
1/35August 2001

AN1385
APPLICATION NOTE

PSD913F2 / 68HC11 Design Guide

CONTENTS

■ PHYSICAL
CONNECTIONS

■ FIRST DESIGN EXAMPLE
- IAP with NO MEMORY
PAGING

– Memory Map

– PSDsoft Express Design
Entry

■ SECOND DESIGN
EXAMPLE - IAP with
MEMORY PAGING

– Memory Map

– PSDsoft Express Design
Entry

■ THIRD DESIGN EXAMPLE
- ADVANCED IAP with
PAGING & SWAPPING

– Memory Map

■ CONCLUSION

■ REFERENCES

EasyFLASH™ PSD9XXF devices are members of a family of
flash-based peripherals for use with embedded microcontrol-
lers (MCUs). These Programmable System Devices (PSDs)
consist of memory, logic, and I/O. When coupled with a low-
cost, ROM-less 68HC11 MCU, the PSD forms a complete em-
bedded Flash system that is 100% In-System-Programmable
(ISP). There are many features in the PSD silicon and in the
PSDsoft Express development software that make ISP easy for
you, regardless of how much experience you have in embed-
ded flash design.

This document offers three Flash 68HC11 designs using a
PSD913F2 device. The first is a simple system to get up and
running quickly for basic applications, or to check out your pro-
totype 68HC11 hardware. The second design illustrates the
use memory paging. The third covers enhanced features of
PSD In-System-Programming, including memory paging and
segment swapping. You can start with the first design, and mi-
grate to the second and third as your functional requirements
grow. There are other members of the PSD9XXF family, in-
cluding the PSD913F1 and the PSD934F2. The PSD913F1
contains some EEPROM, and the PSD934F2 has a larger
Flash Memory and a larger SRAM than the PSD913F2. See
the PSD9XXF data sheet for details. This application note is
applicable to these other PSD9XXF family members, with only
slight variations.

In-System Programming and In-Application
re-Programming

Our industry uses the term In-System Programming, or ISP, in
a general sense. ISP is applicable to programmable logic, as
well as programmable Non-Volatile Memory (NVM). However,
an additional term will be used in this document: In-Application
re-Programming (IAP). There are subtle yet significant differ-
ences between ISP and IAP when microcontrollers are in-
volved. ISP of memory means that the MCU is off line and not
involved while memory is being programmed. IAP of memory
means that the MCU participates in programming memory,
which is important for systems that must be online while updat-
ing firmware. Often, ISP is well suited for manufacturing, while
IAP is appropriate for field updates. PSD9XXF devices provide
both ISP and IAP for your system. Keep in mind that IAP can
only program the memory sections of the PSD, not the config-

AN1385 - APPLICATION NOTE

2/35

uration and programmable logic portions of the PSD. ISP can program all areas of the PSD.

The Generic Problem with IAP

Typically, a host computer downloads firmware into an embedded flash system through a communication
channel that is serviced by the MCU. This channel is usually a UART, but any communication channel that
the 68HC11 supports will do (modem, SPI, CAN, J1850, etc.). The 68HC11 must execute the code that
controls the IAP process from an independent memory array that is not being erased or programmed. Oth-
erwise, boot code and flash programming algorithms (IAP loader code) will be unavailable to the 68HC11.
It is absolutely necessary to use an alternate memory array (an independent memory that is not being pro-
grammed) to store the IAP loader code.

A system designer must choose the type of alternate memory to store IAP loader code (ROM, SRAM,
Flash, or EEPROM); each type has advantages and disadvantages. This alternate memory may reside
external to the MCU or reside on-board the MCU. A top-level view of an embedded ISP/IAP Flash Memory
system with external memory is shown in Figure 1 .

Figure 1. Embedded Flash Memory system capable of IAP (5 devices)

A Common Solution

For IAP, some 68HC11 designers will use the fixed boot-loader feature of the 68HC11 UART to download
executable code into SRAM (either the small on-board 68HC11 SRAM or an external SRAM chip) then
68HC11 execution jumps to that SRAM to execute the remainder of the download process for program-
ming the main Flash Memory. This can be a cumbersome and error prone exercise using relocatable code
in volatile memory, which is difficult to debug and is vulnerable to power outages. Additionally, this method
restricts the designer to use a UART to implement IAP.

A Better, Integrated Solution

Figure 2 shows a two-chip solution using an EasyFLASH PSD913F2. This system has ample main Flash
Memory, a second smaller alternate Flash Memory to hold the IAP loader code and general data, and
more SRAM. All three of these memories can operate independently and concurrently; meaning the MCU
can operate from one memory while erasing/writing the other. This system also has programmable logic,
expanded I/O, and design security. The two-chip solution is 100% programmable in the factory or in the
field.

AI04445

Embedded System

System I/O

CPLD

68HC11

Host
Computer

Communication
Channel

Main Flash Memory
128 KBytes

Alternate Memory
for IAP Loader Code

System SRAM
2 KBytes

3/35

AN1385 - APPLICATION NOTE

Figure 2. Embedded Flash Memory system capable of IAP and ISP (2 devices)

By design, the IAP method just described requires MCU participation to exercise a communication chan-
nel to implement a download to the main Flash Memory. The PSD9XXF also offers an alternative method
(ISP) to program the PSD using a built-in IEEE-1149.1 JTAG interface requiring no MCU participation.
This means that a completely blank PSD can be soldered into place and the entire chip can be pro-
grammed in-system using ST’s FlashLINK JTAG cable and PSDsoft Express development software. No
68HC11 firmware needs to be written, just plug in the FlashLINK™ cable to your PC parallel port and begin
programming memory, logic, and configuration. This is a powerful feature of the PSD9XXF that allows im-
mediate development of application code in your lab, smart manufacturing techniques, and easy field up-
dates. The FlashLINK cable and PSDsoft Express are available from our website. PSDsoft Express is free.

