
© Motorola, Inc., 2001

AN1212/D
Rev. 1, 11/2001

J1850 Multiplex Bus
Commmunication Using
the MC68HC705C8 and
the SC371016 J1850
Communications Interface
(JCI)

Application Note

By Chuck Powers
Multiplex Applications

Introduction

The SC371016 J1850 communications interface (JCI) is a serial multiplex
communication device developed and manufactured by Motorola for
communicating on an automotive serial multiplex bus compatible with the
Society of Automotive Engineers Recommended Practice J1850-Class B Data
Communication Network Interface. The JCI, which can be easily interfaced to
a wide variety of microcontrollers, can be used to transmit and receive serial
messages within the framework of J1850, while requiring a minimum of host
MCU intervention. The JCI handles all of the communication duties, including
complete message buffering, bus access, arbitration and message
qualification. Host intervention is only required when a complete message has
been received error-free from the multiplex bus, or when the JCI is ready to
receive a message for transmission onto the multiplex bus.

This application note describes a basic set of driver routines for communicating
on a Class B serial multiplex bus using the JCI and the MC68HC705C8, a
multipurpose MCU based upon Motorola’s industry standard M68HC05 CPU.
Methods will be outlined on interfacing the JCI to the MC68HC705C8,
initializing the JCI for proper communication, and transferring data between the
JCI and the host MCU. Though these driver routines have been written for use
with the MC68HC705C8, the methods described are readily applicable to other
microcontroller families.

J1850 Overview

The increase in the complexity and number of electronic components in
automobiles has caused a massive increase in the wiring harness
requirements for each vehicle. This, in turn, has led to the demand for a means
of reducing the amount of wiring needed while at the same time maintaining or
improving the communication between various components.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN1212/D

2 J1850 Multiplex Bus Communication Using the MC68HC705C8 MOTOROLA
and the SC371016 J1850 Communications Interface (JCI)

The SAE Recommended Practice J1850 was developed by the Society of
Automotive Engineers as a method of medium speed (Class B) serial multiplex
communication for use in the automotive environment. Serial multiplex
communication (MUX) is a method of reducing wiring requirements while
increasing the amount and type of data which can be shared between various
components in the automobile. This is done by connecting each component, or
node, to a serial bus, consisting of either a single wire or a twisted pair. Each
node collects whatever data is useful to itself or other nodes (wheel speed,
engine RPM, oil pressure, etc.), and then transmits this data onto the MUX bus,
where any other node which needs this data can receive it. This results in a
significant improvement in data sharing, while at the same time eliminating the
need for redundant sensing systems.

The J1850 protocol encompasses the lowest two layers of the ISO open
system interconnect (OSI) model, the data link layer and the physical layer. It
is a multi-master system, utilizing the concept of carrier sense multiple access
with collision resolution (CSMA/CR), whereby any node can transmit if it has
determined the bus to be free. Non-destructive arbitration is performed on a
bit-by-bit basis whenever multiple nodes begin to transmit simultaneously.
J1850 allows for the use of a single or dual wire bus, two data rates (10.4 kbps
or 41.7 kbps), two bit encoding techniques (pulse-width modulation or variable
pulse-width modulation), and the use of CRC or Checksum for error detection,
depending upon the message format and modulation technique selected.

Features A J1850 message, or frame, consists of a start of frame (SOF) delimiter, a one-
or three-byte header, zero to eight data bytes, a CRC or Checksum byte, an
end of data (EOD) delimiter, and an optional in-frame response byte, followed
by an end of frame (EOF) delimiter. Frames using a single byte header are
transmitted at 10.4 kbps, using VPW modulation, and contain a Checksum byte
for error detection (see Figure 1). Frames using a one-byte consolidated
header or a three-byte consolidated header can be transmitted at either
41.7 kbps or 10.4 kbps, using either PWM or VPW modulation techniques, and
contain a CRC byte for error detection (see Figure 2 and Figure 3).

Figure 1. Single Byte Header Frame Format

Figure 2. Consolidated One-Byte Header Frame Format

IDLE
BUS SOF HEADER DATA 1 DATA n CHECKSUM EOD IFR EOF

IDLE
BUS

IDLE
BUS SOF HEADER DATA 1 DATA n CRC EOD IFR EOF

IDLE
BUS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN1212/D
J1850 Overview

MOTOROLA J1850 Multiplex Bus Communication Using the MC68HC705C8 3
and the SC371016 J1850 Communications Interface (JCI)

Figure 3. Consolidated Three-Byte Header Frame Format

Each frame can contain up to 12 bytes (PWM) or 101 bit times (VPW), with
each byte being transmitted MSB first. The optional in-frame response can
contain either a single byte or multiple bytes, with or without a CRC byte.

