

MOS INTEGRATED CIRCUIT μ PD78F0034A, 78F0034AY

8-BIT SINGLE-CHIP MICROCONTROLLER

www.datasheet4u.com

DESCRIPTION

The μ PD78F0034A is a member of the μ PD780034A Subseries in the 78K/0 Series, and is equivalent to the μ PD780034A but with flash memory in place of internal ROM.

The μ PD78F0034AY is a member of the μ PD780034AY Subseries, featuring flash memory in place of the internal ROM of the μ PD780034AY.

The μ PD78F0034A incorporates flash memory, which can be programmed and erased while mounted on the board.

Detailed function descriptions are provided in the following user's manuals. Be sure to read them before designing.

 μ PD780024A, 780034A, 780024AY, 780034AY Subseries User's Manual: U14046E 78K/0 Series Instruction User's Manual: U12326E

FEATURES

Pin-compatible with mask ROM versions (except VPP pin)

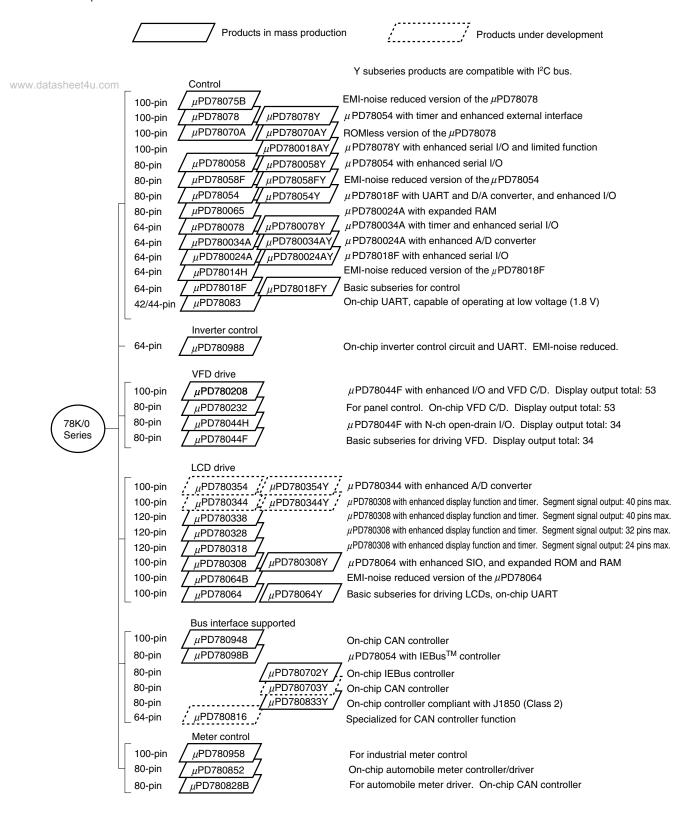
Flash memory: 32 KB^{Note}
 Internal high-speed RAM: 1,024 bytes^{Note}
 Supply voltage: VDD = 1.8 to 5.5 V

Note The flash memory and internal high-speed RAM capacities can be changed with the memory size switching register (IMS).

Remark For the differences between the flash memory and the mask ROM versions, refer to 4. DIFFERENCES BETWEEN μ PD78F0034A, 78F0034AY, AND MASK ROM VERSIONS.

★ ORDERING INFORMATION

Part Number	Package	Internal ROM
μ PD78F0034ACW	64-pin plastic SDIP (19.05 mm (750))	Flash memory
μ PD78F0034AGB-8EU	64-pin plastic LQFP (10 \times 10)	Flash memory
μ PD78F0034AGC-8BS	64-pin plastic LQFP (14 \times 14)	Flash memory
μ PD78F0034AGC-AB8	64-pin plastic QFP (14 \times 14)	Flash memory
μ PD78F0034AGK-9ET	64-pin plastic TQFP (12 \times 12)	Flash memory
μ PD78F0034AYCW	64-pin plastic SDIP (19.05 mm (750))	Flash memory
μ PD78F0034AYGB-8EU	64-pin plastic LQFP (10 \times 10)	Flash memory
μ PD78F0034AYGC-8BS	64-pin plastic LQFP (14 \times 14)	Flash memory
μ PD78F0034AYGC-AB8	64-pin plastic QFP (14 \times 14)	Flash memory
μ PD78F0034AYGK-9ET	64-pin plastic TQFP (12 \times 12)	Flash memory


The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

★ 78K/0 SERIES LINEUP

The products in the 78K/0 Series are listed below. The names enclosed in boxes are subseries names.

Remark VFD (Vacuum Fluorescent Display) is referred to as FIPTM (Fluorescent Indicator Panel) in some documents, but the functions of the two are the same.

The major functional differences among the subseries are listed below.

Non-Y subseries

 V_{DD} 8-Bit 10-Bit 8-Bit I/O External ROM Timer Serial Interface Function Capacity MIN. Subseries Name 8-Bit 16-Bit Watch WDT (Bytes) A/D A/D D/A Value Expansion www.datasheet μPD78075B 32 K to 40 K 2 ch | 3 ch (UART: 1 ch) Control 4 ch 1 ch 1 ch 1 ch 8 ch 88 1.8 V μ PD78078 48 K to 60 K μPD78070A 61 2.7 V μPD780058 24 K to 60 K 2 ch 3 ch (time-division UART: 1 ch) 1.8 V μ PD78058F 48 K to 60 K 3 ch (UART: 1 ch) 2.7 V μPD78054 16 K to 60 K 2.0 V 4 ch (UART: 1 ch) μPD780065 40 K to 48 K 2.7 V μPD780078 48 K to 60 K 2 ch 8 ch 3 ch (UART: 2 ch) 1.8 V 3 ch (UART: 1 ch) uPD780034A 8 K to 32 K 1 ch μPD780024A 8 ch μPD78014H 2 ch 53 μPD78018F 8 K to 60 K μPD78083 8 K to 16 K 1 ch (UART: 1 ch) 33 μ PD780988 | 16 K to 60 K | 3 ch 1 ch 8 ch 3 ch (UART: 2 ch) 4.0 V Inverter Note control VFD μPD780208 32 K to 60 K 2 ch 1 ch 1 ch 1 ch 8 ch 2 ch 2.7 V drive μPD780232 16 K to 24 K 3 ch 4 ch 4.5 V 2.7 V μPD78044H 32 K to 48 K 2 ch 1 ch 1 ch 8 ch 1 ch 68 μPD78044F 16 K to 40 K 2 ch LCD μPD780354 24 K to 32 K 4 ch 1 ch 1 ch 1 ch 8 ch 3 ch (UART: 1 ch) 66 1.8 V drive μPD780344 8 ch μPD780338 48 K to 60 K 3 ch 10 ch 2 ch (UART: 1 ch) 2 ch 1 ch 54 *μ*PD780328 62 μPD780318 70 μPD780308 48 K to 60 K 2 ch 1 ch 3 ch (time-division UART: 1 ch) 8 ch 57 2.0 V μPD78064B 32 K 2 ch (UART: 1 ch) 16 K to 32 K μPD78064 $\sqrt{}$ Bus μPD780948 60 K 2 ch 2 ch 1 ch 1 ch 8 ch 3 ch (UART: 1 ch) 79 4.0 V μPD78098B 40 K to 60 K interface 1 ch 2 ch 69 2.7 V supported μPD780816 32 K to 60 K 2 ch 12 ch 2 ch (UART: 1 ch) 46 4.0 V Meter μPD780958 48 K to 60 K 4 ch 2 ch 1 ch 2 ch (UART: 1 ch) 69 2.2 V control μPD780852 32 K to 40 K 3 ch Dash-1 ch 1 ch 1 ch 5 ch 3 ch (UART: 1 ch) 56 4.0 V board μPD780828B 32 K to 60 K 59 control

Note 16-bit timer: 2 channels 10-bit timer: 1 channel

• Y subseries

	Function		ROM Capacity		Tin	ner		8-Bit	10-Bit	8-Bit	Serial Interface	I/O	V _{DD}	External
	Subseries	Name	(Bytes)	8-Bit	16-Bit	Watch	WDT	A/D	A/D	D/A				Expansion
	Control	μPD78078Y	48 K to 60 K	4 ch	1 ch	1 ch	1 ch	8 ch	-	2 ch	3 ch (UART: 1 ch, I ² C: 1 ch)	88	1.8 V	√
vananar do	tasheet4u	μPD78070AY	_									61	2.7 V	
www.ua	lasi leet4ul	μPD780018AY	48 K to 60 K							_	3 ch (I ² C: 1 ch)	88		
		μPD780058Y	24 K to 60 K	2 ch						2 ch	3 ch (time-division UART: 1 ch, I ² C: 1 ch)	68	1.8 V	
		μPD78058FY	48 K to 60 K								3 ch (UART: 1 ch, I ² C: 1 ch)	69	2.7 V	
		μPD78054Y	16 K to 60 K										2.0 V	
		μPD780078Y	48 K to 60 K		2 ch			-	8 ch	_	4 ch (UART: 2 ch, I ² C: 1 ch)	52	1.8 V	
		μPD780034AY	8 K to 32 K		1 ch						3 ch (UART: 1 ch, l ² C: 1 ch)	51		
		μPD780024AY						8 ch	_					
		μPD78018FY	8 K to 60 K								2 ch (I ² C: 1 ch)	53		
	LCD	μPD780354Y	24 K to 32 K	4 ch	1 ch	1 ch	1 ch	_	8 ch	_	4 ch (UART: 1 ch,	66	1.8 V	_
	drive	μPD780344Y						8 ch	_		I ² C: 1 ch)			
		μPD780308Y	48 K to 60 K	2 ch							3 ch (time-division UART: 1 ch, I ² C: 1 ch)	57	2.0 V	
		μPD78064Y	16 K to 32 K								2 ch (UART: 1 ch, I ² C: 1 ch)			
	Bus	μPD780701Y	60 K	3 ch	2 ch	1 ch	1 ch	16 ch	_	_	4 ch (UART: 1 ch, I ² C: 1 ch)	67	3.5 V	-
	interface supported	μPD780703Y												
	Supported	μPD780833Y										65	4.5 V	

Remark Functions other than the serial interface are common to both the Y and non-Y subseries.

OVERVIEW OF FUNCTIONS

www.datasheet

Item	Part Number	μPD78F0034A	μPD78F0034AY		
Internal	Flash memory	32 KB ^{Note}			
memory	High-speed RAM	1,024 bytes ^{Note}			
Memory space		64 KB			
General-purpos	e registers	8 bits \times 32 registers (8 bits \times 8 registers \times	4 banks)		
Minimum instruc	tion execution time	On-chip minimum instruction execution tim	ne cycle variable function		
	When main system clock selected	0.24 μs/0.48 μs/0.95 μs/1.91 μs/3.81 μs (θ	8.38 MHz operation)		
	When subsystem clock selected	122 μs (@ 32.768 kHz operation)			
Instruction set		 16-bit operation Multiply/divide (8 bits × 8 bits, 16 bits ÷ 8 Bit manipulation (set, reset, test, Boolear BCD adjust, etc. 			
I/O ports		Total:	51		
		CMOS input: CMOS I/O: N-ch open-drain I/O (5 V withstand voltage)	• CMOS I/O: 39		
A/D converter		 10-bit resolution × 8 channels Operable over a wide power supply voltage range: AVDD = 1.8 to 5.5 V 			
Serial interface		UART mode: 1 channel 3-wire serial I/O mode: 2 channels	UART mode: 1 channel 3-wire serial I/O mode: 1 channel I ² C bus mode (multimaster supporting): 1 channel		
Timers		16-bit timer/event counter: 1 channel 8-bit timer/event counter: 2 channels Watch timer: 1 channel Watchdog timer: 1 channel			
Timer outputs		3 (8-bit PWM output capable: 2)			
Clock output		65.5 kHz, 131 kHz, 262 kHz, 524 kHz, 1.05 MHz, 2.10 MHz, 4.19 MHz, 8.38 MHz (@ 8.38 MHz operation with main system clock) 32.768 kHz (@ 32.768 kHz operation with subsystem clock)			
Buzzer output		1.02 kHz, 2.05 kHz, 4.10 kHz, 8.19 kHz (@ 8.38 MHz operation with main system clock			
Vectored interru	pt Maskable	Internal: 13, external: 5			
sources	Non-maskable	Internal: 1			
	Software	1			
Test inputs		Internal: 1, external: 1			
Supply voltage		V _{DD} = 1.8 to 5.5 V			
Operating ambie	ent temperature	$T_A = -40 \text{ to } +85^{\circ}\text{C}$			
Package		64-pin plastic SDIP (19.05 mm (750)) 64-pin plastic LQFP (10 × 10) 64-pin plastic LQFP (14 × 14) 64-pin plastic QFP (14 × 14) 64-pin plastic TQFP (12 × 12)			

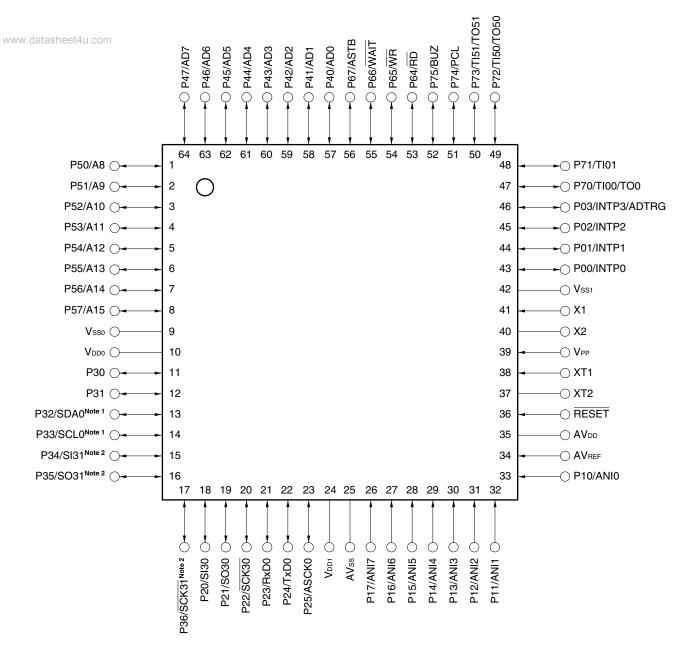
Note The capacities of the flash memory and the internal high-speed RAM can be changed with the memory size switching register (IMS).

CONTENTS

	١.	PIN CONFIGURATION (TOP VIEW)	,
ww.da		BLOCK DIAGRAM	10
	3.	PIN FUNCTIONS	11
		3.1 Port Pins	
		3.2 Non-Port Pins	
		3.3 Pin I/O Circuits and Recommended Connection of Unused Pins	14
	4.	DIFFERENCES BETWEEN μ PD78F0034A, 78F0034AY, AND MASK ROM VERSIONS	17
	5.	MEMORY SIZE SWITCHING REGISTER (IMS)	19
	6.	FLASH MEMORY PROGRAMMING	20
		6.1 Selection of Communication Mode	
		6.2 Flash Memory Programming Functions	
		6.3 Connection of Flashpro III	22
	7.	ELECTRICAL SPECIFICATIONS	24
	8.	PACKAGE DRAWINGS	47
	9.	RECOMMENDED SOLDERING CONDITIONS	52
	AP	PENDIX A. DEVELOPMENT TOOLS	54
	ΔΡ	PENDIX B RELATED DOCUMENTS	61

- 1. PIN CONFIGURATION (TOP VIEW)
- 64-pin plastic SDIP (19.05 mm (750))
 μPD78F0034ACW, 78F0034AYCW

www.datasheet4u.com



- Notes 1. SDA0 and SCL0 are incorporated only in the μ PD78F0034AY Subseries.
 - **2.** SI31, SO31, and $\overline{\text{SCK31}}$ are incorporated only in the μ PD78F0034A Subseries.
- Cautions 1. Connect the VPP pin directly to Vsso or Vss1 in normal operation mode.
 - 2. Connect the AVss pin to Vsso.