Let's take a quick look inside the EasyFLASH PSD913F2, as shown in Figure 3. There are three indepen-
dent memory arrays that are selected on a segment basis when the proper MCU address is decoded in
the Decode PLD. The page register participates in memory decoding, which greatly simplifies memory
paging. The MCU address, data, and control signals have access to most areas of the chip. The GPLD
has 19 combinatorial logic outputs for external device chip-selects or general logic. There are 27 I/O pins.
A power management scheme can selectively shut down parts of the chip and tailor special power saving
mechanisms on-the-fly. The security feature can block access to all areas of the chip from a device pro-
grammer/reader. Finally, the self-contained JTAG-ISP controller allows programming of all areas of the-
chip.

AI04446

Embedded System

System
I/O

JTAG
ISP

68HC11

Host
Computer

Communication
Channel

128 KByte Flash
32 KByte Flash
2 KByte SRAM
Programmable Logic
I/O

PSD913F2

AN1385 - APPLICATION NOTE

4/35

Figure 3. Top Level Block Diagram of PSD913F2

AI04447

JTAG Controller

GPLD
19 Combinatorial

LogicOutputs

128 KByte
Primary Flash
8 Segments

Decode
PLD

2 KByte SRAM

32 KByte
Second Flash
4 Segments

Page
Reg

Power
Mngt

M
C

U
A

dd
re

ss
 /

D
at

a

P
LD

 B
us

I/O
 B

us

I/O
 P

or
t A

MCU Address / Data / Control Bus
PSD913F2

M
C

U
C

on
tr

ol
D

ev
ic

e
S

ec
ur

ity

I/O
 P

or
t B

I/O
 P

or
t C

I/O
 P

or
t D

5/35

AN1385 - APPLICATION NOTE

AI04448

ADIO0
ADIO1
ADIO2
ADIO3
ADIO4
ADIO5
ADIO6
ADIO7

ADIO8
ADIO9
ADIO10
ADIO11
ADIO12
ADIO13
ADIO14
ADIO15

AD0
AD1
AD2
AD3
AD4
AD5
AD6
AD7

A8
A9

A10
A11
A12
A13
A14
A15

EXTAL

XTAL

IRQ
XI RQ

PD0/RxD
PD1/TxD

PD2/MISO
PD3/MOSI

PA3/IC4/OC5
PA4/OC4

PA7/OC1

AD0
AD1
AD2
AD3
AD4
AD5
AD6
AD7

A8
A9

A10
A11
A12
A13
A14
A15

CNTL0
CNTL1
CNTL2

PD0

R/W
E

AS

R/W
E

AS

RESET
RESET\

RESET

68HC11/U1 PSD/U2

SPI Port

UART
port1

 12 MHz

PA0
PA1
PA2
PA3
PA4
PA5
PA6
PA7

PB0
PB1
PB2
PB3
PB4
PB5
PB6
PB7

2 x 16 LCD
MODULE

DATA BUS

ADDRESS

CHIP SELECT

29
28
27

23
22
21

7
6
5
4

2
52
51

3

PC0
PC1

PC3
PC4
PC5

20
19
18

14
13

17
PC2 JTAG-ISP

Connector

PC6
PC7

SYSTEM_RESET

AD7-AD0VCCVCC

SPARE
HC11 I/O

PA5/OC3
PA6/OC2

PA0/IC3
PA1/IC2
PA2/IC1

PD4/SCK
PD5/SS

XI RQ\
IRQ\

MOD A
MOD B

30
31
32
33
34
35
36
37

39
40
41
42
43
44
45
46

47
50
49

10

LAOUT0

25
24

MCUIO0
MCUIO0
MCUIO0
MCUIO0

CSLCD

MCU I/O
SIGNALS

R/W
CONTROL

12
11

TMS
TCK

TSTAT
TERR\
TDI
TDO

PD1 9

PD2 8

PSD913F2-15J (52 pin PLCC)

CSLCD

48

PHYSICAL CONNECTIONS

Connect your 68HC11 to the PSD, as shown in Figure 4. A 52-pin PLCC package is used in this example.
These same connections can be used for all three design examples in this document. All members of the
PSD9XX family share the same pinout.

This example design uses an LCD module, an external chip-select for the LCD, four miscellaneous MCU
controlled I/O signals, and a six-pin JTAG-ISP interface. There are 15 unused PSD I/O pins shown (should
use pullups to VCC with 100KΩ resistor or tie to GND if not used in your design).

Figure 4. - Physical Connections, 68HC11 and PSD913F2

AN1385 - APPLICATION NOTE

6/35

FIRST DESIGN EXAMPLE - IAP WITH NO MEMORY PAGING

The first design example will outline the steps to get a Flash Memory 68HC11 system up and running
quickly. No memory paging is used. You will see a memory map and the necessary design entry in the
PSDsoft Express software development environment. A PSD913F2 is used in this example, but the other
members of the EasyFLASH family may be used instead, with minor changes. See the PSD9XXF data
sheet for a comparison of family members

Memory Map

We are using a PSD913F2, which provides 128 Kbytes of main Flash Memory, 32 Kbytes of secondary
Flash Memory, and 2 Kbytes SRAM. However, for this first simple example we will only use 32 Kbytes of
main Flash Memory, 16 Kbytes of secondary Flash Memory, and 2 Kbytes of SRAM. See the 68HC11
memory map in Figure 5.

Figure 5. Memory Map for First Design - IAP with no Memory Paging

Note: 1. 68HC11 boots from the reset vector stored here.
2. IAP loader code gets programmed here by JTAG-ISP or a convetional programmer tool.

The nomenclature fs0, fs1, csboot0, csboot1, rs0, and csiop in Figure 5 refer to the individual internal
memory segments of the PSD. The main PSD Flash Memory has a total of eight 16 Kbyte segments (fs0-
fs7). The secondary PSD Flash Memory has a total of four 8 Kbyte segments (csboot0-csboot3). The 2
Kbyte PSD SRAM has a single segment (rs0). The internal PSD control registers lie in a 256-byte address
space named csiop. There is also an external memory chip-select in this example, cslcd, that is used for
the LCD module. These PSD memory elements are placed at the desired locations within the system
memory map by pointing and clicking choices within PSDsoft Express software.