Table 1 summarizes the allowable features of the J1850 protocol. Which
features are used is determined by the requirements of each individual
network.

Frame Headers
and Addressing

As outlined above, a J1850 frame can contain one of three types of headers,
depending upon a particular system’s requirements. The single-byte header
incorporates the frame priority/type and target address into a single byte. A
one-byte consolidated header also consolidates the frame priority/type and
target address into a single byte, with bit 4 = 1 to indicate that it is a one-byte
consolidated header. The three-byte header places the frame priority/type into
the first byte, the target address of the intended receiver(s) into the second
byte, and the source address of the frame originator into the third byte. In the
priority/type byte of the three-byte header, bit 4 = 0 to indicate it is a three-byte
header.

Frames transmitted on a J1850 network can be either physically or functionally
addressed. Since every node on a J1850 network must be assigned a unique
physical address, a frame can be addressed directly to any particular node by
making the node’s physical address the target address of the frame. This is
useful in applications such as diagnostic requests, where a specific node’s
identification may be important. Functional addressing is used when the data
being transmitted can be identified by its particular function, rather than its
intended receiver(s). With this form of addressing, a frame containing data is
transmitted with the function of that data encoded in the target address of the
frame. All nodes which require the data of that function can then receive it at
the same time. This is of particular importance to networks where the physical

Table 1. J1850 Protocol Options

Feature
1 & 3 Byte
Headers

1 & 3 Byte
Headers

1 Byte Only
Header

Bit encoding PWM VPW VPW

Bus medium Dual wire Single wire Single wire

Data rate 41.7 kbps 10.4 kbps 10.4 kbps

Data integrity CRC CRC Checksum

IDLE
BUS SOF PRI/TYPE TARGET I.D. SOURCE I.D. DATA 1 DATA n CRC EOD IFR EOF

IDLE
BUS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN1212/D

4 J1850 Multiplex Bus Communication Using the MC68HC705C8 MOTOROLA
and the SC371016 J1850 Communications Interface (JCI)

address of the intended receivers is not know, or could change, while their
function remains the same. An example of data that would be functionally
addressed is wheel speed, which could be of interest to multiple receivers,
each with a different physical address. Functionally addressing the wheel
speed data would allow it to be transmitted to all intended receivers in a single
frame, instead of transmitting the data in a separate frame for each receiver.

Error Detection Every frame transmitted onto a J1850 network contains a single byte for error
detection. Frames using the single-byte header contain a Checksum byte,
which is the simple summation of all the bytes in the frame, excluding the
delimiters and the Checksum byte itself. If the one-byte consolidated header or
the three-byte header is used, the frame must contain a cyclical redundancy
check, or CRC, byte. This byte is produced by shifting the header and data
bytes through a preset series of shift registers. The resulting byte is then
inserted in the frame following the data bytes. Any node which receives the
frame then shifts the header, data, and CRC bytes through an identical series
of shift registers, with an error free frame always producing the result $C4. In
most cases, the Checksum calculation and verification will be performed using
a software routine, while CRC bytes are generated via hardware. Any frame in
which the error detection byte does not produce the proper result is discarded
by all receivers, and any in-frame response, if required, is not transmitted.

Arbitration Arbitration on the multiplex bus is accomplished in a non-destructive manner,
allowing the frame with the highest priority to be transmitted, while any
transmitters which lose arbitration simply stop transmitting and wait for an idle
bus to begin transmitting again. If multiple nodes begin to transmit at the same
time, arbitration begins with the first bit following the SOF delimiter, and
continues with each bit thereafter. Whenever a transmitting node detects a
dominant bit while transmitting a recessive bit, it loses arbitration, and
immediately stops transmitting. This is known as "bitwise" arbitration. Since a
dominant bit dominates a recessive bit (a "0" dominates a "1"), the frame with
the lowest value will have the highest priority, and will always win arbitration,
i.e., a frame with priority 000 will win arbitration over a frame with priority 001.
This method of arbitration will work regardless of how many bits of priority
encoding are contained in the frame. Frequency, messaging strategies are
utilized which ensure that all arbitration is resolve by the end of the frame
header.