Remark When the μPD78F0034A and 78F0034AY are used in application fields that require reduction of the noise generated from inside the microcontroller, the implementation of noise reduction measures, such as supplying voltage to V_{DD0} and V_{DD1} individually and connecting V_{SS0} and V_{SS1} to different ground lines, is recommended.

- 64-pin plastic LQFP (10 \times 10) μ PD78F0034AGB-8EU, 78F0034AYGB-8EU
- 64-pin plastic LQFP (14 \times 14) μ PD78F0034AGC-8BS, 78F0034AYGC-8BS
- 64-pin plastic QFP (14 \times 14) μ PD78F0034AGC-AB8, 78F0034AYGC-AB8
- 64-pin plastic TQFP (12 × 12)
 μPD78F0034AGK-9ET, 78F0034AYGK-9ET

- **Notes 1.** SDA0 and SCL0 are incorporated only in the μ PD78F0034AY Subseries.
 - 2. SI31, SO31, and $\overline{\text{SCK31}}$ are incorporated only in the μ PD78F0034A Subseries.
- Cautions 1. Connect the VPP pin directly to Vsso or Vss1 in normal operation mode.
 - 2. Connect the AVss pin to Vsso.
- **Remark** When the μPD78F0034A and 78F0034AY are used in application fields that require reduction of the noise generated from inside the microcontroller, the implementation of noise reduction measures, such as supplying voltage to V_{DD0} and V_{DD1} individually and connecting V_{SS0} and V_{SS1} to different ground lines, is recommended.

Serial data

Serial input

SCK30, SCK31, SCL0: Serial clock

A8 to A15: Address bus P70 to P75: Port 7

AD0 to AD7: Address/data bus PCL: Programmable clock

SDA0:

ADTRG: AD trigger input RD: Read strobe
ANI0 to ANI7: Analog input RESET: Reset

ASCK0: Asynchronous serial clock RxD0: Receive data

ASTB: Address strobe

www.datasheet4AVBB: Analog power supply

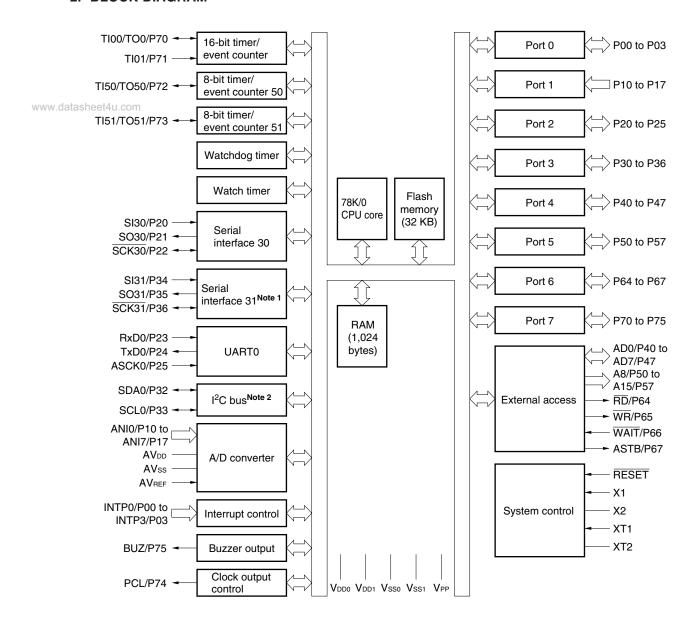
AVREF: Analog reference voltage SI30, SI31:
AVss: Analog ground SO30, SO31:

AVss: Analog ground SO30, SO31: Serial output
BUZ: Buzzer clock TI00, TI01, TI50, TI51: Timer input
INTP0 to INTP3: External interrupt input TO0, TO50, TO51: Timer output

 P00 to P03:
 Port 0
 TxD0:
 Transmit data

 P10 to P17:
 Port 1
 VDD0, VDD1:
 Power supply

P20 to P25: Port 2 VPP: Programming power supply


P30 to P36: Port 3 V_{SS0} , V_{SS1} : Ground P40 to P47: Port 4 \overline{WAIT} : Wait

P50 to P57: Port 5 WR: Write strobe

P64 to P67: Port 6 X1, X2: Crystal (main system clock)
XT1, XT2: Crystal (subsystem clock)

2. BLOCK DIAGRAM

Notes 1. Incorporated only in the μ PD78F0034A

2. Incorporated only in the μ PD78F0034AY

3. PIN FUNCTIONS

3.1 Port Pins (1/2)

www.datasheet4

Pin Name	I/O		Function	After Reset	Alternate Function	
P00	I/O	Port 0		Input	INTP0	
P01		4-bit I/O port.			INTP1	
P02		Input/output can be specified			INTP2	
P03		An on-chip pull-up resistor ca	n be specified by software.		INTP3/ADTRG	
P10 to P17	Input	Port 1 8-bit input-only port.				
P20	I/O	Port 2		Input	SI30	
P21		6-bit I/O port.			SO30	
P22		Input/output can be specified			SCK30	
P23	-	An on-chip pull-up resistor ca	n be specified by software.		RxD0	
P24					TxD0	
P25					ASCK0	
P30	I/O	Port 3	N-ch open-drain I/O port.	Input	_	
P31		7-bit I/O port. Input/output can be specified	LEDs can be driven directly.			
P32					SDA0 ^{Note 1}	
P33		in 1-bit units.			SCL0 ^{Note 1}	
P34			An on-chip pull-up resistor can be		SI31Note 2	
P35			specified by software.		SO31 ^{Note 2}	
P36					SCK31 Note 2	
P40 to P47	I/O	Port 4 8-bit I/O port. Input/output can be specified An on-chip pull-up resistor ca Interrupt request flag KRIF is		Input	AD0 to AD7	
P50 to P57	I/O	Port 5 8-bit I/O port. LEDs can be driven directly. Input/output can be specified in 1-bit units. An on-chip pull-up resistor can be specified by software.		Input	A8 to A15	
P64	I/O	Port 6		Input	RD	
P65		4-bit I/O port.			WR	
P66]	Input/output can be specified			WAIT	
P67		An on-chip pull-up resistor ca	n be specified by software.		ASTB	

Notes 1. SDA0 and SCL0 are incorporated only in the μ PD78F0034AY Subseries.

2. SI31, SO31, and $\overline{\text{SCK31}}$ are incorporated only in the μ PD78F0034A Subseries.

3.1 Port Pins (2/2)

	Pin Name	I/O	Function	After Reset	Alternate
					Function
	P70	I/O	Port 7	Input	TI00/TO0
	P71		6-bit I/O port. Input/output can be specified in 1-bit units. An on-chip pull-up resistor can be specified by software.		TI01
www.da	ta <mark>\$172</mark> et4u.com				TI50/TO50
	P73				TI51/TO51
	P74				PCL
	P75				BUZ

3.2 Non-Port Pins (1/2)

Pin Name	I/O	Function	After Reset	Alternate Function
INTP0	Input	External interrupt request input by which the valid edge (rising edge,	Input	P00
INTP1		falling edge, or both rising and falling edges) can be specified.		P01
INTP2				P02
INTP3				P03/ADTRG
SI30	Input	Serial interface serial data input.	Input	P20
SI31 ^{Note 1}				P34
SDA0 ^{Note 2}	I/O	Serial interface serial data input/output	Input	P32
SO30	Output	Serial interface serial data output.	Input	P21
SO31 ^{Note 1}				P35
SCK30	I/O	Serial interface serial clock input/output.	Input	P22
SCK31 Note 1				P36
SCL0 ^{Note 2}				P33
RxD0	Input	Serial data input for asynchronous serial interface.	Input	P23
TxD0	Output	Serial data output for asynchronous serial interface.	Input	P24
ASCK0	Input	Serial clock input for asynchronous serial interface.	Input	P25
TI00	Input	External count clock input to 16-bit timer/event counter 0. Capture trigger signal input to capture register 01 (CR01) of 16-bit timer/event counter 0.	Input	P70/TO0
TI01		Capture trigger signal input to capture register 00 (CR00) of 16-bit timer/ event counter 0.		P71
TI50		External count clock input to 8-bit timer/event counter 50.		P72/TO50
TI51		External count clock input to 8-bit timer/event counter 51.		P73/TO51
TO0	Output	16-bit timer/event counter 0 output.	Input	P70/TI00
TO50		8-bit timer/event counter 50 output (shared with 8-bit PWM output).	Input	P72/TI50
TO51		8-bit timer/event counter 51 output (shared with 8-bit PWM output).		P73/TI51
PCL	Output	Clock output (for trimming of main system clock and subsystem clock).	Input	P74
BUZ	Output	Buzzer output.	Input	P75
AD0 to AD7	I/O	Lower address/data bus for extending memory externally.	Input	P40 to P47

Notes 1. SI31, SO31, and $\overline{\text{SCK31}}$ are incorporated only in the μ PD78F0034A Subseries.

2. SDA0 and SCL0 are incorporated only in the μ PD78F0034AY Subseries.

3.2 Non-Port Pins (2/2)

www.datasheet4

Pin Name	I/O	Function	After Reset	Alternate Function
A8 to A15	Output	Higher address bus for extending memory externally.	Input	P50 to P57
RD	Output	Strobe signal output for read operation of external memory.	Input	P64
u.W.R.		Strobe signal output for write operation of external memory.		P65
WAIT	Input	Inserting wait for accessing external memory.	Input	P66
ASTB	Output	Strobe output which externally latches address information output to ports 4 and 5 to access external memory.	Input	P67
ANI0 to ANI7	Input	A/D converter analog input.	Input	P10 to P17
ADTRG	Input	A/D converter trigger signal input.	Input	P03/INTP3
AVREF	Input	A/D converter reference voltage input.	-	-
AV _{DD}	-	A/D converter analog power supply. Set the voltage equal to VDD0 or VDD1.	_	-
AVss	-	A/D converter ground potential. Set the voltage equal to Vsso or Vss1.	-	-
RESET	Input	System reset input.	_	-
X1	Input	Connecting crystal resonator for main system clock oscillation.	_	_
X2	-		_	_
XT1	Input	Connecting crystal resonator for subsystem clock oscillation.	_	_
XT2	-		_	-
V _{DD0}	-	Positive power supply voltage for ports.	_	_
Vsso	-	Ground potential of ports.	_	-
V _{DD1}	-	Positive power supply (except ports).	_	-
V _{SS1}	-	Ground potential (except ports).	_	-
V _{PP}	-	Applying high-voltage for program write/verify. Connect directly to Vsso or Vss1 in normal operation mode.	_	-

3.3 Pin I/O Circuits and Recommended Connection of Unused Pins

The input/output circuit type of each pin and recommended connection of unused pins are shown in Table 3-1. For the input/output configuration of each type, refer to Figure 3-1.

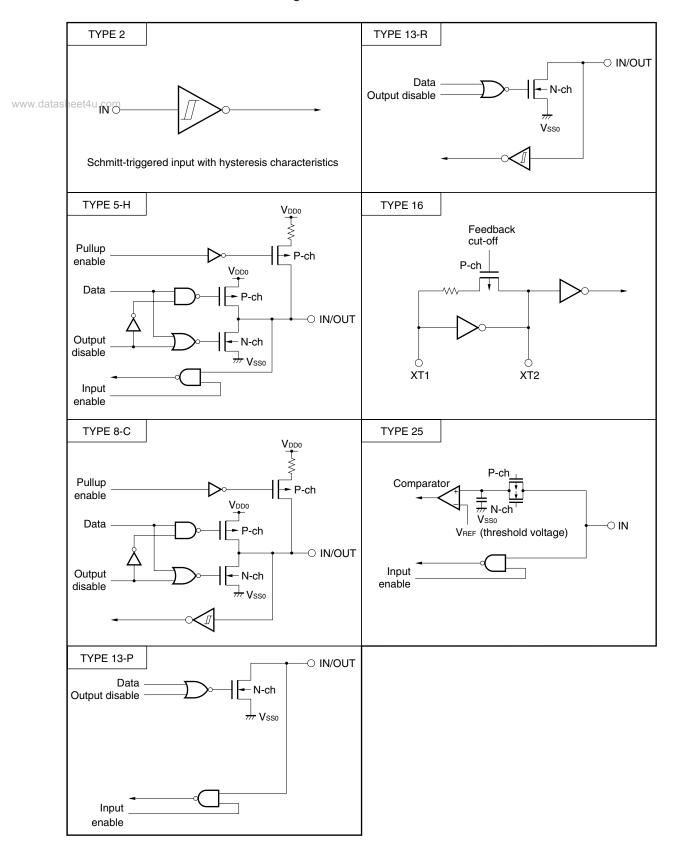
Table 3-1. Types of Pin I/O Circuits (1/2)

www.da

Pin Name	I/O Circuit Type	I/O	Recommended Connection of Unused Pins
P00/INTP0	8-C	I/O	Input: Independently connect to Vsso via a resistor.
P01/INTP1			Output: Leave open.
P02/INTP2			
P03/INTP3/ADTRG			
P10/ANI0 to P17/ANI7	25	Input	Directly connect to VDDO or VSSO.
P20/SI30	8-C	I/O	Input: Independently connect to VDDO or VSSO via a
P21/SO30	5-H		resistor.
P22/SCK30	8-C		Output: Leave open.
P23/RxD0			
P24/TxD0	5-H		
P25/ASCK0	8-C		
P30, P31	13-P	I/O	Input: Independently connect to VDD0 via a resistor
P32/SDA0 ^{Note 1}	13-R		Output: Leave open.
P33/SCL0 ^{Note 1}			
P34/SI31Note 2	8-C		Input: Independently connect to VDDO or VSSO via a
P35/SO31Note 2	5-H		resistor.
P36/SCK31Note 2	8-C		Output: Leave open.
P40/AD0 to P47/AD7	5-H	I/O	Input: Independently connect to VDDO via a resistor Output: Leave open.
P50/A8 to P57/A15	5-H	I/O	Input: Independently connect to VDD0 or VSS0 via a
P64/RD		I/O	resistor.
P65/WR			Output: Leave open.
P66/WAIT			
P67/ASTB			
P70/TI00/TO0	8-C		
P71/TI01			
P72/TI50/TO50			
P73/TI51/TO51			
P74/PCL	5-H		
P75/BUZ			

Notes 1. SDA0 and SCL0 are incorporated only in the μ PD78F0034AY Subseries.

2. SI31, SO31, and $\overline{\text{SCK31}}$ are incorporated only in the μ PD78F0034A Subseries.


Table 3-1. Types of Pin I/O Circuits (2/2)

	Pin Name	I/O Circuit Type	I/O	Recommended Connection of Unused Pins
RESET		2	Input	_
XT1		16		Directly connect to VDD0.
XT2			_	Leave open.
t4u.com AVDD		-		Directly connect to VDD0 or VDD1.
AVREF				Directly connect to Vsso or Vss1.
AVss				
VPP				Directly connect to Vsso or Vss1.

www.datasheet

Figure 3-1. Pin I/O Circuits

4. DIFFERENCES BETWEEN μPD78F0034A, 78F0034AY, AND MASK ROM VERSIONS

The μ PD78F0034A and 78F0034AY are products provided with a flash memory which enables writing, erasing, and rewriting of programs with device mounted on the target system.

The functions of the μ PD78F0034A (except the functions specified for flash memory) can be made the same as those of the mask ROM versions by setting the memory size switching register (IMS).

www.datasheet4u.cpables 4-1 and 4-2 show the differences between the μ PD78F0034A, 78F0034AY and the mask ROM versions.