With the memory arrangement of Figure 5, the 68HC11 may perform IAP by executing from the secondary

FFFFh

AI04449

csicd, ext chip sel for LCD

rs0, 2k bytes PSD SRAM

68HC11 Regs/RAM
csiop, PSD control regs

A000h - A7FFh

csboot1
8K bytes

Secondary Flash

csboot0
8K bytes

Secondary Flash

nothing mapped

fs1
16K bytes
Main Flash

fs0
16K bytes
Main Flash

nothing mapped

E000h
DFFFh

C000h
BFFFh

A800h

8300h - 83FFh

9FFFh

8400h

8200h - 82FFh
8000h
7FFFh

4000h
3FFFh

0000h

(Note 1)

(Note 2)

7/35

AN1385 - APPLICATION NOTE

Flash Memory segments (csboot0 and csboot1) while erasing and programming the main Flash Memory
segments (fs0 and fs1). The secondary Flash Memory is initially programmed though JTAG-ISP or other
programming devices with firmware containing the following:

– 68HC11 reset vector and initialization routines

– 68HC11 interrupt vectors and service routines

– I/O management routines

– IAP loader code.

At power-on or after reset, the 68HC11 boots from secondary Flash Memory, runs a checksum of the main
Flash Memory, programs and verifies main Flash Memory via the UART if necessary, then execution
jumps to main Flash Memory.

Note: The memory map of Figure 5 requires that the placement of internal 68HC11 registers and RAM
be relocated from their default base address 0000 hex to a new base address, 8000 hex. This will make
your system compatible with memory paging should you decide to add paging later. There is a special
register inside the 68HC11 (the INIT register) that facilitates this move. The INIT register must be written
with the value of 88 hex within the first 64 MCU oscillator clocks after power up. See the 68HC11 reference
manual from Motorola for details on the INIT register.

PSDsoft Express Design Entry

Highlights of design entry will be given here. The steps are simple and navigation through PSDsoft Ex-
press is easy. Invoke PSDsoft Express and follow along if you wish.

Invoke PSDsoft Express and set up your project

– Start PSDsoft Express.

– Create a new project.

– Select your project folder and name the project (in this example, name the project 'simple11' in the
folder PSDexpress\my_project).

– Select an MCU (in this example, we're using a Motorola 68HC11D0, so chose 68HC(L)11Dx).

– Select a PSD913F2 and a 52-pin PLCC package.

This is what the screen should look like after you've made the selections:

AN1385 - APPLICATION NOTE

8/35

Click OK. Now you will be asked if you want to use the Design Assistant or a pre-defined template. Choose
Design Assistant. This exercise in the Design Assistant will help you become familiar with the design flow.
In the future, you may choose to use a template, which will make many of the choices for you, based on
your selection of MCU and PSD.

Always reference the main flow diagram shown below to help you navigate through the design process.
Clicking on individual boxes within the flow diagram will invoke a process. A box shadowed in red identifies
the next process that needs to be completed. PSDsoft Express will automatically invoke the next required
process only the first time though a design. When you reenter an existing design, you must choose the
next process that you wish to enter from the design flow diagram. If you invoke a process that invalidates
other processes downstream, the gray boxes indicate which processes must be invoked again, and the
red shadow indicates which process to invoke first.

9/35

AN1385 - APPLICATION NOTE

PSD Pin Definition

Next you will see the Pin Definition Screen which allows you to define each PSD pin function on a point
and click basis. Notice that all of the PSD pins that connect to the 68HC11 are already defined for you.
You only have to define the remaining pins. For this example, we’ll configure the PSD to use:

– One pin on Port A to drive a single demultiplexed MCU address line out to an LCD module.

– Four pins on Port B as general purpose MCU I/O

– One pin on Port B as a chip-select output for the LCD module.

– Six pins on Port C as JTAG interface signals for ISP

Click on pa0, type in signal name of "laout0", click on 'Latched address out' in the 'Other' category, then
'Add' or 'Update'. This will produce a demultiplexed 68HC11 address line output from the PSD on pin pa0
that should be routed to the LCD module on the circuit board as shown in the schematic of Figure 4.

This is what the screen should now look like:

AN1385 - APPLICATION NOTE

10/35

Now click pb0, name the signal "mcuio0", click ’MCU I/O mode’ in the ’Other’ category, and click ’Add’ or
’Update’. Repeat for pins pb1, pb2, and pb3, giving names mcuio1, mcuio2, and mcuio3 respectively. This
creates four I/O pins on port B that can be set, cleared, and read by the 68HC11 accessing PSD control
registers at runtime. These PSD control registers reside at various address offsets from the base address
designated "csiop". In a later section you will see how to place csiop within your system memory map. The
screen should now look like this:

11/35

AN1385 - APPLICATION NOTE

Next click pin pb7, name it "cslcd", choose ’External chip-select - Active-Hi’. then click ’Add’ or ’Update’.
This designates pin pb7 as a chip-select output for the LCD module. The screen should have the following
look:

AN1385 - APPLICATION NOTE

12/35

Finally, set up six pins on Port C for JTAG-ISP. Four standard JTAG pins are defined by default (tms, tck,
tdi, tdo). For this example, add two more JTAG signals, tstat and terr, to speed the ISP process (see Ap-
plication Note AN1153 to learn why it is faster with six pins). To do this, click on pin pc3, choose ’Dedicated
JTAG - TSTAT’ then click ’Add’ or ’Update’. The signal name is automatically filled in. Also, the signal
TERR on pin pc4 is automatically added since tstat and terr must be used as a pair. The screen should
now look like this:

That’s all there is to it. Click ’View’ to see a summary, click ’Next>>’ to exit Pin Definition.

13/35

AN1385 - APPLICATION NOTE

System Memory Map: PSD Page Register and Chip-select Definitions

Now that the PSD pins are defined, you will need to define the system memory map. This is accomplished
by defining all the chip-selects in the system (both internal to the PSD and external chip-selects), and also
defining the function of the PSD page register.

The three memories inside the PSD are individually selected segment-by-segment when MCU addresses
are presented to the Decode PLD (DPLD). Each internal PSD memory segment has its own individual
chip-select name. For example, the main PSD Flash Memory has eight individual chip-selects (one for
each sector) named fs0 - fs7. See the PSD9XXF data sheet for details. Each PSD memory segment must
be defined in PSDsoft Express if it is to be accessed by the MCU.