In-Frame Response The optional in-frame response, or IFR, portion of a frame follows the EOD
delimiter, and contains one of three types of information. The first type of IFR
contains a single I.D. byte from a single receiver, indicating that at least one
node received the frame. The I.D. byte is usually the physical address of the
responding node. The second type of IFR contains multiple I.D. bytes from
multiple receivers, indicating which receivers actually received the frame.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN1212/D
MC68HC705C8 Microcontroller

MOTOROLA J1850 Multiplex Bus Communication Using the MC68HC705C8 5
and the SC371016 J1850 Communications Interface (JCI)

In this case, the number of response bytes is limited only by the overall frame
length constraints. The third type of IFR contains data bytes, with or without a
CRC byte, from a single receiver. This type of IFR usually occurs during the IFR
portion of a frame in which that data is requested. The CRC byte, if included, is
calculated and decoded in an identical manner to the frame CRC, except the
transmitter and receiver roles are reversed. In VPW modulation, the in-frame
response byte is preceded by a normalization bit, which is required to return the
bus to the active state prior to transmitting the first bit of the IFR.

Modulation As previously mentioned, J1850 frames can be transmitted using two different
modulation techniques, pulse width modulation (PWM) or variable pulse width
modulation (VPW). The modulation technique used is dependent upon the
desired transmission bit rate and the physical makeup of the bus. The PWM
technique is primarily used with a bit rate of 41.7 kbps, and a bus consisting of
a differential twisted pair. VPW modulation is used with a bit rate of 10.4 kbps
and a single-wire bus.

For more detailed information on the features of J1850, refer to SAE
Recommended Practice J1850 – Class B Data Communication Network
Interface. Because this document is still subject to modification, the user should
ensure that the most recent revision is referenced.

MC68HC705C8 Microcontroller

The MC68HC705C8 MCU is a multipurpose HCMOS MCU based on the
industry standard M68HC05 CPU (refer to Figure 4). It contains:

• 8K of erasable programmable read-only memory (EPROM)

• 176 bytes of random-access memory (RAM)

• Serial peripheral interface (SPI) and serial communications interface
(SCI) interface ports

• 6-bit timer with one input capture and one output compare,

• On-board computer operating properly (COP) watchdog system

A similar device, the MC68HC05C8, is identical to the MC68HC705C8, except
the 8K of EPROM is replaced with 8K of ROM. Some of the major features of
the MC68HC705C8 are outlined below. For a detailed description of the
features and operation of the MC68HC705C8, refer to the MC68HC705C8
Technical Data document.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN1212/D

6 J1850 Multiplex Bus Communication Using the MC68HC705C8 MOTOROLA
and the SC371016 J1850 Communications Interface (JCI)

Figure 4. MC68HC705C8 Block Diagram

Memory The MC68HC705C8 MCU contains 7600 bytes of EPROM (including user-
defined reset and interrupt vectors), 223 bytes of bootstrap ROM, and 176
bytes of static RAM. The user can also access up to an additional 144 bytes of
user EPROM or 128 bytes of RAM, by programming the RAM1:0 bits of the
OPTION register (address $1FDF) on the MC68HC705C8, or by mask option
selection on the MC68HC05C8. All ROM and RAM is memory mapped,
allowing the user to directly read from (ROM, RAM) or write to (RAM) any
memory location. The MC68HC705C8 OPTION register contains a security bit

PB0

PB1

PB2

PB3
PB4

PB5

PB6

PB7

PO
R

T
B

R
EG

IS
TE

R

D
AT

A
DI

R
EC

TI
O

N
 R

EG
IS

TE
R

PA0

PA1

PA2

PA3
PA4

PA5

PA6

PA7

PO
R

T
A

R
EG

IS
TE

R

D
AT

A
D

IR
EC

TI
O

N
 R

EG
IS

TE
R

PROGRAM
COUNTER

LOW
8 PCL

ACCUMULATOR

8 A

INDEX
REGISTER

8 X
CONDITION

CODE
REGISTER

5 CC

STACK
POINTER

8 SP

PROGRAM
COUNTER

HIGH
8 PCH

CPU
CONTROL

ALU

CPU

TIMER
SYSTEM

OSCILLATOR
AND

DIVIDE BY 2

COP CLOCK
MONITOR

INTERNAL
PROCESSOR

CLOCK

TCAP

TCMP OSC1 OSC2

RESET

IRQ

PC0

PC1

PC2

PC3
PC4

PC5

PC6

PC7D
AT

A
D

IR
EC

TI
O

N
 R

EG
IS

TE
R

PO
R

T
C

 R
EG

IS
TE

R

PORT D

SCI

SPI

BAUD-RATE
GENERATOR

PD7

RDI (PD0)
TD0 (PD1)
MISO (PD2)
MOSI (PD3)
SCK (PD4)
SS (PD5)

INTERNAL
PROCESSOR
CLOCK

USER PROM
7744 X 8

(7600 X 8)

BOOTSTRAP
ROM

240 X 8

PROGRAM
REGISTER

STATIC RAM
176 X 8

(304 X 8)

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN1212/D
MC68HC705C8 Microcontroller

MOTOROLA J1850 Multiplex Bus Communication Using the MC68HC705C8 7
and the SC371016 J1850 Communications Interface (JCI)

which can be programmed by the user to prevent an unauthorized dump of the
contents of the EPROM. Figure 5 shows the complete memory map of the
MC68HC705C8.