Table 4-1. Differences Between μ PD78F0034A and Mask ROM Versions

Item	μPD78F0034A	Mask ROM	M Versions	
		μPD780034A Subseries	μPD780024A Subseries ^{Note}	
Internal ROM structure	Flash memory	Mask ROM		
Internal ROM capacity	32 KB	μPD780031A: 8 KB μPD780032A: 16 KB μPD780033A: 24 KB μPD780034A: 32 KB	μPD780021A: 8 KB μPD780022A: 16 KB μPD780023A: 24 KB μPD780024A: 32 KB	
Internal high-speed RAM capacity	1,024 bytes	μPD780031A: 512 bytes μPD780032A: 512 bytes μPD780033A: 1,024 bytes μPD780034A: 1,024 bytes	μPD780021A: 512 bytes μPD780022A: 512 bytes μPD780023A: 1,024 bytes μPD780024A: 1,024 bytes	
Minimum instruction execution time	Minimum instruction execution	on time variable function inco	rporated	
When main system clock is selected	0.24 μ s/0.48 μ s/0.95 μ s/ 1.91 μ s/3.81 μ s (operation at 8.38 MHz, V _{DD} = 4.0 to 5.5 V)	0.166 μ s/0.333 μ s/0.666 μ s/1.33 μ s/2.66 μ s (operation at 12 MHz, V _{DD} = 4.5 to 5.5 V)		
When subsystem clock is selected	122 μs (32.768 kHz)			
Clock output	65.5 kHz, 131 kHz, 262 kHz, 524 kHz, 1.05 MHz, 2.10 MHz, 4.19 MHz, 8.38 MHz (operation at 8.38 MHz with main system clock) 32.768 kHz (operation at 32.768 kHz with subsystem clock)	93.75 kHz, 187.5 kHz, 375 kHz, 750 kHz, 1.25 MHz, 3 MHz, 6 MHz, 12 MHz (operation at 12 MHz with main system clock) 32.768 kHz (operation at 32.768 kHz with subsystem clock)		
Buzzer output	1.02 kHz, 2.5 kHz, 4.10 kHz, 8.19 kHz (operation at 8.38 MHz with main system clock)	1.46 kHz, 2.93 kHz, 5.86 kHz, 11.7 kHz (operation at 12 MHz with main system clock)		
A/D converter resolution	10 bits		8 bits	
Mask option specification of on-chip pull-up resistor for pins P30 to P33	Not available	Available		
IC pin	Not provided	Provided		
V _{PP} pin	Provided	Not provided		
Electrical specifications, recommended soldering conditions	Refer to the data sheet of ir	individual products.		

Note The μ PD78F0034A can be used as the flash memory version of the μ PD780024A Subseries.

Caution There are differences in noise immunity and noise radiation between the flash memory and mask ROM versions. When pre-producing an application set with the flash memory version and then mass producing it with the mask ROM version, be sure to conduct sufficient evaluations on the commercial samples (CS) (not engineering samples (ES)) of the mask ROM versions. www.DataSheet4U.com

18

Table 4-2. Differences Between μ PD78F0034AY and Mask ROM Versions

[Item	μPD78F0034AY	Mask ROM Versions			
			μPD780034AY Subseries	μPD780024AY Subseries ^{Note}		
	Internal ROM structure	Flash memory	Mask ROM			
www.da	Internal ROM capacity tasheet4u.com	32 KB	μPD780031AY: 8 KB μPD780032AY: 16 KB μPD780033AY: 24 KB μPD780034AY: 32 KB	μPD780021AY: 8 KB μPD780022AY: 16 KB μPD780023AY: 24 KB μPD780024AY: 32 KB		
	Internal high-speed RAM capacity	1,024 bytes	μ PD780031AY: 512 bytes μ PD780032AY: 512 bytes μ PD780033AY: 1,024 bytes μ PD780034AY: 1,024 bytes	μPD780021AY: 512 bytes μPD780022AY: 512 bytes μPD780023AY: 1,024 bytes μPD780024AY: 1,024 bytes		
	Minimum instruction execution time	Minimum instruction executi	on time variable function inco	rporated		
	When main system clock is selected	0.24 μ s/0.48 μ s/0.95 μ s/1.91 μ s/3.81 μ s (operation at 8.38 MHz, $V_{DD} = 4.0$ to 5.5 V)				
	When subsystem clock is selected	122 μs (32.768 kHz)				
	Clock output	 65.5 kHz, 131 kHz, 262 kHz, 524 kHz, 1.05 MHz, 2.10 MHz, 4.19 MHz, 8.38 MHz (operation at 8.38 MHz with main system clock) 32.768 kHz (operation at 32.768 kHz with subsystem clock) 				
	Buzzer output	1.02 kHz, 2.5 kHz, 4.10 kHz, 8.19 kHz (operation at 8.38 MHz with main system clock)				
	A/D converter resolution	10 bits		8 bits		
	Mask option specification of on-chip pull-up resistor for pins P30 and P31	Not available	Available			
	IC pin	Not provided	Provided			
	V _{PP} pin	Provided	Not provided			
	Electrical specifications, recommended soldering conditions	Refer to the data sheet of individual products.				

Note The μ PD78F0034AY can be used as the flash memory version of the μ PD780024AY Subseries.

Caution There are differences in noise immunity and noise radiation between the flash memory and mask ROM versions. When pre-producing an application set with the flash memory version and then mass producing it with the mask ROM version, be sure to conduct sufficient evaluations on the commercial samples (CS) (not engineering samples (ES)) of the mask ROM versions.

Data Sheet U14040EJ4V0DS WWW.DataSheet4U.com

5. MEMORY SIZE SWITCHING REGISTER (IMS)

IMS is a register that is set by software and is used to specify a part of the internal memory that is not to be used. By setting memory size switching register (IMS), the internal memory of the μ PD78F0034A and 78F0034AY can be mapped identically to that of a mask ROM version.

IMS is set with an 8-bit memory manipulation instruction.

www.datasheet4u.cRESET input sets IMS to CFH.

Caution The initial value of IMS is setting disabled (CFH). Be sure to set C8H or the value of the target mask ROM version at the moment of initial setting.

6 Address After reset R/W ROM3 ROM2 ROM1 ROM0 IMS RAM2 RAM1 RAM0 0 FFF0H CFH R/W ROM3 ROM2 ROM1 ROM0 Selection of Internal ROM Capacity 0 8 KB 0 0 1 0 0 16 KB 0 0 24 KB 1 1 1 0 0 32 KB Other than above Setting prohibited RAM2 RAM1 RAM0 Selection of Internal High-Speed RAM Capacity 0 0 512 bytes 1 0 1 1 1,024 bytes Other than above Setting prohibited

Figure 5-1. Format of Memory Size Switching Register

Table 5-1 shows the IMS set value to make the memory mapping the same as those of mask ROM versions.

 Target Mask ROM Versions
 IMS Set Value

 μPD780031A, 780031AY
 42H

 μPD780032A, 780032AY
 44H

 μPD780033A, 780033AY
 C6H

 μPD780034A, 780034AY
 C8H

Table 5-1. Set Value of Memory Size Switching Register

20

6. FLASH MEMORY PROGRAMMING

Writing to flash memory can be performed without removing the memory from the target system (on board programming). Writing is performed with the dedicated flash programmer (Flashpro III (part No.: FL-PR3 and PG-FP3)) connected to the host machine and the target system.

Writing to flash memory can also be performed using flash memory writing adapter connected to Flashpro III. www.datasheet4u.com

Remark FL-PR3 is a product of Naito Densei Machida Mfg. Co., Ltd.

6.1 Selection of Communication Mode

Writing to a flash memory is performed using Flashpro III in a serial communication. Select one of the communication modes in Tables 6-1 and 6-2. The selection of the communication mode is made by using the format shown in Figure 6-1. Each communication mode is selected by the number of V_{PP} pulses shown in Tables 6-1 and 6-2

Table 6-1. List of Communication Mode (μPD78F0034A)

Communication Mode	Channels	Pin Used	V _{PP} Pulses
3-wire serial I/O	2	SI30/P20 SO30/P21 SCK30/P22	0
		SI31/P34 SO31/P35 SCK31/P36	1
UART	1	RxD0/P23 TxD0/P24	8
Pseudo 3-wire serial I/O	1	P72/TI50/TO50 (serial clock input) P71/TI01 (serial data output) P70/TI00/TO0 (serial data input)	12

Caution Be sure to select a communication mode using the number of VPP pulses shown in Table 6-1.

Data Sheet U14040EJ4V0DS WWW.DataSheet4U.com

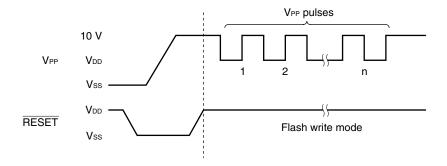


Table 6-2. List of Communication Mode (μPD78F0034AY)

	Communication Mode	Channels	Pin Used	V _{PP} Pulses
	3-wire serial I/O	1	SI30/P20	0
			SO30/P21	
			SCK30/P22	
www.data	∜ ² C bus	1	SDA0/P32	4
_			SCL0/P33	
	UART	1	RxD0/P23	8
			TxD0/P24	
	Pseudo 3-wire serial I/O	1	P72/TI50/TO50	12
			(serial clock input)	
			P71/TI01	
			(serial data output)	
			P70/TI00/TO0	
			(serial data input)	

Caution Be sure to select a communication mode using the number of VPP pulses shown in Table 6-2.

Figure 6-1. Format of Communication Mode Selection

6.2 Flash Memory Programming Functions

Operations such as writing to flash memory are performed by various command/data transmission and reception operations according to the selected communication mode. Table 6-3 shows major functions of flash memory programming.

Table 6-3. Major Functions of Flash Memory Programming

www.datasheet4u.com

Function	Description
Reset	Used to stop write operation and detect transmission cycle.
Batch verify	Compares the entire memory contents with the input data.
Batch erase	Erases the entire memory contents.
Batch blank check	Checks the deletion status of the entire memory.
High-speed write	Performs write to the flash memory based on the write start address and the number of data to be written (number of bytes).
Continuous write	Performs continuous write based on the information input with high-speed write operation.
Status	Used to confirm the current operating mode and operation end.
Oscillation frequency setting	Sets the frequency of the resonator.
Erase time setting	Sets the memory erase time.
Baud rate setting	Sets the communication rate for UART mode
I ² C mode setting	Sets standard/high-speed mode for I ² C bus mode
Silicon signature read	Outputs the device name and memory capacity, and device block information.

6.3 Connection of Flashpro III

The connection of Flashpro III and the μ PD78F0034A or 78F0034AY differs according to the communication mode (3-wire serial I/O, UART, pseudo 3-wire serial I/O, and I²C bus). The connection for each communication mode is shown in Figures 6-2 to 6-5, respectively.

 μ PD78F0034A, μPD78F0034AY Flashpro III VPP VPP VDD V_{DD} RESET RESET SCK3n SCK SI3n SO SI SO3n **GND** V_{SS}

Figure 6-2. Connection of Flashpro III in 3-Wire Serial I/O Mode

Remark μ PD78F0034A: n = 0, 1 μ PD78F0034AY: n = 0

Figure 6-3. Connection of Flashpro III for UART Mode

www.datasheet4u.com

Figure 6-4. Connection of Flashpro III for Pseudo 3-Wire Serial I/O Mode

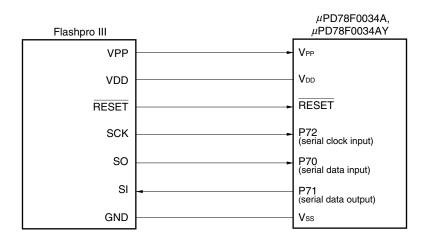
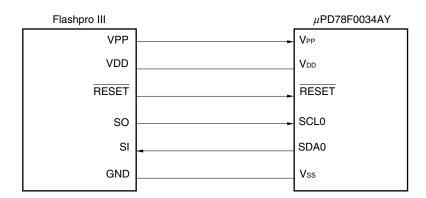



Figure 6-5. Connection of Flashpro III for I²C Bus Mode (μPD78F0034AY only)

7. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings ($T_A = 25^{\circ}C$)

Parameter Symbol Conditions Ratings Unit V_{DD} -0.3 to +6.5V Supply voltage www.datasheet4u.com V_{PP} -0.3 to +10.5٧ AV_{DD} -0.3 to $V_{DD} + 0.3^{Note}$ V -0.3 to $V_{DD} + 0.3^{Note}$ AVREF V AVss -0.3 to +0.3V V_{I1} P00 to P03, P10 to P17, P20 to P25, P34 to P36, -0.3 to $V_{DD} + 0.3^{Note}$ ٧ Input voltage P40 to P47, P50 to P57, P64 to P67, P70 to P75, X1, X2, XT1, XT2, RESET V_{I2} P30 to P33 N-ch open drain -0.3 to +6.5V -0.3 to $V_{DD} + 0.3^{Note}$ ۷o V Output voltage P10 to P17 AVss -0.3 to AVREF + 0.3 Note V Analog input voltage V_{AN} Analog input pin and -0.3 to $V_{DD} + 0.3^{Note}$ Output current, high Per pin -10Іон mA Total for P00 to P03, P40 to P47, P50 to P57, -15 mA P64 to P67, P70 to P75 Total for P20 to P25, P30 to P36 -15 mΑ Output current, low loL Per pin for P00 to P03, P20 to P25, P34 to P36, 20 mΑ P40 to P47, P64 to P67, P70 to P75 Per pin for P30 to P33, P50 to P57 30 mΑ Total for P00 to P03, P40 to P47, P64 to P67, 50 mA P70 to P75 Total for P20 to P25 20 mΑ Total for P30 to P36 100 mA Total for P50 to P57 100 mΑ Operating ambient Та During normal operation -40 to +85٥С During flash memory programming ٥С temperature +10 to +40 T_{stg} -40 to +125 ٥С Storage temperature

Note 6.5 V or below

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Capacitance (TA = 25°C, VDD = Vss = 0 V)

	Parameter	Symbol	Cor	MIN.	TYP.	MAX.	Unit	
	Input capacitance	CIN	f = 1 MHz Unmeasured pins returned			15	pF	
www.datasheet4	I/O capacitance u.com	Сю	f = 1 MHz Unmeasured pins returned to 0 V.	P00 to P03, P20 to P25, P34 to P36, P40 to P47, P50 to P57, P64 to P67, P70 to P75,			15	pF
				P30 to P33				pF

Remark Unless otherwise specified, the characteristics of alternate-function pins are the same as those of port pins.

Main System Clock Oscillator Characteristics (T_A = −40 to +85°C, V_{DD} = 1.8 to 5.5 V)

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Ceramic	VPP X2 X1	Oscillation	V _{DD} = 4.0 to 5.5 V	1.0		8.38	MHz
resonator		frequency (fx)Note 1	V _{DD} = 1.8 to 5.5 V	1.0		5.0	
	C2 + C1 +	Oscillation stabilization time ^{Note 2}	After V _{DD} reaches oscillation voltage range MIN.			4	ms
<u> </u>	VPP X2 X1	Oscillation	V _{DD} = 4.0 to 5.5 V	1.0		8.38	MHz
resonator		frequency (fx)Note 1	V _{DD} = 1.8 to 5.5 V	1.0		5.0	
	C2‡ C1‡	Oscillation stabilization time ^{Note 2}	V _{DD} = 4.0 to 5.5 V			10	ms
			V _{DD} = 1.8 to 5.5 V			30	
External	X2 X1	X1 input	V _{DD} = 4.0 to 5.5 V	1.0		8.38	MHz
clock	\ \(\lambda \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	frequency (fx)Note 1	V _{DD} = 1.8 to 5.5 V	1.0		5.0	
		X1 input high-/low-level	V _{DD} = 4.0 to 5.5 V	50		500	ns
	μPD74HCU04 Δ	width (txн, txL)	V _{DD} = 1.8 to 5.5 V	85		500	

- Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.
 - 2. Time required to stabilize oscillation after reset or STOP mode release.
- Cautions 1. When using the main system clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.
 - Keep the wiring length as short as possible.
 - · Do not cross the wiring with the other signal lines.
 - Do not route the wiring near a signal line through which a high fluctuating current flows.
 - Always make the ground point of the oscillator capacitor to the same potential as Vss1.
 - Do not ground the capacitor to a ground pattern through which a high current flows.
 - Do not fetch signals from the oscillator.
 - 2. When the main system clock is stopped and the system is operating on the subsystem clock, wait until the oscillation stabilization time has been secured by the program before switching back to the main system clock.