For this example, we must define the internal PSD memory segment chip-selects: fs0, fs1, csboot0,
csboot1, rs0, and csiop to match the memory map of Figure 5. The external chip-select for the LCD mod-
ule, cslcd, must also be defined, as shown in Figure 5.

In many 68HC11 system designs, memory paging is used to address more than 64 Kbytes of address
space. However, for this simple design, no paging is used, so no PSD page register bits need to be de-
fined.

You should see the following Page Register Definition screen appear. Simply click ’Next >>’ since we are
not using memory paging in this first design example.

AN1385 - APPLICATION NOTE

14/35

Now define the internal and external chip-selects. Start with the internal chip-select for the PSD SRAM,
which is "rs0". Then enter start and stop MCU addresses to match the memory map of Figure 5. Additional
signal qualifiers (68HC11 control signals e, r/w, as) are NOT needed for internal PSD memory chip-selects
as this is taken care of in silicon. Your screen should match the one shown below:

rs0:

Next, define the chip-select for the internal PSD control registers by clicking on "csiop" in the left side of
the screen. Enter the address range as shown:

csiop:

Continue to define internal PSD memory chip-selects for the main Flash Memory segments fs0 and fs1,
and then the secondary Flash Memory segments csboot0 and csboot1. Use Figure 5 as a guide for ad-
dress ranges. Again, no signal qualifiers are needed for internal PSD memory chip-selects. This is what
the screen should look like for each chip-select:

15/35

AN1385 - APPLICATION NOTE

fs0:

fs1:

csboot0:

csboot1:

AN1385 - APPLICATION NOTE

16/35

Finally, define the external chip-select for the LCD module, "cslcd’. This chip-select is different for two
reasons. First, it is an external chip-select that does not activate any memory element inside the PSD be-
cause the signal "cslcd" is output on a PSD I/O pin. And second, this chip-select requires a qualifier, mean-
ing that this logic signal is true only for a given MCU address range AND only when another signal is
active. In this case "cslcd" is true only when the MCU presents an address in the range of 8300 to 83FF
hex AND when the 68HC11 control signal "e" is true. Notice that the signal "e" is in the list of Available
Signal Qualifiers. Be sure to qualify "cslcd" with the signal "e" as shown below, then click ’Done’:

cslcd1:

17/35

AN1385 - APPLICATION NOTE

Additional PSD Configuration

Now you should see the main flow diagram again. Click on the box ’Additional PSD Configuration’. This is
where you may choose to set the security bit to prevent a device programmer from examining or copying
the contents of the PSD. You can also click through the other sheets on this screen to set the JTAG USER-
CODE value and set sector protection on PSD Non-Volatile memory segments.

C Code Generation

You can take advantage of the low-level C code drivers that are generated by PSDsoft Express for ac-
cessing memory elements within the PSD by clicking on the ’C code Generation’ box in the design flow
window. ANSI C code functions and headers are generated for you to paste into your 68HC11 C compiler
environment. Just tailor the code to meet your system needs and compile. C code generation can be per-
formed anytime after a project is opened.

To generate ANSI C functions and headers, simply specify the folder(s) in which you want the header files
and C source file to be written, and name the C source file. Select the categories of functions that you
would like to include, then click "Generate". Three files will be written to your specified folder(s):

■ <your_specified_name>.cANSI-C source for all of the selected functions

■ psd913F2.h¾ANSI-Cheader file to define particular PSD registers

■ map913F2.h¾ANSI-Cheader file to define locations of system memory

elements (Main and Secondary Flash Memory, PSD registers, etc.).

Notice that you do not have a choice to rename the two generated header files. This is because those
header files are specified by name within the generated C function source file. If you edit the names of the
generated header files, be sure to edit the generated C function source file to match the new header file
names.

The three generated files may now be tailored and integrated into your 68HC11 compiler environment.
The file psd913F2.h contains a #define statement for each individual C function within the
<your_specified_name>.c file. Edit psd913F2.h and simply remove the comment delimiters (//) from the
#define statement for each generated C function that you would like to be compiled with the rest of your
C source code.

There are also coded examples available. Click on the 'Coded Examples' tab at the top of the C Code
Generation screen. This sheet contains several examples that you may use as a basis for building your
own C code application. These are complete projects (main, functions, and headers) targeted toward a
particular MCU. You may copy these files to some folder to browse them for ideas, or cut and paste sec-
tions from the examples into your own MCU cross-compiler environment.

Merging MCU Firmware

Now that all PSD pins and internal configuration settings have been defined, PSDsoft Express will create
a single object file (*.obj) that is a composite of your 68HC11 firmware and the PSD configuration.
FlashLINK, PSDpro, and third party programmers can use this object file to program a PSD device. PSD-
soft Express will create simple11.obj for this design example.

During this merging process, PSDsoft Express will input firmware files from your 68HC11 compiler/linker
in S-record or Intel HEX format. It will map the content of these files into the physical memory segments
of the PSD, according to the choices you made in the 'Chip-select Equations' screen. This mapping pro-
cess translates the absolute system addresses inside 68CH11 firmware files into physical internal PSD
addresses that are used by a programmer to program the PSD. This address translation process is trans-
parent. All you need to do is type (or browse) the file names that were generated from your 68HC11 linker
into the appropriate boxes and PSDsoft Express does the rest. You can specify a single file name for more
than one PSD chip-select, or a different file name for each PSD chip-select. It depends on how your
68HC11 linker has created your firmware file(s). For each PSD chip-select in which you have specified a

AN1385 - APPLICATION NOTE

18/35

firmware file name, PSDsoft Express will extract firmware from that file only between the specified start
and stop addresses, and ignore firmware outside of the start and stop addresses.

Click on ’Merge MCU Firmware’ in the main flow diagram. First you will notice that PSDsoft Express will
"Fit" your PSD configuration to the silicon architecture of the PSD. After the fitting process is complete,
you’ll see this screen:

In the left column are the individual PSD memory segment chip-selects (FS0, FS1, etc). The next column
shows the logic equations for selection of each internal PSD memory segment. These equations reflect
the choices that you made while defining PSD internal chip-select equations in an earlier step. In the mid-
dle of the screen are hexadecimal start and stop addresses that PSDsoft Express has filled in for you
based on your chip-select equations. On the right are fields to enter (browse) the MCU firmware files.