Figure 5. MC68HC705C8 Memory Address Map

SPI VECTOR (HIGH)
SPI VECTOR (LOW)
SCI VECTOR (HIGH)
SCI VECTOR (LOW)

TIMER VECTOR (HIGH)
TIMER VECTOR (LOW)
IRQ VECTOR (HIGH)
IRQ VECTOR (LOW)
SWI VECTOR (HIGH)
SWI VECTOR (LOW)

RESET VECTOR (HIGH)
RESET VECTOR (LOW)

PORT A DATA REGISTER
PORT B DATA REGISTER
PORT C DATA REGISTER

PORT D INPUT DATA REGISTER
PORT A DATA DIRECTION REGISTER
PORT B DATA DIRECTION REGISTER
PORT C DATA DIRECTION REGISTER

UNUSED
UNUSED
UNUSED

SPI CONTROL REGISTER
SPI STATUS REGISTER

SPI DATA REGISTER
SCI BAUD RATE RAGIETER
SCI CONTROL REGISTER 1
SCI CONTROL REGISTER 2

SCI STATUS REGISTER
SCI DATA REGISTER

TIMER CONTROL REGISTER
TIMER STATUS REGISTER

INPUT CAPTURE REGISTER (HIGH)
INPUT CAPTURE REGISTER (LOW)

OUTPUT COMPARE REGISTER (HIGH)
OUTPUT COMPARE REGISTER (LOW)

TIMER COUNT REGISTER (HIGH)
TIMER COUNT REGISTER (LOW)

ALTERNATE COUNT REGISTER (HIGH)
ALTERNATE COUNT REGISTER (LOW)

COP RESET REGISTER
COP CONTROL REGISTER

UNUSED

$00
$01
$02
$03
$04
$05
$06
$07
$08
$09
$0A
$0B
$0C
$0D
$0E
$0F
$10
$11
$12
$13
$14
$15
$16
$17
$18
$19
$1A
$1B
$1C
$1D
$1F

$1FF4
$1FF5
$1FF6
$1FF7
$1FF8
$1FF9
$1FFA
$1FFB
$1FFC
$1FFD
$1FFE
$1FFF

I/O AND
REGISTERS
32 BYTES

USER
ROM

48
BYTES

RAM0 = 0

UNUSED
16 BYTES

RAM
32

BYTES

RAM0 = 1

RAM
176 BYTES

INCLUDING
STACK

64 BYTES

USER
ROM

96
BYTES

RAM1 = 0

RAM
96

BYTES

RAM1 = 1

8K USER
PROM

7584 BYTES

BOOTSTRAP
ROM

223 BYTES

OPTION REGISTER

BOOTSTRAP ROM
VECTORS
16 BYTES

UNUSED 4 BYTES

USER PROM
VECTORS
12 BYTES

$0000

$001F

$0020

$004F

$0050

$00BF
$00C0

$00FF
$0100

$015F

$0160

$1EFF

$1F00

$1FDE

$1FDF

$1FE0

$1FEF

$1FF0
$1FF3

$1FF4

$1FFE

0000

0031

0032

0079

0080

0191
0192

0255
0256

0351

0352

7935

7936

8158

8159

8160

8175

8176
8179

8180

8191

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN1212/D

8 J1850 Multiplex Bus Communication Using the MC68HC705C8 MOTOROLA
and the SC371016 J1850 Communications Interface (JCI)

Input/Output The MC68HC705C8 contains 24 bidirectional I/O lines, divided into three 8-bit
I/O ports, designated A, B, and C. Port D is a 7-bit input-only port, which shares
functions with the serial interface ports. The direction of the 24 I/O lines is
controlled by three data direction registers, one for each I/O port. This allows
each I/O line to be individually configured by the user as either an input or
output. The ports and data direction registers are contained in the first page of
the MCU memory map and can be read or written to directly by the user.

Serial Peripheral
Interface

The MC68HC705C8 contains a serial peripheral interface (SPI) port, which can
be used for high speed serial communication with other peripherals or MCUs.
The SPI is a full-duplex, three-wire synchronous serial interface, with
programmable clock phase and polarity which can transmit data at up to
1.05 MHz (Master mode).