Subsystem Clock Oscillator Characteristics (TA = -40 to +85°C, VDD = 1.8 to 5.5 V)

	Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
	Crystal resonator	XT2 XT1V _{PP}	Oscillation frequency (f _{XT}) ^{Note 1}		32	32.768	35	kHz
www.data	tasheet4u.com	+C4 +C3	Oscillation	$V_{DD} = 4.0 \text{ to } 5.5 \text{ V}$		1.2	2	s
		:	stabilization time ^{Note 2}	V _{DD} = 1.8 to 5.5 V			10	
	External clock	XT2 XT1	X1 input frequency (f _{XT}) ^{Note 1}		32		38.5	kHz
		μPD74HCU04	X1 input high-/low-level width (txth, txtl)		5		15	μs

- Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.
 - 2. Time required to stabilize oscillation after VDD reaches oscillator voltage MIN.
- Cautions 1. When using the subsystem clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.
 - · Keep the wiring length as short as possible.
 - Do not cross the wiring with the other signal lines.
 - Do not route the wiring near a signal line through which a high fluctuating current flows.
 - Always make the ground point of the oscillator capacitor to the same potential as Vss1.
 - Do not ground the capacitor to a ground pattern through which a high current flows.
 - Do not fetch signals from the oscillator.
 - The subsystem clock oscillator is designed as a low-amplitude circuit for reducing current consumption, and is more prone to malfunction due to noise than the main system clock oscillator. Particular care is therefore required with the wiring method when the subsystem clock is used.

Recommended Oscillator Constant

Main System Clock: Ceramic Resonator ($T_A = -40 \text{ to } +85^{\circ}\text{C}$)

	Manufacturer	Part Number	Frequency	Recomme	ended Circuit	Constant	Oscillation Vo	oltage Range
			(MHz)	C1 (pF)	C2 (pF)	R1 (kΩ)	MIN. (V)	MAX. (V)
www.datasheet4	Murata Mg. Co., Ltd.	CSBFB1M00J58	1.00	100	100	2.2	1.9	5.5
		CSBLA1M00J58	1.00	100	100	2.2	1.9	5.5
		CSTCC2M00G56	2.00	On chip	On chip	0	1.8	5.5
		CSTLS2M00G56	2.00	On chip	On chip	0	1.8	5.5
		CSTCC3M58G53	3.58	On chip	On chip	0	1.8	5.5
		CSTLS3M58G53	3.58	On chip	On chip	0	1.8	5.5
		CSTCR4M00G53	4.00	On chip	On chip	0	1.8	5.5
		CSTLS4M00G53	4.00	On chip	On chip	0	1.8	5.5
		CSTCR4M19G53	4.19	On chip	On chip	0	1.8	5.5
		CSTLS4M19G53	4.19	On chip	On chip	0	1.8	5.5
		CSTCR4M91G53	4.91	On chip	On chip	0	1.8	5.5
		CSTLS4M91G53	4.91	On chip	On chip	0	1.8	5.5
		CSTCR5M00G53	5.00	On chip	On chip	0	2.7	5.5
		CSTLS5M00G53	5.00	On chip	On chip	0	2.7	5.5
		CSTCE8M00G52	8.00	On chip	On chip	0	2.7	5.5
		CSTLS8M00G53	8.00	On chip	On chip	0	2.7	5.5
		CSTLS8M00G53093	8.00	On chip	On chip	0	2.7	5.5
		CSTCE8M38G52	8.38	On chip	On chip	0	3.0	5.5
		CSTLS8M38G53	8.38	On chip	On chip	0	3.0	5.5
		CSTLS8M38G53093	8.38	On chip	On chip	0	3.0	5.5
		CSTCE10M0G52	10.00	On chip	On chip	0	4.5	5.5
		CSTLS10M0G53	10.00	On chip	On chip	0	4.5	5.5
		CSTLS10M0G53093	10.00	On chip	On chip	0	4.5	5.5
		CSTCE12M0G52	12.00	On chip	On chip	0	4.5	5.5
		CSTLA12M0T55	12.00	On chip	On chip	0	4.5	5.5
		CSTLA12M0T55093	12.00	On chip	On chip	0	4.5	5.5
	TDK	CCR3.58MC3	3.58	On-chip	On-chip	0	1.8	5.5
		CCR4.19MC3	4.19	On-chip	On-chip	0	1.8	5.5
		CCR5.0MC3	5.00	On-chip	On-chip	0	1.8	5.5
		CCR8.0MC5	8.00	On-chip	On-chip	0	4.0	5.5
		CCR8.38MC5	8.38	On-chip	On-chip	0	4.0	5.5

Caution The oscillator constant and oscillation voltage range indicate conditions of stable oscillation.

Oscillation frequency precision is not guaranteed. For applications requiring oscillation frequency precision, the oscillation frequency must be adjusted on the implementation circuit. For details please contact directly the manufacturer of the resonator you will use.

DC Characteristics (T_A = -40 to +85°C, V_{DD} = 1.8 to 5.5 V)

Parameter	Symbol	С	onditions	MIN.	TYP.	MAX.	Unit
Output current,	Іон	Per pin				-1	mA
high		All pins				-15	mA
Output current, low latasheet4u.com	loL	Per pin for P00 to P03, P2 P40 to P47, P64 to P67, F				10	mA
ialasiicel+u.com		Per pin for P30 to P33, P5	50 to P57			15	mA
		Total for P00 to P03, P40 to P47, P64 to P67, P70 to P75				20	mA
		Total for P20 to P25				10	mA
		Total for P30 to P36				70	m <i>A</i>
		Total for P50 to P57				70	m <i>A</i>
Input voltage, high	V _{IH1}	P10 to P17, P21, P24, P35, P40 to P47,	V _{DD} = 2.7 to 5.5 V	0.7V _{DD}		V _{DD}	V
		P50 to P57, P64 to P67, P74, P75	V _{DD} = 1.8 to 5.5 V	0.8V _{DD}		V _{DD}	V
	V _{IH2}	P00 to P03, P20, P22,	V _{DD} = 2.7 to 5.5 V	0.8V _{DD}		V _{DD}	V
		P23, P25, P34, P36, P70 to P73, RESET	V _{DD} = 1.8 to 5.5 V	0.85V _{DD}		V _{DD}	V
	VIH3	P30 to P33	V _{DD} = 2.7 to 5.5 V	0.7V _{DD}		5.5	V
		(N-ch open-drain)		0.8V _{DD}		5.5	V
	V _{IH4}	X1, X2	V _{DD} = 2.7 to 5.5 V	V _{DD} - 0.5		V _{DD}	V
			V _{DD} = 1.8 to 5.5 V	V _{DD} - 0.2		V _{DD}	V
	V _{IH5}	XT1, XT2	V _{DD} = 4.0 to 5.5 V	0.8V _{DD}		V _{DD}	V
				0.9V _{DD}		V _{DD}	V
Input voltage,	V _{IL1}	P10 to P17, P21, P24, P35, P40 to P47,	V _{DD} = 2.7 to 5.5 V	0		0.3V _{DD}	V
		P50 to P57, P64 to P67 P74, P75	V _{DD} = 1.8 to 5.5 V	0		0.2V _{DD}	V
	V _{IL2}	P00 to P03, P20, P22, P23, P25, P34, P36,	V _{DD} = 2.7 to 5.5 V	0		0.2V _{DD}	V
		P70 to P73, RESET	V _{DD} = 1.8 to 5.5 V	0		0.15V _{DD}	V
	V _{IL3}	P30 to P33	$4.0 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	0		0.3V _{DD}	V
			2.7 V ≤ V _{DD} < 4.0 V	0		0.2V _{DD}	V
			1.8 V ≤ V _{DD} < 2.7	0		0.1V _{DD}	V
	V _{IL4}	X1, X2	V _{DD} = 2.7 to 5.5 V	0		0.4	V
			V _{DD} = 1.8 to 5.5 V	0		0.2	V
	V _{IL5}	XT1, XT2	V _{DD} = 4.0 to 5.5 V	0		0.2V _{DD}	V
			V _{DD} = 1.8 to 5.5 V	0		0.1V _{DD}	V
Output voltage,	V _{OH1}	V _{DD} = 4.0 to 5.5 V, Iон = -	1 mA	V _{DD} - 1.0		V _{DD}	V
high		Іон = -100 μА		V _{DD} - 0.5		V _{DD}	V
Output voltage,	V _{OL1}	P30 to P33	V _{DD} = 4.0 to 5.5 V, I _{OL} = 15 mA			2.0	V
low		P50 to P57			0.4	2.0	V
	P00 to P03, P2 P34 to P36, P4 P64 to P67, P7		V _{DD} = 4.0 to 5.5 V, I _{OL} = 1.6 mA			0.4	V
	V _{OL2}	Ιοι = 400 μΑ	1			0.5	V

Remark Unless otherwise specified, the characteristics of alternate-function pins are the same as those of port pins.

DC Characteristics (T_A = -40 to +85°C, V_{DD} = 1.8 to 5.5 V)

	Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
www.datashaatA	Input leakage current, high	Ішні	P00 to P03, P10 to P17, P20 to P25, P34 to P36, P40 to P47, P50 to P57, P64 to P67, P70 to P75, RESET				3	μΑ
www.datasheet4	u.com	I _{LIH2}		X1, X2, XT1, XT2			20	μΑ
		Ішнз	V _{IN} = 5.5 V	P30 to P33			3	μΑ
	Input leakage current, low	F		P00 to P03, P10 to P17, P20 to P25, P34 to P36, P40 to P47, P50 to P57, P64 to P67, P70 to P75, RESET			- 3	μΑ
		ILIL2		X1, X2, XT1, XT2			-20	μΑ
		Ішз		P30 to P33			-3	μΑ
	Output leakage current, high	Ісон	$V_{OUT} = V_{DD}$				3	μΑ
Output leakage ILOL current, low		ILOL	V _{OUT} = 0 V				-3	μΑ
	Software pull- up resistor	R	V _{IN} = 0 V, P00 to P03, P20 to P P50 to P57, P64 to P	25, P34 to P36, P40 to P47, 67, P70 to P75	15	30	90	kΩ

Remark Unless otherwise specified, the characteristics of alternate-function pins are the same as those of port pins.

DC Characteristics (TA = -40 to +85°C, VDD = 1.8 to 5.5 V)

	Parameter	Symbol			MIN.	TYP.	MAX.	Unit	
	Supply	I _{DD1}	8.38 MHz crystal	$V_{\text{DD}} = 5.0 \text{ V} \pm 10\%^{\text{Note 2}}$	A/D converter stopped		10.5	21	mA
	current ^{Note 1}		oscillation operating mode		A/D converter operating		11.5	23	mA
			5.00 MHz crystal	$V_{DD} = 3.0 \text{ V} \pm 10\%^{\text{Note 2}}$	A/D converter stopped		4.5	9	mA
www.da	tasheet4u.com		oscillation operation mode		A/D converter operating		5.5	11	mA
				$V_{DD} = 2.0 \text{ V} \pm 10\%^{\text{Note 3}}$	A/D converter stopped		1	2	mA
				A/D converter operating		2	6	mA	
		IDD2 8.38 MHz crystal		$V_{DD} = 5.0 \text{ V} \pm 10\%^{\text{Note 2}}$	Peripheral functions stopped		1.2	2.4	mA
			oscillation HALT mode		Peripheral functions operating			5	mA
			5.00 MHz crystal	$V_{DD} = 3.0 \text{ V} \pm 10\%^{\text{Note 2}}$	Peripheral functions stopped		0.4	0.8	mA
	oscillation HALT mode		Peripheral functions operating			1.7	mA		
				V _{DD} = 2.0 V ±10% ^{Note 3}	Peripheral functions stopped		0.2	0.4	mA
					Peripheral functions operating			1.1	mA
		I _{DD3}	32.768 kHz crystal oscilla	tion operating mode ^{Note 4}	V _{DD} = 5.0 V ±10%Note 2		115	230	μΑ
					V _{DD} = 3.0 V ±10% ^{Note 2}		95	190	μΑ
					V _{DD} = 2.0 V ±10%Note 3		75	150	μΑ
		I _{DD4}	32.768 kHz crystal oscilla	tion HALT mode ^{Note 4}	V _{DD} = 5.0 V ±10%Note 2		30	60	μΑ
					$V_{DD} = 3.0 \text{ V} \pm 10\%^{\text{Note 2}}$		6	18	μΑ
					V _{DD} = 2.0 V ±10% ^{Note 3}		2	10	μΑ
		I _{DD5}	XT1 = V _{DD} , STOP mode		$V_{DD} = 5.0 \text{ V} \pm 10\%^{\text{Note 2}}$		0.1	30	μΑ
			When feed-back resistor	not used	$V_{DD} = 3.0 \text{ V} \pm 10\%^{\text{Note 2}}$		0.05	10	μΑ
					$V_{DD} = 2.0 \text{ V} \pm 10\%^{\text{Note 3}}$		0.05	10	μΑ

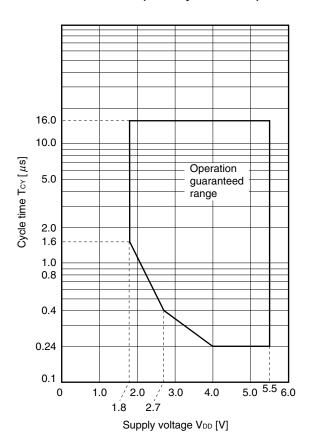
- **Notes 1.** Refers to the total current flowing through the internal power supply (VDD0 and VDD1). Includes peripheral operating current (however, current flowing through the pull-up resistors of ports and the AVREF pin is not included).
 - 2. When the processor clock control register (PCC) is set to 00H.
 - 3. When PCC is set to 02H.
 - 4. When the main system clock is stopped.