19/35

AN1385 - APPLICATION NOTE

Select ’Intel Hex Record’ for ’Record Type’ as shown. Now scroll down to the bottom until you see
CSBOOT0. Use the ’Browse’ button and select the firmware file, PSDexpress\examples\isp_hc11.hex.
Now do the same for CSBOOT1. The screen should look like this:

This specification places firmware in secondary PSD Flash Memory segments csboot0 and csboot1. PS-
Dsoft Express will extract any firmware that lies inside the file isp_hc11.hex between MCU addresses
C000 and DFFF and place it in PSD memory segment csboot0. It will also extract any firmware that lies
inside the file isp_hc11.hex between MCU addresses E000 and EFFF and place it in PSD memory seg-
ment csboot1. Click OK to generate the composite object file, simple11.obj.

Note: The file isp_hc11.hex will run on the DK68HC11 development board from ST, and display some
messages on the LCD screen to indicate a successful ISP session. For your own prototype project, create
a simple firmware file that configures your system hardware and performs rudimentary tasks to check out
your new hardware. In this design example, there are 16 Kbytes available in secondary Flash Memory
segments csboot0 and csboot1, which is more than enough for this simple boot and test code. After your
new hardware is proven, you can add more code to the boot area to for advanced tasks, including IAP of
main PSD Flash Memory.

AN1385 - APPLICATION NOTE

20/35

Programming the PSD

The simple11.obj file can be programmed into the PSD by one of three ways:

– The ST FlashLINK JTAG cable, which connects to the PC parallel port.

– The ST PSDpro device programmer, which also uses the PC parallel port.

– Third-party programmers, from Stag, Needhams, and others. See our web site at www.wafes-
cale.com for compatible third-party programmers.

Programming with FlashLINK

Connect the FlashLINK JTAG-ISP cable to your PC parallel port. Click the 'JTAG-ISP' box in the design
flow window. You should see the following screen:

This window enables you to perform JTAG-ISP operations and also offers a loop back test for your
FlashLINK cable. If this is your first use, test your FlashLINK cable and PC parallel port by clicking the 'HW
Setup' button, then click 'LoopTest' button and follow the directions.

Now let's define our JTAG-ISP environment. For this example project, PSDsoft Express should have filled
in the folder and filename of the object file to program, the PSD device, and the JTAG-ISP operation, as
shown in the screen above. For this design example, we have chosen to use all six JTAG-ISP pins (in-
stead of four). Be sure to indicate "6 pins" as shown above to achieve minimum JTAG-ISP programming
times (refer to Application Note AN1153 for details on six pins vs. four)

To begin programming, connect the JTAG cable to the target system, power-up the target system, and
click 'Execute' on the JTAG screen. The Log window at the bottom of the JTAG screen shows the
progress. Programming should just take a few seconds.

There are optional choices available when the 'Properties.." button is clicked. One choice includes setting

21/35

AN1385 - APPLICATION NOTE

the state of all non-JTAG PSD I/O pins during JTAG-ISP operations (make them inputs or outputs). The
default state of all non-JTAG PSD I/O pins is "input", which is fine for this design example. The other
choice allows you to specify a USERCODE value to compare before any JTAG-ISP operation starts. This
is typically used in a manufacturing environment (see on-screen description for details).

After JTAG-ISP operations are completed, you can save the JTAG setup for this programming session to
a file for later use. To do so, click on the ’Save’ button. To restore the setup of a different previous session,
click the ’Browse..’ button.

Programming with PSDpro

Connect the PSDpro device programmer to your PC parallel port per the installation instructions. Click on
the ’Conventional Programmer’ box in the design flow window. You will see this:

If this is the first use of the PSDpro, you’ll need to designate the PSDpro as the device connected to your
parallel port. To do this, click the "SET H" icon button at the top of the "Conventional Programming" screen
and choose the PSDpro. Then click on the ’H TEST’ icon to perform a test of the PSDpro and the PC par-
allel port. After testing, place a PSD913F2 into the socket of the PSDpro and click on the ’Program’ icon
(the simple11.obj file is automatically loaded when this process is invoked). The messaging of PSDsoft
will inform you when programming is complete.

Note: This window is also helpful even if you do not have a PSDpro device programmer. Use this window
to see where the "Merge MCU Firmware" utility has placed 68HC11 firmware within physical memory of
the PSD. For this design example, click on the secondary PSD Flash Memory icon "Fb" in the tool bar,
then scroll to the end of segment csboot1 to see the 68HC11 reset vector at absolute MCU addresses
FFFEh and FFFFh, which translates to direct physical addresses 23FFEh and 23FFFh respectively. To
see how all of your 68HC11 absolute addresses translated into direct physical PSD memory addresses,
see the report that PSDsoft generates under ’Reports’ from the main toolbar, then select ’Address Trans-
lation Report’. Within the report, the ’start’ and ’stop’ addresses are the absolute MCU system addresses
that you have specified. The addresses shown in square brackets are the direct physical addresses used
by a device programmer to access the memory elements of the PSD in a linear fashion (a special device
programming mode that the MCU cannot access).

AN1385 - APPLICATION NOTE

22/35

SECOND DESIGN EXAMPLE - IAP WITH MEMORY PAGING

The second design example builds upon the first by adding memory paging which allows the 68HC11 to
access all of the memory resident on the PSD913F2. The physical connections between the 68HC11 and
PSD913F2 do not change, but the memory map, PSD page register definition, and some PSD chip-select
equations do change. A PSD913F2 is still used in this example, but the other members of the EasyFLASH
family may be used instead with minor changes. See the PSD9XXF data sheet for a comparison of family
members.

Memory Map

The PSD913F2 provides 128 Kbytes of main Flash Memory, 32 Kbytes of secondary Flash Memory, and
2 Kbytes SRAM. We’ll use all of the main Flash Memory, all of the SRAM, and one half of the secondary
Flash Memory (16 Kbytes) to hold the IAP bootloader code, 68HC11 interrupt vectors, and common firm-
ware functions. We’ll allocate the remaining 16 Kbytes of secondary Flash Memory for general data stor-
age.

