notes

0 0 0 32 32 32 32 Using 32-bit SDRAM 
width1

0 0 1 32 8 32 32

0 1 0 8 32 32 32

0 1 1 8 8 32 32

1 0 0 64 64 64 64 Using 64-bit SDRAM 
width

1 0 1 64 8 64 64

1 1 0 8 64 64 64

1 1 1 8 8 64 64

Notes:
1 If the SDRAM is 32-bits wide, the processor is 32-bits wide as well. The 

MPC750 does not support 32-bit wide mode (the 60X does), so this mode 
should not be used with an MPC750.

Table 8. MPC107 ROM Address Renames

MPC107 Signal ROM Address Signal
Typical ROM 
Destination

SDMA0 AR0 A0

SDMA(1:10) AR(1:10) A(1:10)

SDBA0 AR11 A11

PAR7 AR12 A12

PAR(6:0) AR(13:19) A(13:19)

SDBA1 AR20 A20

SDMA(11:13) AR(21:23) A(21:23)
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memory bus speed. It may be necessary or desirable to add a buffer between the MPC107 signals and the
address pins of the ROMs if more than the minimal 8-bit boot ROM is used (which has only one load and
is indistinguishable from a buffer).

In a similar fashion, a large ROM array may also load the memory data bus, though not as severely, and may
also require buffering. Unlike address buffers, which can be permanently enabled, the data bus buffers must
switch directions using the FOE and RCSx pins. Figure 10 shows an example of a heavily-loaded ROM
system. 

Figure 10. Buffered ROM System

The ROM address and control buffers uses a high-density output-only buffer, such as the
SN74ALVCH32244, which can be permanently enabled. The data bus buffers use bidirectional transceiver,
such as the SN74ALVCH32245, which is enabled on RCSx (any or all AND’ed together), with the direction
controlled by the FOE pin such that when FOE is low, data flows from B to A.

One special note about memory data bus bit connections: while the SDRAM data bus bits can be connected
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in any order, ROMs have particular (predefined) associations associated with the data bits. This is not only
true with externally programmed ROMs, but programmable flash memories assign particular meanings to
the data bits, so it is generally recommended to connect the MSB of the Flash/ROM (D7 or D15, depending
on size) to the corresponding MSB of the PowerPC data bus byte lane (MDH0/MDL0, MDH8/MDL8,
MDH16/MDL16, and MDH24/MDL24, again depending on the device size).

1.6  PCI Interface
The PCI interface of the MPC107 has several enhancements over the MPC106, in particular full support for
66 MHz PCI operation and the ability to configure the part as an agent (with support for programmable
inbound and outbound address ranges set by an external PCI master). There are several differences between
host mode and agent mode, which are summarized in Table 9.

The agent mode feature is possible due to the addition of the ITU (Inbound Translation Unit); when the
MPC107 is set to Agent mode, it will accept configuration cycles when the IDSEL pin is asserted. This new
feature allows multiple MPC107s to co-exist on the same PCI bus, which is extremely difficult for
MPC106-based systems to accomplish. An example multiple-MPC107 system is shown in Figure 11.

Table 9. MPC107 Host and Agent Differences

Feature Host Mode Agent Mode Description

IDSEL must be grounded must be connected 
to an AD(31:0) pin

The MPC107 only allows configuration cycles 
when in agent mode.

MPC107 Registers 
accessible from 
PCI

Partially Yes Only embedded functions can be accessed on 
a host (I2O, DMA, etc.). Standard memory and 
processor configuration registers are 
inaccessible (MCCR1, PICR1, etc.).

Multiple MPC107s 
supported

No Yes Only one MPC107 may serve as the host (this 
is true of PCI hosts in general).

INTA Yes Yes In host mode, INTA cannot be wired to 
INT(0:4)
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Figure 11. Multiple MPC107-based System

In systems where such an environment is not desired, or where the MPC107 is operating as a host, the
active-high IDSEL pin must be tied low to prevent configuration cycles from being accepted. 

1.6.1  66-MHz PCI PLL Adjustment
The MPC107 supports operating the PCI bus at 66 MHz. Supporting this higher speed requires little special
design effort other than the usual, good, high-speed design practices. One issue that may arise, though, is to
design a card which automatically adjusts to a changing clock rate. In a PCI environment, the M66EN signal
is used to globally configure with adjusting the PLL settings; if all cards are 66 MHz-capable, M66EN floats
high and the PCI clock input will switch to 66 MHz. However, the MPC107 relies upon statically-encoded
PLL settings to set both the PCI frequency and its own core frequency. Furthermore, this internal core
frequency must match the bus frequency of the processor in order for the two devices to be able to
communicate.