30 Data Sheet U14040EJ4V0DS WWW.DataSheet4U.com

AC Characteristics

(1) Basic operation ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = 1.8 \text{ to } 5.5 \text{ V}$)

TYP. Parameter Symbol Conditions MIN. MAX. Unit Тсч Cycle time Operating on main $4.0 \leq V_{DD} \leq 5.5~V$ 0.24 16 μs (Min. instruction system clock $2.7 \text{ V} \leq V_{DD} < 4.0 \text{ V}$ 0.4 16 μs execution time) $1.8~V \leq V_{\text{DD}} < 2.7~V$ 1.6 16 μs 103.9Note 1 Operating on subsystem clock 122 125 μs TI00, TI01 input 2/fsam + 0.1Note 2 ttiho, ttilo $4.0 \text{ V} \leq V_{DD} \leq 5.5 \text{ V}$ μs high-/low-level width $2.7 \text{ V} \le V_{DD} < 4.0 \text{ V}$ 2/fsam + 0.2Note 2 US $1.8 \text{ V} \leq \text{V}_{DD} < 2.7 \text{ V}$ 2/fsam + 0.5Note 2 μs TI50, TI51 input f_{TI5} $V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$ MHz 4 frequency $V_{DD} = 1.8 \text{ to } 5.5 \text{ V}$ 0 275 kHz TI50, TI51 input $V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$ 100 $t_{\text{TIH5}}, t_{\text{TIL5}}$ ns high-/low-level $V_{DD} = 1.8 \text{ to } 5.5 \text{ V}$ 1.8 μ s width Interrupt request INTP0 to INTP3, P40 to P47 $V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$ tinth, tintl 1 μs input high-/low- $V_{DD} = 1.8 \text{ to } 5.5 \text{ V}$ 2 level width μs RESET trsl $V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$ 10 μ s low-level width $V_{DD} = 1.8 \text{ to } 5.5 \text{ V}$ 20


Notes 1. Value when using an external clock. When using a crystal resonator, the value becomes 114 μ s (MIN.).

2. Selection of $f_{sam} = fx$, fx/4, fx/64 is possible using bits 0 and 1 (PRM00, PRM01) of prescaler mode register 0 (PRM0). However, if the TI00 valid edge is selected as the count clock, the value becomes $f_{sam} = fx/8$.

www.datasheet

Tcy vs. VDD (main system clock)

(2) Read/write operation ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = 4.0 \text{ to } 5.5 \text{ V}$)

(1/3)

	Parameter	Symbol	Conditions	MIN.	MAX.	Unit
	ASTB high-level width	tasth		0.3tcy		ns
	Address setup time	tads		20		ns
	Address hold time	tadh		6		ns
www.datasheet4	Unput time from address to data	tadd1			(2 + 2n)tcy - 54	ns
		tADD2			(3 + 2n)tcy - 60	ns
	Output time from $\overline{RD} \downarrow$ to address	trdad		0	100	ns
	Input time from $\overline{\mathrm{RD}} \downarrow$ to data	tRDD1			(2 + 2n)tcy - 87	ns
		tRDD2			(3 + 2n)tcy - 93	ns
	Read data hold time	tпрн		0		ns
	RD low-level width	trdL1		(1.5 + 2n)tcy - 33		ns
		tRDL2		(2.5 + 2n)tcy - 33		ns
	Input time from $\overline{\text{RD}} \downarrow$ to $\overline{\text{WAIT}} \downarrow$	tRDWT1			tcy - 43	ns
		trdwt2			tcy - 43	ns
	Input time from $\overline{\mathrm{WR}}\!\downarrow$ to $\overline{\mathrm{WAIT}}\!\downarrow$	twrwt			tcy - 25	ns
	WAIT low-level width	twTL		(0.5 + n)tcy + 10	(2 + 2n)tcy	ns
	Write data setup time	twos		60		ns
	Write data hold time	twDH		6		ns
	WR low-level width	twrL1		(1.5 + 2n)tcy - 15		ns
	Delay time from ASTB \downarrow to $\overline{\text{RD}} \downarrow$	tastrd		6		ns
	Delay time from ASTB \downarrow to $\overline{\mathrm{WR}} \downarrow$	tastwr		2tcy - 15		ns
	Delay time from RD↑ to ASTB↑ in external fetch	trdast		0.8tcy - 15	1.2tcy	ns
	Hold time from RD↑ to address in external fetch	trdadh		0.8tcy - 15	1.2tcy + 30	ns
	Write data output time from RD↑	trowd		40		ns
	Write data output time from WR↓	twrwd		10	60	ns
	Hold time from WR↑ to address	twradh		0.8tcy - 15	1.2tcy + 30	ns
	Delay time from WAIT↑ to RD↑	twrnd		0.8tcy	2.5tcy + 25	ns
	Delay time from WAIT↑ to WR↑	twrwr		0.8tcy	2.5tcy + 25	ns

Remarks 1. tcy = Tcy/4

- 2. n indicates the number of waits.
- 3. $C_L = 100 \text{ pF}$ (C_L is the load capacitance of the AD0 to AD7, A8 to A15, $\overline{\text{RD}}$, $\overline{\text{WR}}$, $\overline{\text{WAIT}}$, and ASTB pins.)

(2) Read/write operation ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = 2.7 \text{ to } 4.0 \text{ V}$)

(2/3)

	Parameter	Symbol	Conditions	MIN.	MAX.	Unit
	ASTB high-level width	tasth		0.3tcy		ns
	Address setup time	tads		30		ns
	Address hold time	tadh		10		ns
www.da	Input time from address to data	t _{ADD1}			(2 + 2n)tcy - 108	ns
		t _{ADD2}			(3 + 2n)tcy - 120	ns
	Output time from $\overline{RD}{\downarrow}$ to address	trdad		0	200	ns
	Input time from RD↓ to data	tRDD1			(2 + 2n)tcy - 148	ns
		tRDD2			(3 + 2n)tcy - 162	ns
	Read data hold time	t RDH		0		ns
	RD low-level width	t RDL1		(1.5 + 2n)tcy - 40		ns
		tRDL2		(2.5 + 2n)tcy - 40		ns
	Input time from $\overline{RD} \downarrow$ to $\overline{WAIT} \downarrow$	trdwt1			tcy - 75	ns
		trdwt2			tcy - 60	ns
	Input time from $\overline{\mathrm{WR}} \!\!\downarrow$ to $\overline{\mathrm{WAIT}} \!\!\downarrow$	twrwt			tcy - 50	ns
	WAIT low-level width	twтL		(0.5 + 2n)tcy + 10	(2 + 2n)tcy	ns
	Write data setup time	twos		60		ns
	Write data hold time	twdн		10		ns
	WR low-level width	twrL1		(1.5 + 2n)tcy - 30		ns
	Delay time from ASTB \downarrow to $\overline{\text{RD}} \downarrow$	tastrd		10		ns
	Delay time from ASTB \downarrow to $\overline{\mathrm{WR}} \downarrow$	tastwr		2tcy - 30		ns
	Delay time from \overline{RD} to ASTB in external fetch	trdast		0.8tcy - 30	1.2tcy	ns
	Hold time from RD↑ to address in external fetch	trdadh		0.8tcy - 30	1.2tcy + 60	ns
	Write data output time from RD↑	trowd		40		ns
	Write data output time from WR↓	twrwd		20	120	ns
	Hold time from WR↑ to address	twradh		0.8tcy - 30	1.2tcy + 60	ns
	Delay time from WAIT↑ to RD↑	twrd		0.5tcy	2.5tcy + 50	ns
	Delay time from WAIT↑ to WR↑	twrwr		0.5tcy	2.5tcy + 50	ns

Remarks 1. tcy = Tcy/4

2. n indicates the number of waits.

3. $C_L = 100 \text{ pF}$ (C_L is the load capacitance of the AD0 to AD7, A8 to A15, $\overline{\text{RD}}$, $\overline{\text{WR}}$, $\overline{\text{WAIT}}$, and ASTB pins.)

(2) Read/write operation ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = 1.8 \text{ to } 2.7 \text{ V}$)

(3/3)

	Parameter	Symbol	Conditions	MIN.	MAX.	Unit
	ASTB high-level width	tasth		0.3tcy		ns
	Address setup time	tads		120		ns
	Address hold time	tadh		20		ns
www.datasheet4	Unput time from address to data	tadd1			(2 + 2n)tcy - 233	ns
		tadd2			(3 + 2n)tcy - 240	ns
	Output time from $\overline{RD} \downarrow$ to address	trdad		0	400	ns
	Input time from $\overline{\text{RD}} \downarrow$ to data	t _{RDD1}			(2 + 2n)tcy - 325	ns
		tRDD2			(3 + 2n)tcy - 332	ns
	Read data hold time	tпрн		0		ns
	RD low-level width	t _{RDL1}		(1.5 + 2n)tcy - 92		ns
		tRDL2		(2.5 + 2n)tcy - 92		ns
	Input time from $\overline{\text{RD}} \downarrow$ to $\overline{\text{WAIT}} \downarrow$	t _{RDWT1}			tcy - 350	ns
		trdwt2			tcy - 132	ns
	Input time from $\overline{WR}\!\downarrow$ to $\overline{WAIT}\!\downarrow$	twrwt			tcy - 100	ns
	WAIT low-level width	tw⊤∟		(0.5 + 2n)tcy + 10	(2 + 2n)tcr	ns
	Write data setup time	twos		60		ns
	Write data hold time	twdн		20		ns
	WR low-level width	twrL1		(1.5 + 2n)tcy - 60		ns
	Delay time from ASTB↓ to $\overline{\text{RD}}$ ↓	tastrd		20		ns
	Delay time from ASTB↓ to WR↓	tastwr		2tcy - 60		ns
	Delay time from RD↑ to ASTB↑ in external fetch	trdast		0.8tcy - 60	1.2tcy	ns
	Hold time from RD↑ to address in external fetch	trdadh		0.8tcy - 60	1.2tcy + 120	ns
	Write data output time from RD ↑	trowo		40		ns
	Write data output time from $\overline{\mathrm{WR}} \!\!\downarrow$	twrwd		40	240	ns
	Hold time from WR↑ to address	twradh		0.8tcy - 60	1.2tcy + 120	ns
	Delay time from WAIT↑ to RD↑	twrd		0.5tcy	2.5tcy + 100	ns
	Delay time from $\overline{\text{WAIT}} \uparrow$ to $\overline{\text{WR}} \uparrow$	twrwn		0.5tcy	2.5tcy + 100	ns

Remarks 1. tcy = Tcy/4

- 2. n indicates the number of waits.
- 3. $C_L = 100 \text{ pF}$ (C_L is the load capacitance of the AD0 to AD7, A8 to A15, $\overline{\text{RD}}$, $\overline{\text{WR}}$, $\overline{\text{WAIT}}$, and ASTB pins.)

(3) Serial interface ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = 1.8 \text{ to } 5.5 \text{ V}$)

(a) 3-wire serial I/O mode (SCK3n... internal clock output)

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
	SCK3n cycle time	tkcy1	$4.0~V \leq V_{DD} \leq 5.5~V$	954			ns
www.dal	tasheet4u.com		$2.7 \text{ V} \leq \text{V}_{DD} < 4.0 \text{ V}$	1,600			ns
			$1.8~V \leq V_{DD} < 2.7~V$	3,200			ns
	SCK3n high-/low-level	t _{KH1}	V _{DD} = 4.0 to 5.5 V	tксү1/2 – 50			ns
	width	t _{KL1}	V _{DD} = 1.8 to 5.5 V	tkcy1/2 - 100			ns
	SI3n setup time	tsıĸı	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	100			ns
	(to SCK3n↑)		$2.7~\textrm{V} \leq \textrm{V}_\textrm{DD} < 4.0~\textrm{V}$	150			ns
			$1.8~\textrm{V} \leq \textrm{V}_\textrm{DD} < 2.7~\textrm{V}$	300			ns
	SI3n hold time (from SCK3n↑)	tksıı		400			ns
	Output delay time from SCK3n↓ to SO3n	tkso1	C = 100 pFNote			300	ns

Note C is the load capacitance of the $\overline{SCK3n}$ and SO3n output lines.

(b) 3-wire serial I/O mode (SCK3n... external clock input)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK3n cycle time	tkcy2	$4.0~V \leq V_{DD} \leq 5.5~V$	800			ns
		$2.7 \text{ V} \leq \text{V}_{DD} < 4.0 \text{ V}$	1,600			ns
		1.8 V ≤ V _{DD} < 2.7 V	3,200			ns
SCK3n high-/low-level	tкн2	$4.0~V \leq V_{DD} \leq 5.5~V$	400			ns
width	t _{KL2}	$2.7 \text{ V} \leq \text{V}_{DD} < 4.0 \text{ V}$	800			ns
		$1.8~V \leq V_{DD} < 2.7~V$	1,600			ns
SI3n setup time (to SCK3n↑)	tsık2		100			ns
SI3n hold time (from SCK3n↑)	tksi2		400			ns
Output delay time from SCK3n↓ to SO3n	tkso2	C = 100 pF ^{Note}			300	ns

Note C is the load capacitance of the SO3n output line.

Remark μ PD78F0034A: n = 0, 1 μ PD78F0034AY: n = 0

(c) UART mode (dedicated baud rate generator output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		4.0 V ≤ V _{DD} ≤ 5.5 V			131,031	bps
		2.7 V ≤ V _{DD} < 4.0 V			78,125	bps
		1.8 V ≤ V _{DD} < 2.7 V			39,063	bps

www.datasheet4u.com

(d) UART mode (external clock input)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
ASCK0 cycle time	tксүз	4.0 V ≤ V _{DD} ≤ 5.5 V	800			ns
		2.7 V ≤ V _{DD} < 4.0 V	1,600			ns
		1.8 V ≤ V _{DD} < 2.7 V	3,200			ns
ASCK0 high-/low-level	t кнз,	$4.0 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	400			ns
width	tкLз	2.7 V ≤ V _{DD} < 4.0 V	800			ns
		1.8 V ≤ V _{DD} < 2.7 V	1,600			ns
Transfer rate		$4.0 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$			39,063	bps
		2.7 V ≤ V _{DD} < 4.0 V			19,531	bps
		1.8 V ≤ V _{DD} < 2.7 V			9,766	bps

(e) UART mode (infrared data transfer mode)

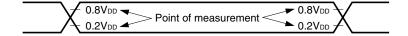
Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Transfer rate		V _{DD} = 4.0 to 5.5 V		131,031	bps
Bit rate allowable error		V _{DD} = 4.0 to 5.5 V		±0.87	%
Output pulse width		V _{DD} = 4.0 to 5.5 V	1.2	0.24/fbr ^{Note}	μs
Input pulse width		V _{DD} = 4.0 to 5.5 V	4/fx		μs

Note fbr: Specified baud rate

www.d

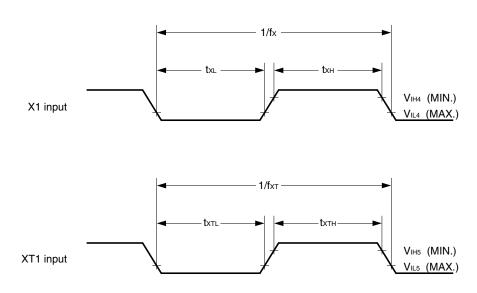
(f) I^2C bus Mode (μ PD78F0034AY only)

Parameter		Symbol	Standard Mode		High-Spe	High-Speed Mode	
			MIN.	MAX.	MIN.	MAX.	
SCL0 clock free	quency	fclk	0	100	0	400	kHz
Bus free time	and start condition)	tbuf	4.7	_	1.3	_	μs
Hold timeNote 1		thd:sta	4.0	_	0.6	-	μs
SCL0 clock low	SCL0 clock low-level width		4.7	_	1.3	_	μs
SCL0 clock high	SCL0 clock high-level width		4.0	_	0.6	_	μs
Start/restart cor	ndition setup time	tsu:sta	4.7	_	0.6	_	μs
Data hold time	CBUS compatible master	thd:dat	5.0	_	-	-	μs
	I ² C bus		O ^{Note 2}	_	O ^{Note 2}	0.9 ^{Note 3}	μs
Data setup time	;	tsu:dat	250	_	100 ^{Note 4}	-	ns
SDA0 and SCL	0 signal rise time	tR	-	1,000	20 + 0.1Cb ^{Note 5}	300	ns
SDA0 and SCL0 signal fall time		t⊧	-	300	20 + 0.1Cb ^{Note 5}	300	ns
Stop condition setup time		tsu:sто	4.0	_	0.6	-	μs
Spike pulse width controlled by input filter		tsp	_	_	0	50	ns
Capacitive load	per each bus line	Cb	_	400	_	400	pF

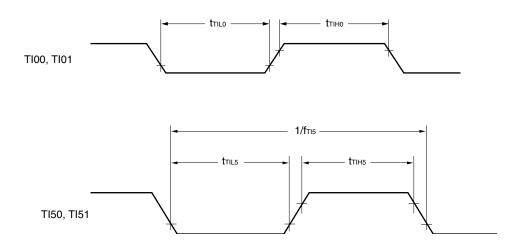

Notes 1. In the start condition, the first clock pulse is generated after this hold time.