Since the 68HC11 cannot address more than 64 Kbytes of address space directly, we will use paging (or
banking) to take full advantage of the 162 Kbytes of total memory on the PSD913F2. The PSD has a built-
in page register for this purpose. Many MCU cross-compilers support paging today.

Examine the memory map in Figure 6. At power on or reset, the 68HC11 boots from secondary Flash
Memory, runs a checksum of the main Flash Memory, programs and verifies main PSD Flash Memory
(IAP) via the UART if necessary, then execution jumps to main Flash Memory. The 68HC11 can access
all of Flash Memory now since it is paged across four memory pages.

Notice that the memory map is divided into two areas. The upper memory (8000 to FFFF) is a common
area, meaning the MCU will have access to this region regardless of what memory page is active. This
common area holds the following:

– 68HC11 reset vector and initialization routines

– 68HC11 interrupt vectors and service routines

– I/O and memory page management routines

– SRAM variables and SRAM stack

– IAP loader code

– Anything else that must be accessible no matter what memory page is selected.

The lower half of memory (0000 to 7FFF) is the region that will be "paged" or "banked". This paged area
of 32 Kbytes allows the 68HC11 to address large amounts of memory. We'll place all 128 Kbytes of main
PSD Flash Memory across four 32K-byte pages (memory pages 0 through 3). The remaining half of the
secondary PSD Flash Memory will be placed on memory page 4 and used for general data.

To make this division of the memory map possible (that is, common upper half, paged lower half), the
68HC11 initialization firmware must move the internal 68HC11 SRAM and 68HC11 registers from their
default location of 0000 hex, to the new location of 8000 hex, as shown in Figure 6. There is a special
register within the 68HC11 (the INIT register) that facilitates this move. The INIT register must be written
with the value 88 hex within the first 64 MCU oscillator clocks after power up. See the 68HC11 reference
manual from Motorola. This move is necessary to "clean-up" the memory map, meaning that the entire
region from 0000 - 7FFF is now free to use for paging, once these internal MCU locations are moved up
and out of the way to 8000 hex. Also note that the common area (non-paged) had to be located in the
upper half of memory (8000h - FFFF) because the 68HC11 boots from high memory (FFFE). Keep in
mindthat all of the PSD page register bits are zero at power-up and after a system reset.

23/35

AN1385 - APPLICATION NOTE

Figure 6. Memory Map for Second Design - IAP with Memory Paging

Note: 1. 68HC11 boots from the reset vector stored here.
2. IAP loader code gets programmed here by JTAG-ISP or a convetional programmer tool.

FFFFh

AI04450

cs_lcd, ext chip sel for LCD

rs0, 2k bytes SRAM

68HC11 Regs/RAM
csiop, PSD control regs

csboot1
8K bytes

Secondary Flash

csboot0
8K bytes

Secondary Flash

nothing mapped

fs1
16K bytes
Main Flash

fs0
16K bytes
Main Flash

nothing mapped

C000h

A800h

8300h - 83FFh

A000h - A7FFh

8400h

8200h - 82FFh
8000h - 81FFh

7FFFh

4000h
3FFFh

0000h

(Note 1)

(Note 2)

Page 0

BFFFh

9FFFh

PAGED
REGION

COMMON
REGION

(any page)

fs3
16K bytes
Main Flash

fs2
16K bytes
Main Flash

Page 1

fs5
16K bytes
Main Flash

fs4
16K bytes
Main Flash

Page 2

fs7
16K bytes
Main Flash

fs6
16K bytes
Main Flash

Page 3

8000h
8000h

8000h

0000h
0000h

0000h

csboot3
8K bytes

Secondary Flash

csboot2
8K bytes

Secondary Flash

Page 40000h

4000h

AN1385 - APPLICATION NOTE

24/35

PSDsoft Express Design Entry

To implement the memory map with paging techniques shown in Figure 6, invoke PSDsoft Express, open
the project "simple11" from the first design example. Now pull down the menu ’Project’ from the top of the
screen, and select ’Save As’. For this second design example, save the first project under the new name
"page11". Now click on the Pin Definition box in the design flow diagram. Click OK to get to the Page Reg-
ister Definition screen since no pin assignment needs to be changed for this second design.

There are a total of five memory pages used in Figure 6, so you will need to define three PSD page register
bits for paging (23 = 8), as two PSD page register bits are not enough (22 = 4). To do so, click on pgr0,
pgr1, and pgr2 as shown below.

Click ’Next >>’.

The chip-select equations for PSD SRAM (rs0), PSD control registers (csiop), and the external LCD mod-
ule (cslcd) do not change from the first design example. Only chip-selects for main PSD Flash Memory
and some of the secondary PSD Flash Memory need to be changed for this second design because they
are affected by paging.

25/35

AN1385 - APPLICATION NOTE

Define the internal PSD memory chip-select signals to implement the memory map of Figure 66. The fol-
lowing illustrates how the chip-selects will look when you enter their definitions:

fs0:

fs1:

fs2:

fs3:

Continue defining fs4 and fs5 on memory page 2, and fs6 and fs7 on memory page 3 per the memory map
in Figure 6.

The chip-selects for csboot0 and csboot1 did not change from the first design example because no page
number was specified in their definition. This means they will appear to the 68HC11 on any memory page,
as indicated in Figure 6.

AN1385 - APPLICATION NOTE

26/35

Next, define chip-selects as shown below for the secondary PSD Flash Memory csboot2 and csboot3 to
match Figure 6:

csboot2:

csboot1:

Click ’Done’ after defining all chip-selects. You should now see the main flow diagram.

Click the ’Merge MCU Firmware’ box in the design flow diagram. You will see an informational dialog box
pop up that indicates memory paging is used and that the firmware file(s) you specify should be set up to
handle paging. Click OK, since for this design example the firmware that would run the IAP process is not
paged. It resides in csboot0 and csboot1 of the PSD and is active on all pages (independent of what mem-
ory page is selected).