Therefore, for an MPC107-based system to operate in a flexible 33 MHz or 66 MHz PCI bus, external logic
is required to dynamically change the PLL settings. If the MPC107 is operating in a 33 MHz environment,
it is sufficient to ground the M66EN pin as all non-66 MHz-capable cards do. In this environment, the PLL
settings can be specified to get the maximum performance and then left alone. For a dual-speed
environment, however, it may be necessary to insert logic into the PLL settings path, as shown in Figure 12.
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Figure 12. MPC107 PLL Dynamic Configuration

The actual logic is highly dependant on the available and desired speeds of the PowerPC processor and the
memory bus. If the PLL setting is fixed for a board (not changeable by the end user), a simple example
would be:

PLL(0 TO 3) <= "0000" WHEN (M66EN = ‘1’)-- PCI=66, MEM=66

        ELSE "0100" -- PCI=33, MEM=66

and so forth. In the preceding example, one of two different PLL codes are selected based upon the M66EN
pin.  This pin, and the PLL codes presented to the MPC107, must be active and stable during the HRESET
signal until it is deasserted.

For systems which want to support multiple processor and/or memory bus speeds, the preceding logic can
be generalized to alter the user settings based upon the M66EN status.

CASE (SPEED & M66EN) IS

WHEN "00" => PLL(0 TO 3) <= "0001";-- PCI=33, MEM=66
WHEN "01" => PLL(0 TO 3) <= "1101";-- PCI=66, MEM=66
WHEN "10" => PLL(0 TO 3) <= "1000";-- PCI=33, MEM=100
WHEN "11" => PLL(0 TO 3) <= "1100";-- PCI=66, MEM=100

END CASE;

In the above example, the M66EN input is controlled by the PCI bus and “SPEED” is controlled by a single
user-changeable setting, for example, a four-position rotary switch. As long as the memory bus speed is held
constant, the processor PLL settings do not need to be changed. Otherwise, the CPUPLL settings can be
added to the programmable logic to control both the CPU and the MPC107.

1.6.2  PCI Output Hold Time
The MPC107 has programmable output hold time which can be adjusted to meet system requirements. The
PCI specification allows 2 ns skew between any two clock signals, point-to-point. The default output hold
time of the MPC107 is 2.9ns, which works well with a typical 33 MHz PCI-based system.

However, when the PCI bus speed is increased to 66 MHz, the allowable clock skew tightens to 1ns. With
the output hold at nearly 3 ns and with a 15ns bus period, it may be difficult to design a system; one way is
to use the programmable output hold feature of the MPC107. Using the M66EN signal to control the default
settings for PCI hold time, as shown in Figure 13, performs this adjustment automatically.

MPC107
M66EN

PLL(0:3)PLD

SWITCHES
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Figure 13. Automatic PCI Hold Time Adjustment

This circuit pulls SDMA4 low if M66EN is high during reset, indicating 66 MHz PCI operation. This
changes the default PCI hold time from “110” (2.9ns) to “000” (0.5 ns). This function fits easily in a PAL
such as the GAL22LV10, using the following equations:

DRV <= "00" WHEN (M66EN = ‘1’)-- 66 MHz PCI
ELSE "11";-- 33 MHz PCI

SDMA43_CFG <= DRV WHEN (HRESET_B = ‘0’)-- Drive low during reset
ELSE "ZZ";-- otherwise float

It is also possible to provide the above adjustment in software if the code is able to determine the PCI bus
speed. It is not possible to sense the M66EN signal without external hardware (you cannot determine the
PCI bus speed from the HID1 PLL information, because those bits are an encoded version of the external
PLL settings). The system startup software may not be able to reliably access PCI devices until this is
change done, which can be a particular concern if the startup-software happens to be located on the PCI bus.

1.6.3  PCI Arbitration
While the MPC106 requires the use of an external PCI arbiter, a function typically provided by a “south
bridge” (such as the Winbond W83C553), the MPC107 includes a five-port PCI arbiter (not including
internal requesters such as the DMA engines and the core logic). MPC107 systems can directly control or
attach to the PCI bus without relying upon third-party chips.