16-Bit Timer The MC68HC705C8 contains a timer system featuring a 16-bit free-running
counter, one programmable input capture, and one programmable output
compare. The timer can be used to record time between input transitions, or to
generate output transitions at user specified intervals. The directions for both
input edge detection and output edge generation are programmable, and a
variety of maskable CPU interrupts are available.

JCI Overview

The SC371016 J1850 communications interface, or JCI, is an all digital device
that has been designed to handle all of the necessary communication functions
associated with transmitting and receiving frames on a J1850 compatible MUX
bus. Through the use of the proper analog transceiver, a single control input,
and the correct choice of input oscillator frequencies the JCI can be used to
transmit and receive frames in either PWM or VPW modulation, depending
upon the user’s system requirements. As mentioned above, an external analog
transceiver is required to perform the necessary analog waveshaping, output
drive, and input compare functions.

When the host MCU has a message ready for transmission onto the MUX bus,
the entire message is transmitted to the JCI, and the JCI then performs the
necessary bus acquisition, frame transmission, arbitration, and error detection
to ensure that only complete, error-free frames are transmitted. When frames
are received from the MUX bus, the JCI performs the necessary error checking,
determines if the message is of interest to that particular node and, if so,
passes the complete message to the host MCU. If desired, the JCI can transmit
its physical node address as an in-frame response during the IFR portion of the
frame.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN1212/D
JCI OVERVIEW

MOTOROLA J1850 Multiplex Bus Communication Using the MC68HC705C8 9
and the SC371016 J1850 Communications Interface (JCI)

The JCI is a CMOS device which can operate over a wide temperature range.
It requires a 4 MHz or 8 MHz external oscillator, depending upon the desired
transmission bit rate, which can be supplied by a ceramic resonator. Figure 6
shows a block diagram of the JCI. The following is a description of all major
hardware features and functions of the JCI.

Figure 6. JCI Block Diagram

ID7

Rx FIF01
11 BYTES

Rx FIFO2
11 BYTES

FIFO CONTROL/
PROTOCOL

Tx FIFO
11 BYTES

8

AMR

ACR

8

CRC
GENERATION/
VERIFICATION

DIGITAL
FILTER

SYMBOL
GENERATION/
RECOGNITION

I.D. REGISTER

MCU
SERIAL

INTERFACE

SCK

SDI

SDO

RTS/INT

CTS

STX/CS

BSY

CE

RxJ

COMSEL

TxJ

IFR

HANDLER

MODE1

MODE0 FLUSH
ID5 ID3 ID1

ID6 ID4 ID2 ID0

OSC2 OSC1 RESET VDD VSS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN1212/D

10 J1850 Multiplex Bus Communication Using the MC68HC705C8 MOTOROLA
and the SC371016 J1850 Communications Interface (JCI)

Host Interface The JCI has three different serial host interface modes which can be used to
interface the JCI to a wide variety of microcontrollers.These three interface
modes include:

• Handshake SPI mode

• Handshake SCI mode

• Enhanced SPI mode

These three interface modes provide the host MCU with a choice of two eight-
conductor or one five-conductor, high speed, synchronous serial interfaces to
the JCI.

The handshake SPI mode is an eight-conductor, full-handshake synchronous
serial interface. This mode has three conductors for data transfer, and five for
data control and error indication. The three conductor data transfer is
compatible with the Motorola serial peripheral interface, preforming an 8-bit
"data exchange" between the host MCU and the JCI during each byte transfer.
The five control lines are used to delineate data transfers between the host
MCU and the JCI, inform the host MCU when the JCI has received a message
from the MUX bus, and to indicate to the host when a transmission error has
been detected.

The handshake SCI mode is also an eight-conductor, full-handshake
synchronous serial interface, having three conductors for data transfer and five
for data control and error indication. The three-conductor data transfer is similar
in format to the Motorola serial communications interface, although the host
MCU must also supply a serial clock to the JCI.

The enhanced SPI mode is a five-conductor synchronous serial interface,
compatible with the Motorola serial peripheral interface (SPI). Data is
transferred between the host MCU and the JCI in pairs of 8-bit SPI transfers.
During the first transfer of each pair, the host MCU transmits a byte of data,
which may or may not be valid, to the JCI, while the JCI transmits a status byte
to the host MCU, in which is encoded the current status of the JCI. During the
second transfer of each pair, the host MCU transmits a command byte to the
JCI which can contain a variety of transmit, receive, or general commands,
while the JCI transfers a data byte to the host MCU, which may or may not be
valid.