Click the "More Info" button in Step 1 of the Merge Firmware screen if your future 68HC11 system design
will execute code from different pages, and that code will be programmed into the PSD with a device pro-
grammer (for example, you specify filename(s) in this screen that go to PSD memory segments that are

27/35

AN1385 - APPLICATION NOTE

paged).

Now specify the name of the 68HC11 firmware file to place into the secondary Flash Memory segments
csboot0 and csboot1. This can be any firmware file that you create to implement IAP with paging. No firm-
ware filename needs to be designated for the main PSD Flash Memory segments (fs0 - fs7) since they
will be programmed by the 68HC11 during IAP.

Click OK in the merging screen to create a composite object file for programming. You are now ready to
program the PSD913F2. See the section entitled “Programming the PSD“ on page 20.

AN1385 - APPLICATION NOTE

28/35

THIRD DESIGN EXAMPLE - ADVANCED IAP WITH PAGING & SWAPPING

The third design example adds enhanced IAP features. The physical connections between the 68HC11
and PSD913F2 do not change, but the memory map, PSD page register definition, and some PSD chip-
select definitions do change. The focus of this enhanced design is to get the most use out of the 64 Kbyte
address space that the 68HC11 can access directly. This means swapping the IAP loader code out of the
memory map after IAP is complete, and replacing it with application code, leaving the maximum amount
of address space available for the application. Swapping out the IAP loader code not only frees up ad-
dress space for application code, it also allows the software designer the option of having two sets of in-
terrupt vectors and associated service routines; one set during IAP, and a different set after IAP during the
normal application. In addition, this swapping technique allows the IAP loader code itself to be download-
ed in the field if necessary while the 68HC11 operates out of main PSD Flash Memory.

Memory Map

The memory map has two basic configurations: boot-up/IAP and normal application. See Figures 7 and 8.

Memory Map Configuration at Boot-up or Reset

Figure 7. Memory Map for Third Design at Boot-Up or Reset

Note: 1. 68HC11 boots from the reset vector stored here.
2. IAP loader code gets programmed here by JTAG-ISP or a convetional programmer tool.

Figure 7 shows the memory map at system power-on or at system reset. The swap bit is defined as one
of the eight internal PSD page register bits. The swap bit is an example of how the page register bits can

FFFFh

AI04451

cs_lcd, ext chip sel for LCD

rs0, 2k bytes SRAM

68HC11 Regs/RAM
csiop, PSD control regs

csboot1
8K bytes

Secondary Flash

csboot0
8K bytes

Secondary Flash

nothing mapped

fs1
16K bytes
Main Flash

fs0
16K bytes
Main Flash

nothing mapped

C000h

A800h

8300h - 83FFh

A000h - A7FFh

8400h

8200h - 82FFh
8000h - 81FFh

7FFFh

4000h
3FFFh

0000h

(Note 1)

(Note 2)

Page 0

BFFFh

9FFFh

PAGED
REGION

COMMON
REGION

(any page)

fs3
16K bytes
Main Flash

fs2
16K bytes
Main Flash

Page 1

fs5
16K bytes
Main Flash

fs4
16K bytes
Main Flash

Page 2

fs7
16K bytes
Main Flash

fs6
16K bytes
Main Flash

Page 3

8000h
8000h

8000h

0000h
0000h

0000h

csboot3
8K bytes

Secondary Flash

csboot2
8K bytes

Secondary Flash

Page 40000h

4000h

SWAP bit = 0 (default).
MCU boots from csboot0/csboot1.
MCU runs checksum of main flash.
MCU downloads main flash if needed.
MCU sets SWAP bit = 1.

29/35

AN1385 - APPLICATION NOTE

be implemented for uses other than memory paging. Here’s what the 68HC11 does upon power-up or re-
set:

– Boot from secondary Flash Memory (csboot0/csboot1) at address FFFEh

– Perform a checksum of main Flash Memory

– Download main Flash Memory from host computer if needed (IAP) and validate contents

– Set the swap bit to logic one.

Note that all PSD page register bits are cleared to zero at power-up and a reset.

Memory Map Configuration After IAP and During Normal Application

Setting the swap bit in the PSD page register swaps the location of the secondary Flash Memory seg-
ments csboot0/csboot1 (which were in the MCU boot area) with a segment of main Flash Memory, fs7, as
shown in Figure 8. (Note: fs7 is 16 Kbytes and csboot1 & 2 are 8 Kbytes each - thus the 2:1 ratio). This
swapping action is implemented by qualifying the chip-selects for csboot0, csboot1, and fs7 with the PSD
page register bit named swap.

Figure 8. - Memory Map, Enhanced Design, Normal Operation

Figure 8 shows the memory map after IAP is complete and after the 68HC11 has set the swap bit to logic
one. At this point, the 68HC11 can download new IAP loader code to secondary Flash Memory segments
csboot0/csboot1 if needed. Another one of the eight PSD page register bits is used for logic in this design,

FFFFh

AI04452

cs_lcd, ext chip sel for LCD

rs0, 2k bytes SRAM

68HC11 Regs/RAM
csiop, PSD control regs

nothing mapped

fs1
16K bytes
Main Flash

fs0
16K bytes
Main Flash

nothing mapped

C000h

A800h

8300h - 83FFh

A000h - A7FFh

8400h

8200h - 82FFh
8000h - 81FFh

7FFFh

4000h
3FFFh

0000h Page 0

BFFFh

9FFFh

PAGED
REGION

COMMON
REGION

(any page)

fs3
16K bytes
Main Flash

fs2
16K bytes
Main Flash

Page 1

fs5
16K bytes
Main Flash

fs4
16K bytes
Main Flash

Page 2

fs6
16K bytes
Main Flash

Page 3

8000h
8000h

8000h

0000h
0000h

0000h

csboot3
8K bytes

Secondary Flash

csboot2
8K bytes

Secondary Flash

Page 40000h

4000h

- SWAP bit = 1.
- Now the MCU boot area (C000h-FFFFh)is
 occupied by main flash memory instead of
 secondary flash memory.
- MCU can download new IAP loader code
 into csboot0/csboot1 if desired after
 setting the UNLOCK bit = 1.
- MCU can use csboot2/csboot3 for general
 data storage.

fs7
16K bytes
Main Flash

csboot1
8K bytes 2nd Flash

if UNLOCK = 1
csboot1

8K bytes 2nd Flash
if UNLOCK = 1

SWAP

AN1385 - APPLICATION NOTE

30/35

named ’unlock’. The 68HC11 must first set the unlock bit to logic one before updating IAP loader code. In
this final configuration, the 68HC11 has available:

* 16 Kbytes of main Flash Memory in the common area (C000h-FFFFh)

* 112 Kbytes of main Flash Memory across four pages of lower memory (0000h-7FFFh)

* 2 Kbytes of SRAM in addition to the SRAM that resides on the 68HC11

* 16 Kbytes of secondary Flash Memory for general data storage on memory page 4

* 16 Kbytes of secondary Flash Memory for IAP loader code.