Of course, if the PCI arbiter is not needed, it can be disabled and the MPC107 will act like any other PCI
requester.

1.7  Power
The MPC107 follows the trend of newer CMOS processes which in using low-core voltages to attain higher
operating speeds, unlike its single-voltage predecessor the MPC106.  In addition, the MPC107 also divides
the I/O power pins of various signals into logical groups, each of which may be set to different voltages.
This allows the use of lower-voltage (faster) processor buses, allows clamping PCI signals to 5V if required
(dictated by the PCI bus), and allows the use of 2.5V or 3.3V memory signalling.

MPC107

SDMA4

M66EN
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to memory

HRESET
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Table 10 shows the various supported voltages.

The MPC107 core logic is quite a bit smaller than a PowerPC processor, so it requires much less power
(refer to the hardware specification for exact details). Since the power is low, there are several ways to
provide this power:

• Shared with other 2.5V supplies (such as L2 cache I/O)

• Auxiliary output of a multiple-output switching power supply (as with the MPC7400)

• Small linear regulator.

Figure 14 shows a simple linear regulator which will suffice in many instances for the core power needs of
the MPC107.

Figure 14. Simple MPC107 Core Power Supply

If 2.5V is needed elsewhere in the system, the MPC107 core power can be shared with other such devices.
L2 cache SRAMs, L2 I/O signals, and processor bus I/O drivers are can all be operated at 2.5V or less with
newer generations of PowerPC processors. If more power is needed, to minimize the heat dissipation
produced by higher-power linear regulators, a simple switching power supply can be used.

Table 10. MPC107 Power Supplies

Power Group Function No. of Pins Nominal Voltage Notes

VDD Internal (core) power 15 2.5V

BVDD Processor I/O power 24 2.5V or 3.3V

OVDD PCI/Other I/O power 16 3.3V Interrupts, I2C, PCI clocks, 
reset, NMI, JTAG

GVDD Memory I/O power 25 2.5V or 3.3V

LVDD PCI Clamp Voltage 6 3.3V or 5V

AVDD
LAVDD

PLL/DLL filtered power 2 2.5V Separate filters required

GND Ground, common 64 ground
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1
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8
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Figure 15. Shared MPC107 Power Supply

While switching power supplies are more complicated and require more components than simple linear
regulators, modern switching components are fairly easy to design with if the recommendations in the
manufacturers data sheets are followed. In addition, efficiencies of 85-95% are possible, which translates
into very low heat dissipation.

1.7.1  PLL/DLL Filters
The MPC107 requires filters for the PLL power supply pins (AVDD and LAVDD) to insure that power
supply noise is not coupled into the voltage-controlled oscillator (VCO), which would cause clock jitter and
imprecise I/O timing (which can limit the maximum bus performance). The filter is a simple R-C network,
with values chosen to minimize noise in the resonant frequency band of the VCO (approximately 500 kHz
to 10 MHz). Note that these AVDD and LAVDD filters cannot be shared, there should be one filter per pin.
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Figure 16. MPC107 PLL/DLL Filters

The PLL power connections should be kept as short as possible between the pin and the series resistor. The
AVDD pin is near the exterior of the MPC107, and so its filter can be placed on either the top or bottom
layer, as desired. The ideal placement for LAVDD is on the bottom of the board in the center (vacant) ring;
this achieves the minimum trace length but requires using a dual-sided board. For PCBs not using dual-sided
components, the LAVDD filter should be placed as near the exterior as possible. The power consumption is
very small so normal (~6 mA), so normal trace widths can be used; preferentially the traces should not cross
or otherwise couple to “noisy” traces such as clocks, address or data buses.

1.8  Interrupt Controller
The MPC107 includes an interrupt controller, the EPIC (Embedded Programmable Interrupt Controller)
which gathers interrupts from several sources and, if enabled, signals the CPU with the INT output. The
EPIC function replaces logic usually provided by external logic, typically a “south bridge” component. In
addition to reducing board space and cost by eliminating a (possibly unneeded) south bridge, the EPIC also
includes several features not possible with a standard PC-type PIC, including:

• 5 parallel or 16 serial interrupt inputs
• PCI INTA# assertion
• Programmable timer interrupts
• I2O interrupts
• DMA completion interrupts
• SRESET generation

The EPIC is a subset of the industry-standard OpenPIC™, lacking only the ability to route interrupts to
multiple processors. An example is shown in the following Figure 17.
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Figure 17. MPC107 EPIC Interrupt Connections

As shown in Figure 17, the EPIC gathers a variety of internal and external interrupts sources and forwards
them to the processor. Interrupts can be masked, prioritized, and set to various combinations of polarity and
edge-/level-sensitivity.