- 2. To fill in the undefined area of the SCL0 falling edge, it is necessary for the device to internally provide at least 300 ns of hold time for the SDA0 signal (which is VIHmin. of the SCL0 signal).
- 3. If the device does not extend the SCL0 signal low hold time (tLow), only maximum data hold time thd:dat needs to be fulfilled.
- **4.** The high-speed mode I²C bus is available in a standard mode I²C bus system. At this time, the conditions described below must be satisfied.
 - \bullet If the device does not extend the SCL0 signal low state hold time $t_{\text{SU:DAT}} \geq 250 \text{ ns}$
 - If the device extends the SCL0 signal low state hold time

 Be sure to transmit the next data bit to the SDA0 line before the SCL0 line is released (transmit the next data bit to the SDA0 line before the SCL0 line is released (transmit the next data bit to the SDA0 line before the SCL0 line is released (transmit the next data bit to the SDA0 line before the SCL0 line is released (transmit the next data bit to the SDA0 line before the SCL0 line is released (transmit the next data bit to the SDA0 line before the SCL0 line is released (transmit the next data bit to the SDA0 line before the SCL0 line is released (transmit the next data bit to the SDA0 line before the SCL0 line is released (transmit the next data bit to the SDA0 line before the SCL0 line is released (transmit the next data bit to the SDA0 line before the SCL0 line is released (transmit the next data bit to the SDA0 line before the SCL0 line is released (transmit the next data bit to the SDA0 line before the SCL0 line is released (transmit the next data bit to the SDA0 line before the SCL0 line is released (transmit the next data bit to the SDA0 line before the SCL0 line is released (transmit the next data bit to the SDA0 line before the SCL0 line is released (transmit the next data bit to the SDA0 line before the SCL0 line is released (transmit the next data bit to the SDA0 line before the SCL0 line is released (transmit the next data bit to the SDA0 line before the SCL0 line is released (transmit the next data bit to the SDA0 line before the SCL0 line is released (transmit the next data bit to the SDA0 line before the SCL0 line is released (transmit the next data bit to the SDA0 line before the SCL0 line is released (transmit the next data bit to the SDA0 line before the school line before the schoo
- 5. Cb: Total capacitance per one bus line (unit: pF)

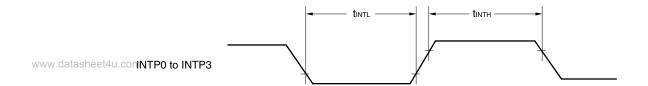


AC Timing Measurement Point (Excluding X1, XT1 Input)

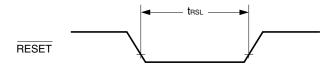


www.datasheet4u.com

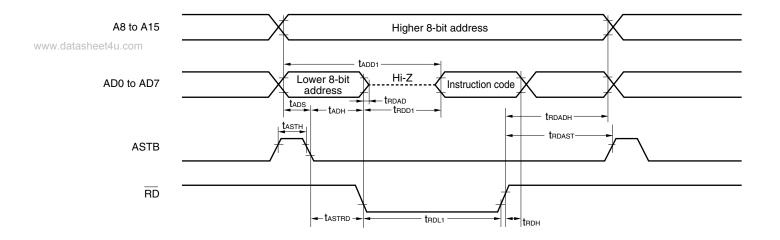
Clock Timing

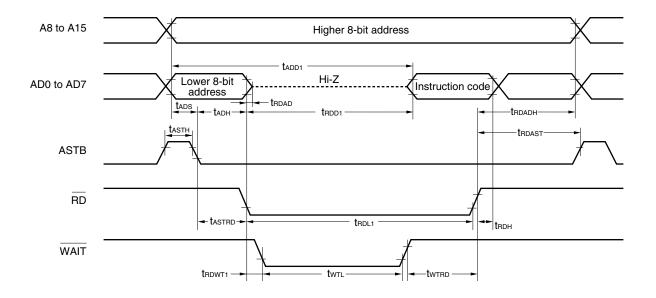


TI Timing



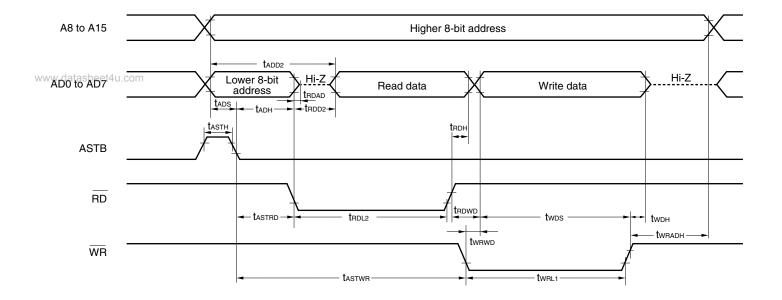
Interrupt Request Input Timing


RESET Input Timing

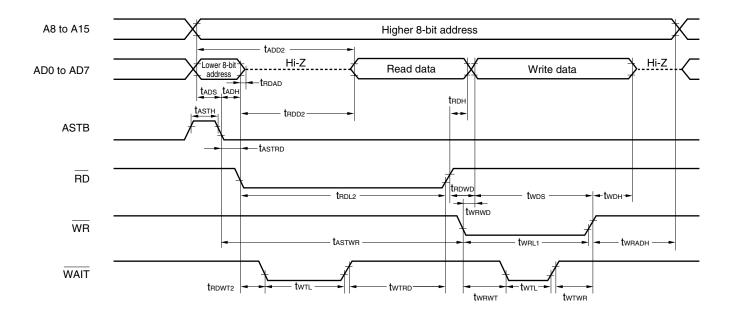


Read/Write Operation

External fetch (no wait):

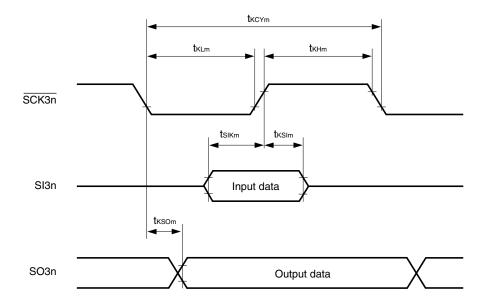


External fetch (wait insertion):



External data access (no wait):

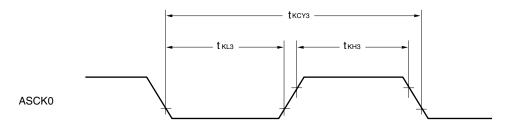
External data access (wait insertion):



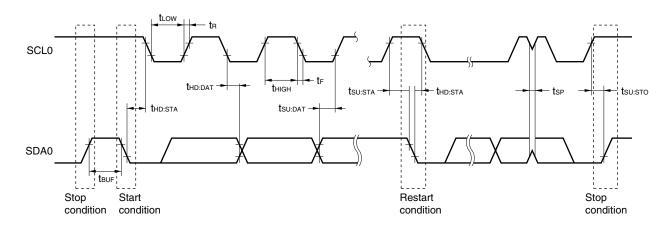
Serial Transfer Timing

3-wire serial I/O mode:

www.datasheet4u.com



Remarks 1. m = 1, 2


2. μ PD78F0034A: n = 0, 1

3. μ PD78F0034AY: n = 0

UART mode (external clock input):

I^2C bus mode (μ PD78F0034AY only):

44

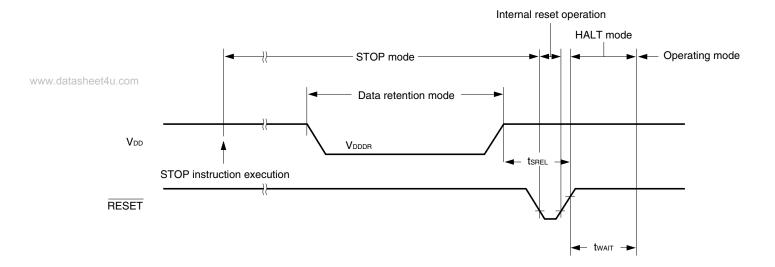
A/D Converter Characteristics (TA = -40 to +85°C, VDD = AVDD = AVREF = 1.8 to 5.5 V, AVSS = VSS = 0 V)

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Re	solution			10	10	10	bit
Ov	erall error ^{Note}		$4.0 \text{ V} \leq \text{AV}_{\text{REF}} \leq 5.5 \text{ V}$		±0.2	±0.4	%FSR
			2.7 V ≤ AVREF < 4.0 V		±0.3	±0.6	%FSR
www.datashe	eet4u.com		1.8 V ≤ AVREF < 2.7 V		±0.6	±1.2	%FSR
Co	nversion time	tconv	$4.0 \text{ V} \leq \text{AV}_{\text{REF}} \leq 5.5 \text{ V}$	14		96	μs
			2.7 V ≤ AVREF < 4.0 V	19		96	μs
			1.8 V ≤ AVREF < 2.7 V	28		96	μs
Zei	ro-scale error ^{Notes 1, 2}		$4.0 \text{ V} \leq \text{AV}_{\text{REF}} \leq 5.5 \text{ V}$			±0.4	%FSR
			2.7 V ≤ AVREF < 4.0 V			±0.6	%FSR
			1.8 V ≤ AVREF < 2.7 V			±1.2	%FSR
Ful	ll-scale error ^{Notes 1, 2}		$4.0 \text{ V} \leq \text{AV}_{\text{REF}} \leq 5.5 \text{ V}$			±0.4	%FSR
			2.7 V ≤ AVREF < 4.0 V			±0.6	%FSR
			1.8 V ≤ AVREF < 2.7 V			±1.2	%FSR
Inte	egral linearity error ^{Note 1}		$4.0 \text{ V} \leq \text{AV}_{\text{REF}} \leq 5.5 \text{ V}$			±2.5	LSB
			2.7 V ≤ AVREF < 4.0 V			±4.5	LSB
			1.8 V ≤ AVREF < 2.7 V			±8.5	LSB
Diff	ferential linearity error		4.0 V ≤ AVREF ≤ 5.5 V			±1.5	LSB
			2.7 V ≤ AVREF ≤ 4.0 V			±2.0	LSB
			1.8 V ≤ AVREF < 2.7 V			±3.5	LSB
Ana	alog input voltage	VIAN		0		AVREF	V
Re	ference voltage	AVREF		1.8		AVDD	V
Re	sistance between AVREF and AVSS	RREF	During A/D conversion operation	20	40		kΩ

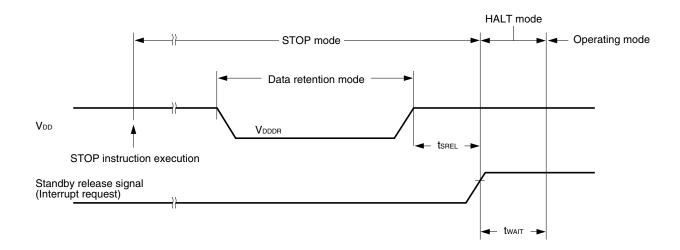
- **Notes 1.** Excluding quantization error ($\pm 1/2$ LSB).
 - 2. Indicated as a ratio to the full-scale value (%FSR).

Remark When the μ PD78F0034A or 78F0034AY is used as an 8-bit resolution A/D converter, the specifications are the same as for the μ PD780024A or 78F0024AY Subseries A/D converter.

Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics (T_A = -40 to +85°C)


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.6		5.5	V
Data retention supply current	IDDDR	Subsystem clock stop (XT1 = V _{DD}) and feed-back resistor disconnected		0.1	30	μΑ
Release signal set time	tsrel		0			μs
Oscillation stabilization wait time	twait	Release by RESET		2 ¹⁷ /fx		S
		Release by interrupt request		Note		S

Note Selection of 2^{12} /fx and 2^{14} /fx to 2^{17} /fx is possible using bits 0 to 2 (OSTS0 to OSTS2) of the oscillation stabilization time select register (OSTS).


Data Sheet U14040EJ4V0DS WWW.DataSheet4U.com

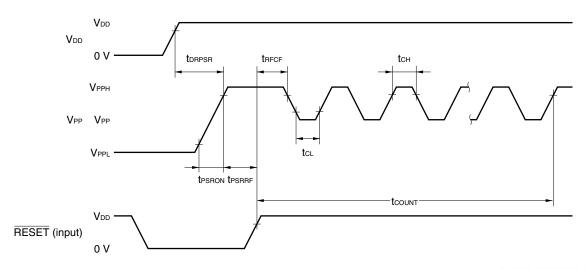
Data Retention Timing (STOP Mode Release by RESET)

Data Retention Timing (Standby Release Signal: STOP Mode Release by Interrupt Request Signal)

Flash Memory Programming Characteristics (VDD = 2.7 to 5.5 V, Vss = 0 V, VPP = 9.7 to 10.3 V)

(1) Basic characteristics

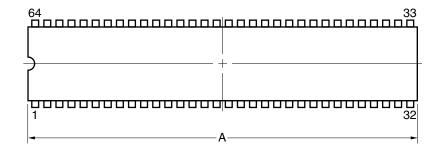
Parameter Symbol Conditions MIN. TYP. MAX. Unit fx $4.0 \leq V_{\text{DD}} \leq 5.5 \ V$ 8.38 MHz Operating frequency 1.0 $2.7 \le V_{DD} < 4.0 V$ 1.0 5.0 MHz www.datasheet4u.com Supply voltage $V_{\text{DD}} \\$ Operation voltage when writing 2.7 5.5 ٧ V_{PPL} Upon VPP low-level detection 0 $0.2V_{\text{DD}}$ V_{PP} Upon VPP high-level detection $0.8V_{\text{DD}}$ 1.2V_{DD} 9.7Note 1 10.0Note 1 10.3Note 1 V_{PPH} Upon VPP high-voltage detection ٧ V_{DD} supply current IDD mA VPP supply current **I**PP V_{PP} =10.0 V 75 100 mA Write time (per byte) Twrt 50 500 μS Number of rewrites CWRT 20Note 2 Times Erase time TERASE 20 1 s T_{PRG} +10 +40 ٥С Programming temperature

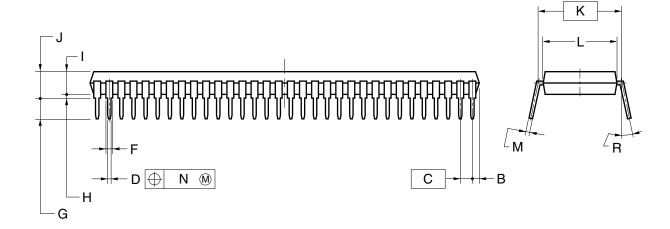

Notes 1. For the product grades "K, E, and P", 10.2 V (MIN.), 10.3 V (TYP.), and 10.4 V (MAX.), are applied.