For more information on each of these host interface modes, refer to the J1850
Communications Interface Specification, Chapter 4: MCU Interface.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN1212/D
JCI OVERVIEW

MOTOROLA J1850 Multiplex Bus Communication Using the MC68HC705C8 11
and the SC371016 J1850 Communications Interface (JCI)

JCI Control/
Configuration Inputs

The JCI has 12 inputs that are used to determine:

• The host interface mode

• The message transmission rate

• Modulation technique

• Whether an in-frame response is required

• The physical address of the node

These inputs are normally tied to either a logic 1 or logic 0 in the application,
though each can be connected to a host MCU I/O port pin for greater flexibility.

The mode select pins (MODE1:0) are used to determine which interface mode
the JCI will use to communicate with the host MCU. Because these pins are
level sensitive, the user must take care not to inadvertently change the logic
level on one of these inputs, as communication with the JCI will be disrupted.
Table 2 shows the interface mode selection criteria for the mode inputs.

The COMSEL input is used in conjunction with the input oscillator frequency to
determine which modulation technique and bit rate the JCI will use to transmit
and receive frames on the MUX bus. COMSEL is normally tied to a logic 1 or
logic 0 in the application, but it can be connected to a host I/O pin which can be
used to control both the logic level of the COMSEL input and an input oscillator
control circuit, allowing the user to switch between modulation techniques and
transmission bit rates. Table 3 shows the modulation and bit rate selections as
determined by the logic level of the COMSEL input and the input oscillator
frequency.

Table 2. JCI Interface Mode Selection

MODE0 MODE1 Operating Mode

VSS
VSS

VSS
VDD

Enhanced SPI
Handshake SPI

VDD
VDD

VSS
VDD

Handshake SCI
Test mode enable

Table 3. Communication Rate and Format Selection

fosc COMSEL
Communication

Baud Rates
Communication

Format

8 MHz
8 MHz

VDD
VSS

41.7 kbps
20.8 kbps

PWM
VPW

4 MHz
4 MHz

VDD
VSS

20.8 kbps
10.4 kbps

PWM
VPW

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN1212/D

12 J1850 Multiplex Bus Communication Using the MC68HC705C8 MOTOROLA
and the SC371016 J1850 Communications Interface (JCI)

The in-frame response (IFR) input determines whether the JCI will transmit,
and expect to receive, an in-frame response during the IFR segment of a frame.
If the IFR input is at a logic 1, the JCI will transmit its physical node address as
a single byte IFR without CRC. The JCI will also expect to receive and IFR each
time it transmits a frame onto the MUX bus.

If arbitration is lost while the JCI is attempting to transmit an IFR during the IFR
segment of a frame, the JCI will not make another attempt to transmit an IFR
within that frame. If the JCI does not receive an IFR during the IFR segment of
a message it has transmitted, it will consider that to be a transmission error.
If the IFR input is at a logic 0, then the JCI will neither transmit an IFR nor
expect to receive an IFR when it transmits a frame onto the MUX bus.

The I.D. inputs (ID7:0) are used to input the physical address of the node.
These inputs are normally hardwired in the application to either a logic 0 or
logic 1, and are latched into the JCI on the rising edge of a reset pulse.These
inputs could be connected to an I/O port of the host MCU, but the JCI would
have to be reset by the host MCU each time it wished to change the physical
address of the node.

For more information on each of these inputs functions, refer to the J1850
Communications Interface Specification, Chapter 3: Operating Modes, and
Chapter 4: MCU Interface.

Message Buffers The JCI contains a single buffer for storing messages for transmission onto the
MUX bus, and two buffers for storing messages received from the MUX bus.
Each buffer can hold up to 11 bytes, allowing the JCI to transmit and receive
the maximum frame length allowed by J1850 (11 bytes + CRC byte).

The transmit (Tx) buffer is an 11-byte buffer into which the host MCU loads all
necessary header and data bytes to be transmitted onto the multiplex bus. The
CRC byte is calculated and appended onto the frame by the JCI during
transmission. The Tx buffer can hold only one complete message at a time. In
either handshake interface mode, the host MCU asserts the STX input to inform
the JCI that new message data is being transmitted and monitors the BSY
output to determine the status of the Tx buffer. In the enhanced SPI mode, the
host MCU loads the Tx buffer through a series of command bytes and monitors
the status of the Tx buffer via the status byte.