The connections of the interrupt pins vary depending on the application. For agent boards, which do not
typically handle external interrupts, INTA is connected to the INTA# pin of the PCI card or the appropriate
INTA#-INTD# pins of the PCI host.

For host boards, the INTA pin is typically not used, and INT(0:4) is connected to the interrupt pins
(INTA#-INTD#) of the various PCI interrupt sources.

1.8.1  Serial Interrupt Expansion
The MPC107 can directly accept up to 5 external interrupts with no additional hardware support. If
additional interrupts are needed, up to 16 external interrupts can be supported by inserting a
serially-controlled multiplexer. The EPIC demultiplexes the serial data stream and drives internal interrupt
lines accordingly. The hardware requirements are minimal and can be easily supported in a complex PLD,
FPGA or ASIC (but more than a 22LV10 will handle).
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Figure 18. MPC107 External Serial Multiplexer Block Diagram

As shown in Figure 18, this logic does not make use of the S_RST signal. This signal is asserted (for two
clock cycles) only when the EPIC is converted from parallel to serial mode, and is could be used to notify
external hardware to also convert from parallel to serial. Most systems will be fixed in one mode or the other,
so S_RST will not be used here.

Figure 19 shows the waveforms of the simple multiplexer. By using a negative-edge triggered clock (or
inverting the clock), the multiplexer can be reset to zero or advance to the next sample point in sufficient
time for the MPC107 to sample the S_INT pin on the rising edge of the clock. Since S_CLK is limited to
1/2 to 1/14th of the memory bus clock (effectively 7MHz to 50 MHz), this is well within the capabilities of
most modern FPGAs or PLDs.

Figure 19. MPC107 EPIC Interrupt Connections

Note that the reset signal must be synchronous; otherwise the clock-to-output timing of the MPC107 may
not be sufficient at higher speeds to guarantee that the Q counter resets to zero.

A sample of VHDL code which implements the serial multiplexer function follows:

LIBRARY ieee;
USE ieee.numeric_std.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_1164.all;

16-to-1
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0001 0010XXXX
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ENTITY SERINT IS
PORT( 

s_clk     : IN     std_logic;
s_frame_B : IN     std_logic;
int_B     : IN     std_logic_vector (0 to 15);
s_int     : OUT    std_logic;

);
END SERINT;

--

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_unsigned.all;

ARCHITECTURE BEHAVIOR OF SERINT IS

-- Architecture Declarations

SIGNAL   q    : std_logic_vector(3 downto 0);
CONSTANT one  : std_logic_vector(3 downto 0) := "0001";

BEGIN
counter : PROCESS( s_clk, s_frame_B )
BEGIN

IF (s_frame_B = '0') THEN
q <= (others => '0');

ELSIF (s_clk'EVENT AND s_clk = '0') THEN
q <= q + one;

END IF;
END PROCESS counter;

output : PROCESS ( q, int_B )
BEGIN

s_int <= '1'; -- Default Assignment
IF (q = '0000') THEN

s_int <= int_B(0);
ELSIF (q = '0001') THEN

s_int <= int_B(1);
ELSIF (q = '0010') THEN

s_int <= int_B(2);
ELSIF (q = '0011') THEN

s_int <= int_B(3);
ELSIF (q = '0100') THEN

s_int <= int_B(4);
ELSIF (q = '0101') THEN

s_int <= int_B(5);
ELSIF (q = '0110') THEN

s_int <= int_B(6);
ELSIF (q = '0111') THEN
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s_int <= int_B(7);
ELSIF (q = '1000') THEN

s_int <= int_B(8);
ELSIF (q = '1001') THEN

s_int <= int_B(9);
ELSIF (q = '1010') THEN

s_int <= int_B(10);
ELSIF (q = '1011') THEN

s_int <= int_B(11);
ELSIF (q = '1100') THEN

s_int <= int_B(12);
ELSIF (q = '1101') THEN

s_int <= int_B(13);
ELSIF (q = '1110') THEN

s_int <= int_B(14);
ELSE

s_int <= int_B(15);
END IF;