Each time this 68HC11 system gets reset or goes through a power-on cycle, the PSD presents the mem-
ory map of Figure 7 to the MCU, and the boot sequence is repeated.

Note: When the 68HC11 is executing code from the secondary PSD Flash Memory (csboot0 and
csboot1), and then it sets the swap bit, it is very important that the 68HC11 firmware linker has set up "syn-
chronized" code in the segment of main PSD Flash Memory (fs7) that replaces the secondary PSD Flash
Memory. This is necessary to create seamless MCU operation during the actual swap of memory since
the 68HC11 is completely unaware that there is a swap going on. It just continues to fetch opcodes and
operands during the memory swap. This requires that the operands and opcodes in main PSD Flash Mem-
ory that follow the MCU instructions that actually set the swap bit in the secondary PSD Flash Memory,
are continuos. This means that the remainder of the instructions to complete setting the swap bit is present
in main PSD Flash Memory so there is continuos operation throughout the memory swapping process.

PSDsoft Express Design Entry

To implement the advanced memory maps of Figures 7 and 8, invoke PSDsoft Express, open the project
"page11" from the second design example. Now pull down the menu ’Project’ from the top of the screen,
and select ’Save As’. For this third design example, save the second project under the new name
"advanc11". Now click on the ’Pin Definition’ box in the design flow diagram. Click "OK" to get to the ’Page
Register Definition’ screen since no pin assignment needs to be changed for this third design.

31/35

AN1385 - APPLICATION NOTE

You will need to define two additional PSD page register bits to be used for logic instead. The three page
register bits that were used for memory paging in the second design example stay just as they are. Define
page register bits for logic, as shown below, labeling one bit "swap" and the other bit "unlock":

Click ’Next >>’.

The chip-select equations for PSD SRAM (rs0), PSD control registers (csiop), and the external LCD mod-
ule (cslcd), and most of the internal PSD memory segments do not change from the second design exam-
ple. Only three chip-selects need to change for the third design because they are affected by memory
swapping.: main PSD Flash Memory segment fs7, and two secondary PSD Flash Memory segments
csboot0 and csboot1.

AN1385 - APPLICATION NOTE

32/35

These three internal memory chip-selects must be qualified with the page register bit "swap", as shown
below. The secondary PSD memory segments, csboot0 and csboot1, must be additionally qualified by
"unlock" to prevent the MCU from inadvertently writing to IAP boot and loader code. Also notice the new
page number assignments. The following illustrates how the chip-selects will look when you enter their
definition:

fs7:

33/35

AN1385 - APPLICATION NOTE

csboot0:

csboot1:

Notice that these PSD physical memory segments can appear in more that one MCU address space de-
pending on the memory page and the "swap" and "unlock" qualifiers. Now the memory maps of Figures 7
and 8 have been implemented.

Click ’Done’ and should see the main flow diagram.

Click the "Merge MCU Firmware" box in the design flow diagram. You will see an informational dialog box
pop up that indicates memory paging is used and that the firmware file(s) you specify should be set up to
handle paging. Click OK, since for this design example the firmware that would run the IAP process ex-
ample is not paged. When the MCU is executing IAP code, it resides in csboot0 and csboot1 of the PSD
and is active on all pages (independent of what memory page is selected).

Click the "More Info" button in Step 1 of the Merge Firmware screen if your future 68HC11 system design
will execute code from different pages, and that code will be programmed into the PSD with a device pro-
grammer (for example, you specify filename(s) in this screen that go to PSD memory segments that are
paged).

Now specify the name of the 68HC11 firmware file to place into the secondary Flash Memory segments
csboot0 and csboot1. This can be any firmware file that you create to implement IAP with paging and
swapping. No firmware filename needs to be designated for the main PSD Flash Memory segments (fs0

AN1385 - APPLICATION NOTE

34/35

- fs7) since they will be programmed by the 68HC11 during IAP.

Click "OK" in the merging screen to create a composite object file for programming. You are now ready to
program your PSD913F2. See the section entitled “Programming the PSD“ on page 20.

CONCLUSION

These examples are just three of an endless number of ways to configure the EasyFLASH PSD for your
system. Concurrent memories with a built-in programmable decoder at the segment level offer excellent
flexibility. Also, as you have seen with the swap and unlock bits, the page register bits do not have to be
used just for paging through memory. The ability to enhance your system does not require any physical
connection changes, as everything is configured internal to the PSD. And finally, the JTAG channel can
be used for ISP anytime, and anywhere, with no participation from the MCU. All of these features are
cross-checked under the PSDsoft Express development environment to minimize your effort to design a
Flash Memory 68HC11 system capable of ISP and IAP.

REFERENCES

1. PSD9XXF Family Data Sheet

2. Application Note AN1153 for detailed use of the JTAG channel

35/35

AN1385 - APPLICATION NOTE

For current information on PSD products, please consult our pages on the world wide web:
www.st.com/psd

If you have any questions or suggestions concerning the matters raised in this document, please send
them to the following electronic mail addresses:

apps.psd@st.com (for application support)

ask.memory@st.com (for general enquiries)

Please remember to include your name, company, location, telephone number and fax number.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is registered trademark of STMicroelectronics

All other names are the property of their respective owners.

 2001 STMicroelectronics - All Rights Reserved

STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco -

Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

www.st.com