2. For the product specification "K and E", the number is 1 (MAX.).

(2) Serial write operation characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
V _{PP} set time	tpsron	V _{PP} high voltage	1.0			μs
Set time from VDD↑ to VPP↑	torpsr	V _{PP} high voltage	1.0			μs
Set time from V _{PP} ↑ to RESET↑	tpsrrf	V _{PP} high voltage	1.0			μs
V _{PP} count start time from RESET↑	trece		1.0			μs
Count execution time	tсоинт				2.0	ms
V _{PP} counter high-level width	tсн		8.0			μs
V _{PP} counter low-level width	tcL		8.0			μs
V _{PP} counter noise elimination width	tnfw			40		ns


Flash Memory Write Mode Set Timing



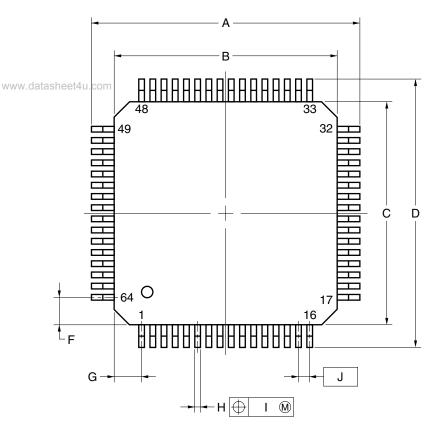
8. PACKAGE DRAWINGS

64-PIN PLASTIC SDIP (19.05mm(750))

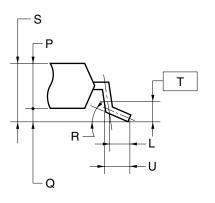
www.datasheet4u.com

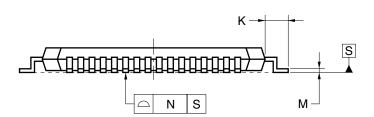
NOTES

- Each lead centerline is located within 0.17 mm of its true position (T.P.) at maximum material condition.
- 2. Item "K" to center of leads when formed parallel.


ITEM	MILLIMETERS
Α	$58.0^{+0.68}_{-0.20}$
В	1.78 MAX.
С	1.778 (T.P.)
D	0.50±0.10
F	0.9 MIN.
G	3.2±0.3
Н	0.51 MIN.
1	$4.05^{+0.26}_{-0.20}$
J	5.08 MAX.
K	19.05 (T.P.)
L	17.0±0.2
М	0.25+0.10
N	0.17
R	0 ~ 15°
	264C 70 7E0A C 4

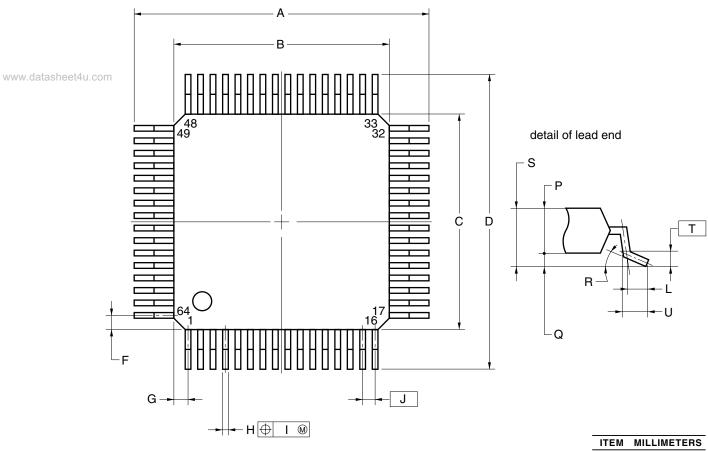
P64C-70-750A,C-4

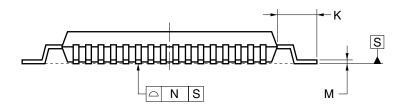

Remark The package and material of ES products are the same as mass produced products.



★ 64-PIN PLASTIC LQFP (10x10)

detail of lead end

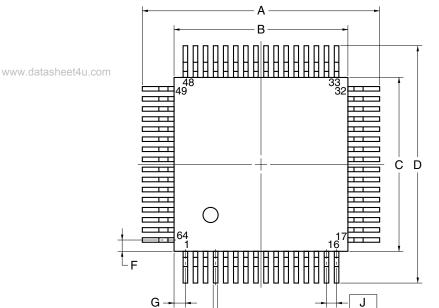

NOTE


Each lead centerline is located within 0.08 mm of its true position (T.P.) at maximum material condition.

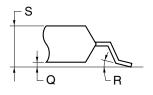
ITEM	MILLIMETERS
Α	12.0±0.2
В	10.0±0.2
С	10.0±0.2
D	12.0±0.2
F	1.25
G	1.25
Н	0.22±0.05
ı	0.08
J	0.5 (T.P.)
K	1.0±0.2
L	0.5
М	$0.17^{+0.03}_{-0.07}$
N	0.08
Р	1.4
Q	0.1±0.05
R	3°+4°
S	1.5±0.10
Т	0.25
U	0.6±0.15
	S64GB-50-8EU-2

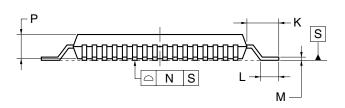
Remark The package and material of ES products are the same as mass produced products.

★ 64-PIN PLASTIC LQFP (14x14)


NOTE

Each lead centerline is located within 0.20 mm of its true position (T.P.) at maximum material condition.

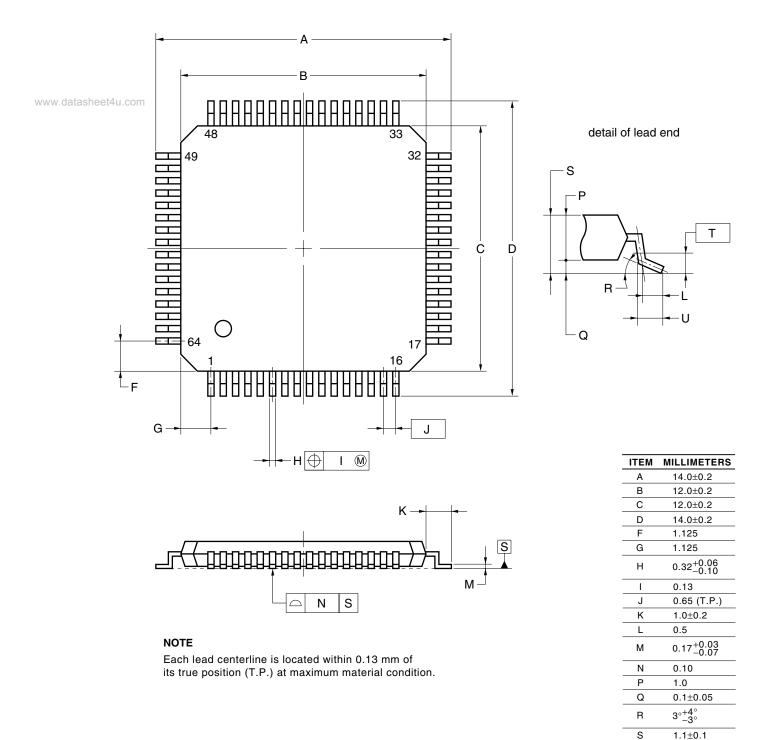

ITEM	MILLIMETERS
Α	17.2±0.2
В	14.0±0.2
С	14.0±0.2
D	17.2±0.2
F	1.0
G	1.0
Н	$0.37^{+0.08}_{-0.07}$
- 1	0.20
J	0.8 (T.P.)
K	1.6±0.2
L	0.8
М	$0.17^{+0.03}_{-0.06}$
N	0.10
Р	1.4±0.1
Q	0.127±0.075
R	3° +4° -3°
S	1.7 MAX.
Т	0.25
U	0.886±0.15
	P64GC-80-8BS


Remark The package and material of ES products are the same as mass produced products.

64-PIN PLASTIC QFP (14x14)

detail of lead end

NOTE


Each lead centerline is located within 0.15 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
Α	17.6±0.4
В	14.0±0.2
С	14.0±0.2
D	17.6±0.4
F	1.0
G	1.0
Н	$0.37^{+0.08}_{-0.07}$
I	0.15
J	0.8 (T.P.)
K	1.8±0.2
L	0.8±0.2
М	$0.17^{+0.08}_{-0.07}$
N	0.10
Р	2.55±0.1
Q	0.1±0.1
R	5°±5°
S	2.85 MAX.
	P64GC-80-AB8-5

Remark The package and material of ES products are the same as mass produced products.

64-PIN PLASTIC TQFP (12x12)

Remark The package and material of ES products are the same as mass produced products.

0.25

0.6±0.15 **P64GK-65-9ET-3**

Т

U

52

★ 9. RECOMMENDED SOLDERING CONDITIONS

The μ PD78F0034A, 78F0034AY should be soldered and mounted under the following recommended conditions. For details of the recommended soldering conditions, refer to the document **Semiconductor Device Mounting Technology Manual (C10535E)**.

For soldering methods and conditions other than those recommended below, contact your NEC sales www.darepresentative.

Table 9-1. Surface Mounting Type Soldering Conditions (1/2)

(1) μ PD78F0034AGC-8BS: 64-pin plastic LQFP (14 × 14) μ PD78F0034AYGC-8BS: 64-pin plastic LQFP (14 × 14) μ PD78F0034AGC-AB8: 64-pin plastic QFP (14 × 14) μ PD78F0034AYGC-AB8: 64-pin plastic QFP (14 × 14)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C or higher), Count: Two times or less	IR35-00-2
VPS	Package peak temperature: 215°C, Time: 40 seconds max. (at 200°C or higher), Count: Two times or less	VP15-00-2
Wave soldering	Solder bath temperature: 260°C max., Time: 10 seconds max., Count: Once, Preheating temperature: 120°C max. (package surface temperature)	WS60-00-1
Partial heating	Pin temperature: 300°C max., Time: 3 seconds max. (per pin row)	-

Caution Do not use different soldering methods together (except for partial heating).

(2) μ PD78F0034AGB-8EU: 64-pin plastic LQFP (10 \times 10) μ PD78F0034AYGB-8EU: 64-pin plastic LQFP (10 \times 10)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C or higher), Count: Two times or less, Exposure limit: 7 days ^{Note} (after 7 days, prebake at 125°C for 10 hours)	IR35-107-2
VPS	Package peak temperature: 215°C, Time: 40 seconds max. (at 200°C or higher), Count: Two times or less, Exposure limit: 7 days ^{Note} (after 7 days, prebake at 125°C for 10 hours)	VP15-107-2
Partial heating	Pin temperature: 300°C max., Time: 3 seconds max. (per pin row)	-

Note After opening the dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).

Data Sheet U14040EJ4V0DS WWW.DataSheet4U.com

Table 9-1. Surface Mounting Type Soldering Conditions (2/2)

(3) μ PD78F0034AGK-9ET: 64-pin plastic TQFP (12 × 12) μ PD78F0034AYGK-9ET: 64-pin plastic TQFP (12 × 12)

www.datasheet4

	Soldering Method	Soldering Conditions	Recommended Condition Symbol
et4	Infrared reflow	Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C or higher), Count: Two times or less, Exposure limit: 7 days ^{Note} (after 7 days, prebake at 125°C for 10 hours)	IR35-107-2
	VPS	Package peak temperature: 215°C, Time: 40 seconds max. (at 200°C or higher), Count: Two times or less, Exposure limit: 7 days ^{Note} (after 7 days, prebake at 125°C for 10 hours)	VP15-107-2
	Wave soldering	Solder bath temperature: 260°C max., Time: 10 seconds max., Count: Once, Preheating temperature: 120°C max. (package surface temperature), Exposure limit: 7 days ^{Note} (after 7 days, prebake at 125°C for 10 hours)	WS60-107-1
	Partial heating	Pin temperature: 300°C max., Time: 3 seconds max. (per pin row)	-

Note After opening the dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).

Table 9-2. Insertion Type Soldering Conditions

 $\mu\text{PD78F0034ACW: 64-pin plastic SDIP (19.05 mm (750))}$ $\mu\text{PD78F0034AYCW: 64-pin plastic SDIP (19.05 mm (750))}$

Soldering Method	Soldering Conditions		
Wave soldering (pin only)	Solder bath temperature: 260°C max., Time: 10 seconds max.		
Partial heating	Pin temperature: 300°C max., Time: 3 seconds max. (per pin row)		

Caution Apply wave soldering only to the pins and be careful not to bring solder into direct contact with the package.

APPENDIX A. DEVELOPMENT TOOLS

The following development tools are available for system development using the μ PD78F0034A, 78F0034AY Subseries.

Also refer to (5) Cautions on Using Development Tools.

www.da(1)h Language Processing Software

RA78K0	Assembler package common to 78K/0 Series
CC78K0	C compiler package common to 78K/0 Series
DF780034	Device file for μPD780034A, 78F0034AY Subseries
CC78K0-L	C compiler library source file common to 78K/0 Series

(2) Flash Memory Writing Tools

Flashpro III (part No. FL-PR3, PG-FP3)	Flash programmer dedicated to microcontrollers with on-chip flash memory
FA-64CW, FA-64GC, FA-64GC-8BS, FA-64GB-8EU, FA-64GK-9ET	Adapter for flash memory writing

(3) Debugging Tools

• When IE-78K0-NS in-circuit emulator is used

IE-78K0-NS	In-circuit emulator common to 78K/0 Series
IE-70000-MC-PS-B	Power supply unit for IE-78K0-NS
IE-78K0-NS-PA	Performance board that enhances and expands the IE-78K0-NS functions
IE-70000-98-IF-C	Adapter required when using PC-9800 series PC (except notebook type) as host machine (C bus supported)
IE-70000-CD-IF-A	PC card and interface cable when using PC-9800 series notebook PC as host machine (PCMCIA socket supported)
IE-70000-PC-IF-C	Adapter required when using IBM PC/AT TM or compatible as host machine (ISA bus supported)
IE-70000-PCI-IF-A	Adapter necessary when using PC in which PCI bus is incorporated as host machine
IE-780034-NS-EM1	Emulation board to emulate the μ PD780034A, 78F0034AY Subseries
NP-64CW	Emulation probe for 64-pin plastic SDIP (CW type)
NP-64GC, NP-64GC-TQ	Emulation probe for 64-pin plastic QFP (CG-AB8, GC-8BS type)
NP-64GK	Emulation probe for 64-pin plastic TQFP (GK-9ET type)
NP-H64GB-TQ	Emulation probe for 64-pin plastic LQFP (GB-8EU type)
EV-9200GC-64	Conversion socket to connect the NP-64GC and a target system board on which a 64-pin plastic QFP (GC-AB8, GC-8BS type) can be mounted
TGC-064SAP	Conversion adapter to connect the NP-64GC-TQ and a target system board on which a 64-pin plastic QFP (GC-AB8, GC-8BS type) can be mounted
TGK-064SBP	Conversion adapter to connect the NP-64GK and a target system board on which a 64-pin plastic TQFP (GK-9ET type) can be mounted
TGB-064SDP	Conversion adapter to connect the NP-H64GB-TQ and a target system board on which a 64-pin plastic LQFP (GB-8EU type) can be mounted
ID78K0-NS	Integrated debugger for IE-78K0-NS
SM78K0	System simulator common to 78K/0 Series
DF780034	Device file for μPD780034A, 78F0034AY Subseries