END PROCESS output;
END BEHAVIOR;

1.8.2  Multiprocessing Interrupts
While the MPC107 supports two processors on the processor bus, the EPIC interrupt controller supports
only one CPU (and one interrupt output, INT). This architecture is acceptable for non-SMP use as long as
one CPU can be dedicated to processing all interrupts. It is basically not possible to achieve SMP
(symmetric multiprocessing) if the EPIC unit is involved, since the second processor is essentially relegated
to co-processor status. To get around these limitations, the designer can:

• Use an external OpenPIC to route MPC107 or PCI interrupts to either processor.
• Use an external interrupt controller to collect non-MPC107 interrupts for the second processor.
• Use the INTA to interrupt the second MPC107.
• Connect the MPC107 INT output to both CPUs.

The first two methods are straightforward engineering, and will not be covered further. The third is
somewhat different: it uses the capability of the I2O message unit to allow the first processor to interrupt the
second processor. This is shown in Figure 20, which also shows the flow of an interrupt from PCI to a second
processor.
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Figure 20. MPC107 Multiprocessing Reset Logic

The sequence of interrupt handling is as follows:

1. MPC107 received interrupt (from PCI or internal sources)

2. MPC107 forwards interrupt to CPU “A”

3. CPU “A” handles interrupt, clears interrupt at the source

4. If interrupt is for CPU “A”, continue in interrupt handler.

5. If interrupt is for CPU “B”, sets INTA output in I2O message unit

6. Return from exception

Note that this method requires more effort on the part of CPU “A” than on CPU “B”. CPU “A” must actually
perform part of the typical interrupt handling process, sufficient to clear the interrupt source. If it did not do
this, the interrupt would likely immediately cause another interrupt exception. So CPU “A” must perform
at least part of every interrupt exception. CPU “B” is relegated to handling the data processing side.

The fourth method is a variation of this one, but requires even more careful attention to software design. If
the INT signal from the MPC107 is connected to both processors, both processors must handle every
interrupt. To do this, the software must determine (based upon its CPU number, via the EPIC unit) whether
to handle the interrupt or to ignore it while the other CPU. The determination of CPU number and division
of labor need be done only during startup. The limitation of this method is that a CPU will suffer needless
interrupts and will be idled until the other processor handles the exception (and re-enables interrupt
handling).

Whichever of these methods are chosen depends upon the system requirements. For maximum performance
and flexibility, or for true SMP architectures, an external OpenPIC interrupt controller will be required. If
some software overhead can be tolerated, a glueless non-symmetric MP system can be designed with one
of the above approaches.

1.9  I/O Interfacing
The MPC107 has four ROM chip selects, RCS(0:3), which may be used to attach ROM, flash memory or
general-purpose I/O to the memory interface. RCS0 is reserved for initialization code fetched after
HRESET is deasserted, but the others may be used for other code or for memory-mapped I/O devices. There
are some limitations of the memory controller that govern how the RCS pins may be used:

• No I/O device can be wider than the SDRAM/ROM bus width

MPC7400

INT

“A”

INT

MPC107

INTA

MPC7400

“B”

INT

INT(0:4)
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• If I/O devices are smaller than the SDRAM/ROM bus width, software alignment must be used

• Only RCS0 and RCS1 support a special byte-wide access mode

• All memory and I/O devices have the same (programmable) timing

Using the RCS signals to control I/O is fairly straightforward as long as the devices can fit within these
limitations. If the devices requires individual timing, or asynchronous timing controls, the local-bus slave
interface is more suitable and flexible.

Figure 21 shows an example system with both flash memory and I/O connected to the memory controller
of the MPC107. As long as the device has a typical memory-type interface (chip-select, output-enable and
write-enable) it should be possible to connect it to an MPC107.

Figure 21. Using RCS pins for I/O

When I/O devices are smaller than the programmed bus width, as with an 8-bit UART on the 32- or 64-bit
RCS2 space, software must align reads and writes to account for the byte lanes which are not used. Since
the MPC107 expects the device to be 64-bits, it does not adjust the addresses and does not provide byte lane
write controls (as would the SDRAM interface), so software must compensate by adjusting addresses used.
Figure 22 shows an example of byte lane usage.
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Figure 22. Reduced Bus Width for I/O

Assuming that the UART is a typical PC16550-compatible device, it has 8 sequentially-addressable
registers. When this device is attached to the most-significant bits of the memory data bus, MDH(0:7), the
8-bit registers will appear every eight locations in memory, as shown in Table 11.