Once a complete message has been loaded into the Tx buffer, any further
attempts by the host MCU to transmit data to the JCI will be ignored until the
JCI has transmitted the current frame. Once the data has been emptied from
the buffer, the JCI will then accept data for a new message. If the host MCU
wishes to transmit a new message to the JCI before the current one has been
transmitted, it can empty the Tx buffer by asserting the FLUSH input in either
handshake interface mode or through use of the "Flush Tx FIFO" command in
the enhanced SPI mode.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN1212/D
JCI OVERVIEW

MOTOROLA J1850 Multiplex Bus Communication Using the MC68HC705C8 13
and the SC371016 J1850 Communications Interface (JCI)

The receive (Rx) buffers are two11-byte buffers which can each store a
complete, maximum length J1850 message (without the CRC). Once the JCI
has placed a complete message in an Rx buffer, it makes this Rx buffer
available to the host while denying the host access to the other Rx buffer until
the next message has been received. Since only one of these Rx buffers can
be accessed by the host MCU at a time, to the host there appears to be only a
single Rx buffer.

This "ping-pong" action allows the JCI to store a message being received from
the MUX bus in one Rx buffer while the host MCU is retrieving a previously
received message from the other Rx buffer. Only one message can be stored
in each buffer at any one time. In either handshake interface mode, the JCI
asserts the RTS output to notify the host MCU that a complete message has
been received, and the host MCU asserts the CTS input when it is ready to
retrieve each byte. In the enhanced SPI mode, the JCI asserts the INT output
when it has received a complete message into an Rx buffer. The host MCU
then retrieves the data through a series of command bytes. The host MCU
monitors the status of each Rx buffer through the status byte.

Once the JCI has stored a message in each Rx buffer, it will ignore any further
frames being transmitted onto the MUX bus until the host MCU has either
retrieved the data from, or flushed, one of the Rx buffers. If the host MCU does
not wish to retrieve a message from an Rx buffer, it can flush the data, either
by using the FLUSH input in either handshake interface mode or with the "Flush
Current Rx FIFO" command in the enhanced SPI mode.

Due to the nature of the J1850 bus, each node must receive every frame it
transmits to ensure proper arbitration. Therefore, it is possible for the JCI to
receive, and pass back to the host, a message it has transmitted. Unless
message filtering is used to prevent this, the user’s software must be prepared
to deal with this occurrence. However, no in-frame response byte is ever
loaded into the Rx buffer or passed back to the host MCU.

For more information on the Rx and Tx buffers, refer to the J1850
Communications Interface Specification, Chapter 5: Rx/Tx FIFO’s.

Message Filter In the enhanced SPI mode, the JCI can utilize a pair of 8-bit registers to filter
frames as they are received off of the MUX bus. This allows the JCI to limit the
number of messages it receives and thus the amount of host intervention
necessary. These registers are called the acceptance code register (ACR) and
the acceptance mask register (AMR).

The ACR and AMR are each loaded during initialization, and thereafter, as
each frame is being received from the MUX bus, the ACR data is compared to
the target address byte of the frame being received. Each bit in the target
address byte must match exactly each bit in the ACR for which the
corresponding bit in the AMR is set. If the unmasked bits do not match exactly,

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN1212/D

14 J1850 Multiplex Bus Communication Using the MC68HC705C8 MOTOROLA
and the SC371016 J1850 Communications Interface (JCI)

the remainder of the frame is ignored. Any bits in the target address byte
corresponding to bits in the AMR which are not set are not compared.
Figure 7 illustrates this procedure.

Message filter is not currently available on the JCI in either handshake interface
mode. However, it may be available in the future as a factory mask option.

For more information the JCI’s message filtering capabilities, refer to the J1850
Communications Interface Specification, Chapter 4: MCU Interface.

Figure 7. JCI Message Filtering

Error Detection The JCI uses a variety of methods to ensure the data transmitted onto or
received from the MUX bus is error-free. These include a digital input filter,
CRC generation and checking, and a constant monitoring of bit and symbol
timing, as well as message framing.

All data received from the MUX bus passes through a digital filter. This filter
removes short noise pulses from the input signal, which could otherwise
corrupt the data being received. The "cleaned up" signal is then passed to the
symbol decoder, which decodes the data stream, determining what each bit or
symbol is, whether it is of the proper length, and that the message is framed
properly.

The CRC byte is calculated by the JCI as it transmits a frame onto the MUX bus
and is then appended to the message following the data portion of the frame.
The CRC of any frame the JCI receives, including its own, is checked, and if it
is not correct, the frame is discarded.