• When using in-circuit emulator IE-78001-R-A

	IE-78001-R-A	In-circuit emulator common to 78K/0 Series		
	IE-70000-98-IF-C	Adapter required when using PC-9800 series as host machine (excluding notebook PCs) (C bus supported)		
	IE-70000-PC-IF-C	Adapter required when using IBM PC/AT or compatible as host machine (ISA bus supported)		
www.datasheet4	ulE-70000-PCI-IF-A	Adapter required when using PC in which PCI bus is incorporated as host machine		
	IE-780034-NS-EM1	Emulation board to emulate μPD780034A, 78F0034AY Subseries		
	IE-78K0-R-EX1	Emulation probe conversion board to use IE-780034-NS-EM1 on IE-78001-R-A		
	EP-78240CW-R	Emulation probe for 64-pin plastic SDIP (CW type)		
	EP-78240GC-R	Emulation probe for 64-pin plastic QFP (GC-AB8, GC-8BS type)		
	EP-78012GK-R	Emulation probe for 64-pin plastic TQFP (GK-9ET type)		
	EV-9200GC-64	Conversion socket to connect the EP-78240GC-R and a target system board on which a 64-pin plastic QFP (GC-AB8, GC-8BS type) can be mounted		
	TGK-064SBP	Conversion adapter to connect the EP-78012GK-R and a target system board on which a 64-pin plastic TQFP (GK-9ET type) can be mounted		
	ID78K0	Integrated debugger for IE-78001-R-A		
	SM78K0	System simulator common to 78K/0 Series		
	DF780034	Device file for μPD780034A, 78F0034AY Subseries		

(4) Real-Time OS

X78K0

(5) Cautions on Using Development Tools

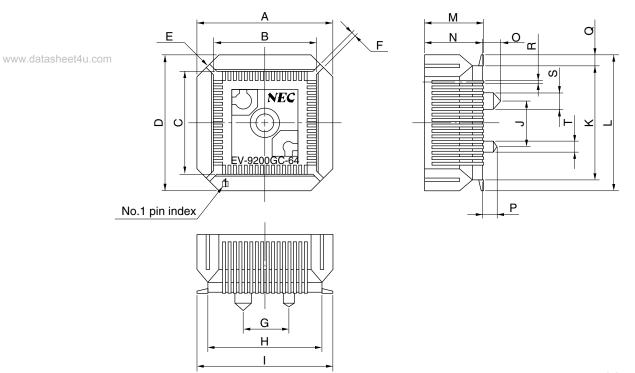
- The ID-78K0-NS, ID78K0, and SM78K0 are used in combination with the DF780034.
- The CC78K0 and RX78K0 are used in combination with the RA78K0 and the DF780034.
- The FL-PR3, FA-64CW, FA-64GC, FA-64GC-8BS, FA-64GB-8EU, FA-64GK-9ET, NP-64CW, NP-64GC, NP-64GC-TQ, NP-64GK, and NP-H64GB-TQ are products made by Naito Densei Machida Mfg. Co., Ltd. (+81-45-475-4191).
- www.dataslee/The/TGK-064SBW, TGC-064SAP, TGK-064-SBP, and TGB-064SDP are products made by TOKYO ELETECH CORPORATION.

For further information contact Daimaru Kogyo, Ltd.

Tokyo Electronic Division (+81-3-3820-7112)

Osaka Electronic Division (+81-6-6244-6672)

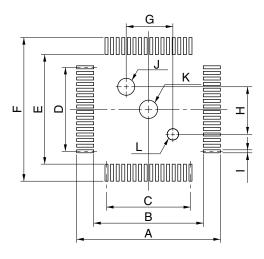
- For third party development tools, see the Single-Chip Microcontroller Selection Guide (U11069E).
- The host machines and OSs supporting each software are as follows.


Host Machine	PC	EWS
[08]	PC-9800 series [Japanese Windows TM] IBM PC/AT or compatibles	HP9000 series 700 TM [HP-UX TM] SPARCstation TM [SunOS TM , Solaris TM]
Software	[Japanese/English Windows]	
RA78K0	\sqrt{Note}	√
CC78K0	√Note	√
ID78K0-NS	\checkmark	-
ID78K0	\checkmark	-
SM78K0	\checkmark	-
RX78K0	\sqrt{Note}	$\sqrt{}$

Note DOS-based software

Conversion Socket Drawing (EV-9200GC-64) and Footprints

Figure A-1. EV-9200GC-64 Drawing (For Reference Only)



EV-9200GC-64-G0

ITEM	MILLIMETERS	INCHES
Α	18.8	0.74
В	14.1	0.555
С	14.1	0.555
D	18.8	0.74
Е	4-C 3.0	4-C 0.118
F	0.8	0.031
G	6.0	0.236
Н	15.8	0.622
1	18.5	0.728
J	6.0	0.236
K	15.8	0.622
L	18.5	0.728
М	8.0	0.315
N	7.8	0.307
0	2.5	0.098
Р	2.0	0.079
Q	1.35	0.053
R	0.35±0.1	$0.014^{+0.004}_{-0.005}$
S	φ2.3	φ0.091
Т	φ1.5	φ0.059

Figure A-2. EV-9200GC-64 Footprints (For Reference Only)

www.datasheet4u.com

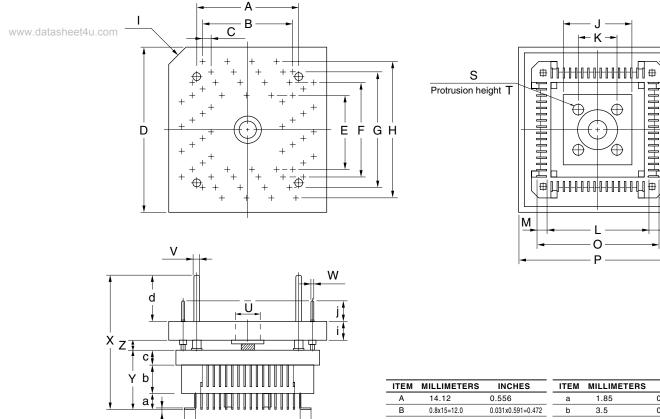
EV-9200GC-64-P1E

ITEM	MILLIMETERS	INCHES	
Α	19.5	0.768	
В	14.8	0.583	
С	0.8±0.02 × 15=12.0±0.05	$0.031^{+0.002}_{-0.001} \times 0.591 = 0.472^{+0.003}_{-0.002}$	
D	0.8±0.02 × 15=12.0±0.05	$0.031^{+0.002}_{-0.001} \times 0.591 = 0.472^{+0.003}_{-0.002}$	
Е	14.8	0.583	
F	19.5	0.768	
G	6.00±0.08	$0.236^{+0.004}_{-0.003}$	
Н	6.00±0.08	$0.236^{+0.004}_{-0.003}$	
ı	0.5±0.02	$0.197^{+0.001}_{-0.002}$	
J	φ2.36±0.03	$\phi_{0.093^{+0.001}_{-0.002}}$	
K	φ2.2±0.1	ϕ 0.087 $^{+0.004}_{-0.005}$	
L	φ1.57±0.03	$\phi_{0.062^{+0.001}_{-0.002}}$	

Caution

DimensionsofmountpadforEV-9200andthatfortargetdevice (QFP) may be different in some parts. For the recommended mountpaddimensionsforQFP, refer to "SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL" (C10535E).

Ф


QR

Ν

Conversion Adapter Drawing (TGC-064SAP)

Figure A-3. TGC-064SAP Drawing (For Reference Only)

h

ITEM	MILLIMETERS	INCHES	ITEM	MILLIMETERS	INCHES
Α	14.12	0.556	a	1.85	0.073
В	0.8x15=12.0	0.031x0.591=0.472	b	3.5	0.138
С	0.8	0.031	С	2.0	0.079
D	20.65	0.813	d	6.0	0.236
Е	10.0	0.394	е	0.25	0.010
F	12.4	0.488	f	13.6	0.535
G	14.8	0.583	g	1.2	0.047
Н	17.2	0.677	h	1.2	0.047
- 1	C 2.0	C 0.079	i	2.4	0.094
J	9.05	0.356	j	2.7	0.106
K	5.0	0.197			TGC-064SAP-G0E
L	13.35	0.526			
М	1.325	0.052			
N	1.325	0.052			
0	16.0	0.630			

note: Product by TOKYO ELETECH CORPORATION.

e g

20.65

12.5

17.5

1.8

 $4-\phi 1.3$

 $\phi 3.55$

φ0.9

 ϕ 0.3

7.35

1.2

(19.65)

Q

R

S

U

W

Z

0.813

0.492

0.689

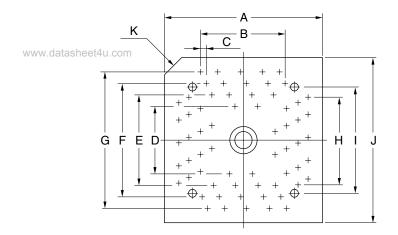
 $4-\phi 0.051$ 0.071

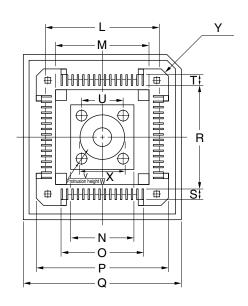
 ϕ 0.140

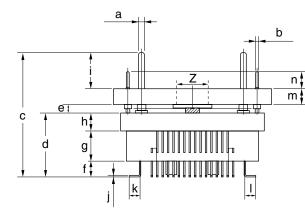
 ϕ 0.035

 ϕ 0.012

(0.667)


0.289


0.047



Conversion Adapter Drawing (TGK-064SBP)

Figure A-4. TGK-064SBP Drawing (For Reference Only) (Unit: mm)

ITEM	MILLIMETERS	INCHES
Α	18.4	0.724
В	0.65x15=9.75	0.026x0.591=0.384
С	0.65	0.026
D	7.75	0.305
E	10.15	0.400
F	12.55	0.494
G	14.95	0.589
Н	0.65x15=9.75	0.026x0.591=0.384
ı	11.85	0.467
J	18.4	0.724
K	C 2.0	C 0.079
L	12.45	0.490
М	10.25	0.404
N	7.7	0.303
0	10.02	0.394
Р	14.92	0.587
Q	18.4	0.724
R	11.1	0.437
S	1.45	0.057
Т	1.45	0.057
U	5.0	0.197
V	4- <i>ϕ</i> 1.3	φ0.051
W	1.8	0.071
X	φ5.3	φ0.209
Υ	4-C 1.0	4-C 0.039
Z	ϕ 3.55	φ0.140

ITEM	MILLIMETERS	INCHES
а	ϕ 0.9	ϕ 0.035
b	ϕ 0.3	ϕ 0.012
С	(16.95)	(0.667)
d	7.35	0.289
е	1.2	0.047
f	1.85	0.073
g	3.5	0.138
h	2.0	0.079
i	6.0	0.236
j	0.25	0.010
k	1.325	0.052
- 1	1.325	0.052
m	2.4	0.094
n	2.7	0.106
	a b c d e f g h i j k I	a \$\phi 0.9\$ b \$\phi 0.3\$ c \$(16.95)\$ d 7.35 e 1.2 f 1.85 g 3.5 h 2.0 i 6.0 j 0.25 k 1.325 l 1.325 m 2.4

TGK-064SBP-G0E

Note: Product by TOKYO ELETECH CORPORATION.

60 Data Sheet U14040EJ4V0DS WWW.DataSheet4U.com

APPENDIX B. RELATED DOCUMENTS

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

Documents Related to Devices

www.datasheet4

Document Name	Document No.
μPD780024A, 780034A, 780024AY, 780034AY Subseries User's Manual	U14046E
μPD780021A, 780022A, 780023A, 780024A, 780021AY, 780022AY, 780023AY, 780024AY Data Sheet	U14042E
μPD780021A(A), 780022A(A), 780023A(A), 780024A(A), 780021AY(A), 780022AY(A), 780023AY(A),	U15131E
780024AY(A) Data Sheet	
μ PD780031A, 780032A, 780033A, 780034A, 780031AY, 780032AY, 780033AY, 780034AY Data Sheet	U14044E
μ PD780031A(A), 780032A(A), 780033A(A), 780034A(A), 780031AY(A), 780032AY(A), 780033AY(A),	U15132E
780034AY(A) Data Sheet	
μPD78F0034A, 78F0034AY Data Sheet	This manual
78K/0 Series User's Manual Instruction	U12326E

★ Documents Related to Development Software Tools (User's Manuals)

Document Name		Document No.
RA78K0 Assembler Package	Operation	U14445E
	Language	U14446E
	Structured Assembly Language	U11789E
CC78K0 C Compiler	Operation	U14297E
	Language	U14298E
SM78K0S, SM78K0 System Simulator Ver. 2.10 or Later	Operation (Windows Based)	U14611E
SM78K Series System Simulator Ver. 2.10 or Later	External Part User Open	U15006E
	Interface Specifications	
ID78K0-NS Integrated Debugger Ver. 2.00 or Later	Operation (Windows Based)	U14379E
ID78K0 Integrated Debugger Windows Based	Reference	U11539E
	Guide	U11649E
RX78K0 Real-Time OS	Fundamentals	U11537E
	Installation	U11536E
Project Manager Ver. 3.12 or Later (Windows Based)		U14610E

Documents Related to Development Hardware Tools (User's Manuals)

Document Name	Document No.
IE-78K0-NS In-Circuit Emulator	U13731E
IE-78K0-NS-A In-Circuit Emulator	U14889E
IE-78001-R-A In-Circuit Emulator	U14142E
IE-78K0-R-EX1 In-Circuit Emulator	To be prepared

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.

62

Documents Related to Flash Memory Writing

Document Name	Document No.
PG-FP3 Flash Memory Programmer User's Manual	U13502E

Other Related Documents

www.da	asheet4u.com Document Name	Document No.
	SEMICONDUCTORS SELECTION GUIDE - Products & Packages -	X13769E
	Semiconductor Device Mounting Technology Manual	C10535E
	Quality Grades on NEC Semiconductor Devices	C11531E
	NEC Semiconductor Device Reliability/Quality Control System	C10983E
	Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD)	C11892E

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.

Data Sheet U14040EJ4V0DS WWW.DataSheet4U.com

[MEMO]

www.datasheet4u.com

NOTES FOR CMOS DEVICES -

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Note: Purchase of NEC I²C components conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips.

FIP and IEBus are trademarks of NEC Corporation.

Windows is either a registered trademark or trademark of Microsoft Corporation in the United States and/or other countries.

PC/AT is a trademark of International Business Machines Corporation.

HP9000 series 700 and HP-UX are trademarks of Hewlett-Packard Company.

SPARCstation is a trademark of SPARC International, Inc.

Solaris and SunOS are trademarks of Sun Microsystems, Inc.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

www.datasheet4u.com

- Device availability
- · Ordering information
- · Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- · Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288

NEC do Brasil S.A.

Electron Devices Division Guarulhos-SP, Brasil Tel: 11-6462-6810 Fax: 11-6462-6829

NEC Electronics (Europe) GmbH

Duesseldorf, Germany Tel: 0211-65 03 01 Fax: 0211-65 03 327

• Branch The Netherlands Eindhoven, The Netherlands

Tel: 040-244 58 45 Fax: 040-244 45 80

• Branch Sweden Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388

Filiale Italiana
Milano, Italy
Tel: 02-667541
Fax: 02-66754299

NEC Electronics (France) S.A.

Vélizy-Villacoublay, France Tel: 01-3067-58-00 Fax: 01-3067-58-99

NEC Electronics (France) S.A. Representación en España

Madrid, Spain Tel: 091-504-27-87 Fax: 091-504-28-60

NEC Electronics (UK) Ltd.

Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Hong Kong Ltd.

Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.

Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Shanghai, Ltd.

Shanghai, P.R. China Tel: 021-6841-1138 Fax: 021-6841-1137

NEC Electronics Taiwan Ltd.

Taipei, Taiwan Tel: 02-2719-2377 Fax: 02-2719-5951

NEC Electronics Singapore Pte. Ltd.

Novena Square, Singapore

Tel: 253-8311 Fax: 250-3583

J02.3-1

www.datasheet4u.com

- The information in this document is current as of February, 2002. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC semiconductor products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
 agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
 risks of damage to property or injury (including death) to persons arising from defects in NEC
 semiconductor products, customers must incorporate sufficient safety measures in their design, such as
 redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
 - "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

(Note)

- (1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).