The important thing to notice is that the MPC107 still performs 64-bit reads and writes to those locations.
When the MPC107 reads from the UART, it will latch in 8 bits of data on MDH(0:7) and 56 bits of random
data from MDH(8:31)+MDL(0:31). As long as byte read instructions are used, anything on the unused byte
lanes will be ignored. For write instructions, the MPC107 expects that the I/O device will not monitor
unused byte lanes; for this reason, I/O devices cannot share chip selects by using different byte lanes.

In the above example, if the UART had been connected to the least-significant bits of the memory data bus,
the addresses would have required an offset to select the proper byte lane. For MDL(24:31), the offset is 7,
so the sequential UART addresses would be 0x7C00_0007, 0x7C00_000F, 0x7C00_0017, etc. For
high-speed or highly-loaded systems, this technique can be used to minimize loading effects which would
occur if every I/O device (as well as memory) is attached to DH(0:7).

Table 11. Example UART Address Mapping

UART 
Register

UART 
Address

MPC107 I/O Address

RBR / THR 0 0x7C00_0000

IER 1 0x7C00_0008

IIR / FCR 2 0x7C00_0010

LCR 3 0x7C00_0018

MCR 4 0x7C00_0020

LSR 5 0x7C00_0028

MSR 6 0x7C00_0030

SCR 7 0x7C00_0038

NOTE: Assuming 64-bit RCS2 ROM width

MDH(0:7)

7C00_0000

UART 

MDH(8:15) MDH(16:23) MDH(24:31) MDL(0:7) MDL(8:15) MDL(16:23) MDL(24:31)

7C00_0008

7C00_0010

7C00_0018

UART

0
BYTE LANE
OFFSET1 2 3 4 5 6 7

REG #0

UART
REG #1

UART
REG #2

UART
REG #3

...

unused 

ADDRESS
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1.9.1  Adjusting I/O Timings
The MPC107 controls the timing for access to ROM and I/O devices using the MCCR1.ROMFAL bits,
which sets the number of bus clock cycles needed to perform read and write cycles to devices. Since there
is only one register setting, all devices on the ROM controller must share the exact same timing for all
accesses. If a slow flash is used, say 150 ns, then any I/O devices will also share a 150 ns access time.

Since the MCCR1.ROMFAL settings may be changed at any time, there are three methods to compensate
for this problem:

• Copy program code to SDRAM and run from SDRAM; permanently speed up MCCR1.ROMFAL

• Run or copy program code from PCI; permanently speed up MCCR1.ROMFAL

• Dynamically change MCCR1.ROMFAL

The first two solutions are simplest, and basically involve cases where a system can avoid accessing code or
data in the ROM after system initialization has completed. In these cases, there is no need to retain a slow
MCCR1.ROMFAL setting since the slow ROM/Flash devices are no longer accessed. In such cases, the
software can simply change MCCR1.ROMFAL shortly after the last access to the ROM has completed. An
example of this type of system is the Motorola DINK32 debugger, which copies itself to RAM and no longer
uses the ROM thereafter.

The last solution is fairly complex, requiring tightly-controlled software assistance; this approach would be
required in situations where, due to size or cost limitations, software must run partially or entirely from
Flash/ROM. Since changes to the MCCR1.ROMFAL setting can affect the ability to read instructions from
the ROM, the software must ensure that code is resident in cache. Once cache-bound, the software can
increase the speed of I/O accesses, perform the access (or multiple accesses), and then restore the slower
MCCR1.ROMFAL settings. In essence, the software changes the MCCR1.ROMFAL settings every time it
accesses the I/O device. Due to the complexity of this method, it is typically only used for critical I/O, but
it is particularly well-suited to interrupt drivers, where access to I/O is encapsulated.

1.9.2  PortX
Despite the name, the PortX facility is not a separate, general-purpose I/O subsystem, it is intimately tied to
the ROM memory controller. PortX is best thought of as a programmable address strobe signal (AS) which
can be asserted in the middle of all ROM I/O cycles. This is only enhancement to I/O interfacing which
PortX brings; however, it is quite useful to strobe addresses into a multiplexed address/data device, and also
to alter the I/O signals for devices which have particular restrictions on the relationships between RCSx,
FOE, and WE. Figure 23 shows an example of the AS signal in a PortX access cycle.

Figure 23. PortX Access Timing
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As seen in , the WE signal extends beyond the CS assertion interval. For devices which require particular
relationships between CS and WE, AS can be used with simple logic to adjust the relationships for such I/O
or Flash/ROM devices. Examples are shown in Figure 24.

Figure 24. MPC107 PortX Signal Adjustments

Using the logic shown above, the ROM/I/O timing can be adjusted as shown in Figure 25.

Figure 25. PortX-Modified I/O Timing

This logic is often useful with flash memory and other devices which require extra time after the chip-select
for recovery, or those which will not allow WE asserted concurrently with CS. Note, though, that since AS
timing values must be programmed into the MCCR registers, this solution is not suitable for code that must
be available immediately after reset (i.e., startup code in RCS0).

1.10  Reset
A system using the MPC107 must provide it with a proper reset signal; the MPC107 requires a reset pulse
that is at least 100 µs (for PLL stabilization) plus 255 PCI bus clocks in duration. For systems connected to
the PCI bus, the PCIRST# signal easily meets this restriction since PCI guarantees a reset assertion period
of 1 ms.
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To simplify system design, the MPC107 also has the capability of asserting a reset signal (HRESET_CPU)
to the PowerPC processor, as shown in . In this configuration, the MPC107 asserts the processor HRESET
pin when the PCIRST# signal is asserted. The MPC107 will keep HRESET_CPU asserted for 217 processor
bus clocks after its HRESET pin is released; this extra time allows the MPC107’s clock generator DLL and
the processor’s PLL to stabilize in sequence. After this additional time has elapsed, all clocks in the system
should be reliable and ready for reset to be released.

Figure 26. MPC107 Reset Logic

Since the HRESET_CPU pin is an open-drain output, it requires a weak pull-up (1K to 10K in value) to
provide a valid signal when not asserted. However, since it is open-drain, it can be “wire-OR” connected
(with no additional logic) with other optional reset signals, such as those from a COP debugger port, a
power-supply monitor, a watchdog timer, and a reset switch (assuming that the latter devices are also
open-drain).

1.10.1  Self-Reset
Using the EPIC (embedded programmable interrupt controller) it is possible for software to restart itself.
The usual connections from the EPIC to the processor allow it to assert the SRESET signal; this allows
software to restart cleanly but it does not force external hardware to initialize itself. If the software needs to
force a complete system initialization, it can use the SRESET signal in a different manner as shown in
Figure 27.
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Figure 27. MPC107 Self-Hard-Reset Connections

As shown in Figure 27, the SRESET output in the EPIC unit is used to drive system reset logic, assuring
that all other devices see a general reset signal. Note that when the reset controller asserts HRESET to the
MPC107, the SRESET output will be cleared. To insure a stable reset system, the SRESET output should
be connected to a switch debounced input of the reset controller, so that HRESET will continue to be
asserted for the required amount of time, even when the SRESET signal is deasserted.

1.11  Packaging
The MPC107 uses a 25x25 TBGA package, which while much larger than the MPC106 package, reduces
overall board space by incorporating the memory data bus buffers, clock drivers, and I/O decoders.

In addition, the MPC107 uses annular ring of pads instead of a solid grid, so vias and escapes can be easily
placed within the chip area to facilitate PCB routing. For boards using double-sided components, the
MPC107 core supply, PLL filters and power/ground bypass capacitors can be placed within the center ring
(on the bottom of the PCB) for even greater space savings as well as superior electrical characteristics.

Table 12. MPC106 vs. MPC107 Board Space Usage

Object MPC106 MPC107

MPC10x 525 mm2 1089 mm2

Data Bus Buffers 1300 mm2 0

Clock Driver 400 mm2 0

I/O Decoder PAL 400 mm2 0

Total 2275 mm2 1089 mm2
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Figure 28. MPC107 Escape Pattern With Components

Note: In Figure 28, the MPC107 pad pattern is divided into four quadrants. Each BGA pad (typically 0.028 inches) 
connects diagonally to a via between the pads, for escape to lower layers. Of course, not all vias will be 
necessary, and since there are no pads on the bottom layer, it is fairly easy to escape using only four signal 
planes.
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