Any frame in which any type of error is detected is discarded by the JCI. If the
JCI detects an error while it is transmitting a frame onto the MUX bus, it will
immediately halt transmission, wait for an idle bus, and attempt to retransmit
the frame. Following the detection of a transmission error, the JCI will attempt
to transmit a message up to two more times. Following the third attempt, the

0 1 1 0 0 1 1 1

1 1 0 1 0 0 1 0

COMPARATOR

0 1 X 0 X X 1 X

FRAME TARGET I.D. BYTE

ACCEPTANCE MASK REGISTER

COMPARE OUTPUT

(TRUE, FOR THIS EXAMPLE)

ACCEPTANCE CODE REGISTER

X = MASKED BIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN1212/D
MC68HC705C8/JCI Interface Driver Routines

MOTOROLA J1850 Multiplex Bus Communication Using the MC68HC705C8 15
and the SC371016 J1850 Communications Interface (JCI)

JCI will discard the message, and inform the host MCU that a transmission
error has occurred. Loss of arbitration is not considered a transmission error.

For more information on the different methods of error detection and
notification used by the JCI, refer to J1850 Communications Interface
Specification, Chapter 4: MCU Interface and Chapter 7: MUX Interface.

Message
Transmitter
and Receiver

As mentioned above, the JCI is an all digital device and requires an analog
transceiver to supply all transmit waveshaping, transmit drive, and input
compare functions. The JCI transmits the frame to the physical interface at
digital CMOS levels, where the appropriate waveshaping and drive takes
place. Frames being received from the MUX bus are converted back to digital
CMOS levels by the analog physical interface and then transmitted to the JCI,
where physical interface rise/fall times and propagation delays are taken into
account.

For more information on transmitting and receiving messages and transceiver
interfacing, refer to J1850 Communications Interface Specification, Chapter 7:
MUX Interface.

MC68HC705C8/JCI Interface Driver Routines

Communication on the J1850 MUX bus using the JCI can be subdivided into
three basic tasks: setup, transmitting, and receiving.

Setup includes:
• Hardware configuration
• Host MCU initialization
• JCI reset
• Loading the ACR and AMR registers with the appropriate message filter

data

Transmitting involves:
• Assembling the necessary message bytes
• Transferring the message bytes to the JCI
• Monitoring the JCI to determine when the message has been

transmitted successfully

Receiving involves:
• Retrieving message data from the JCI
• Doing any additional filtering
• Storing the data where the user’s application software can

access it.

These basic driver routines have been divided into these three sections, which
should allow the to be more easily understood and used. Each section is
detailed below.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN1212/D

16 J1850 Multiplex Bus Communication Using the MC68HC705C8 MOTOROLA
and the SC371016 J1850 Communications Interface (JCI)

This software is intended to be a basic implementation, consuming less than
400 bytes of ROM, so of course the user’s system requirements may call for
different, and possibly more enhanced, routines. However, these routines
should give any potential user a good basic introduction to interfacing the JCI
to an MCU, and they can easily be enhanced where added features are
needed. Though the MC68HC705C8 is the MCU which was utilized in this
example, these driver routines can easily be used with any member of the
M68HC05 or M68HC11 Families which has an SPI, a 16-bit timer, and an
appropriate amount of memory for the user’s application.

This software is written for enhanced SPI mode which requires a little more
CPU overhead but fewer host MCU I/O lines. An I/O line of the host MCU is also
connected to the RESET input of the JCI, giving the host MCU the ability to
reset the JCI through software whenever appropriate. The circuit in Figure 8
shows a basic JCI/host MCU interface with the JCI configured for 10.4 kbps
VPW transmission and IFR required for each message. The physical address
of the node depicted is $55. These hardware assumptions are reflected in the
software routines, as is the use of three-byte headers, but these routines will
work quite well with any hardware configuration required by the user.

Figure 8. Example MUX Bus Interface Circuit

10 kΩ17

10 kΩ26

10 kΩ24

10 kΩ22

10 kΩ20

27
25
23
21

4 MHz

1 MΩ1 2

2 x 27 pF

OSC1 OSC2VSS

ID7
ID5
ID3
ID1

19

18

RxJ

TxJ

28

MODE0
MODE1
COMSEL

11
12
13

14

SCK
SDO
SDI

RESET

CS

INT

3
4
5

15
7

9

VDD

IFR

ID6

ID4

ID2

ID0

S
C
3
7
1
0
1
6

4 MHz

1 MΩ39 38

2 x 27 pF

OSC1 OSC2OSC1 OSC2

M
C
6
8
H
C
7
0
5
C
8

40

20

VDD

VSS

+5 V

0.1 µF

IRQ

PC0

PC1

MOSI

MISO
SCK

SS 34

33
31
32

28
27

32

+5 V

0.1 µF

1

2

3

4

5

VDD

DE

INV

TxD

RxD

VBATT

Tx

Rx

Rs

VSS

8

11

9

7

6

20 Ω

1 kΩ

22 kΩ

1.5 kΩ

3300 pF
33 V

3.3 V

J1850
BUS

J*
V
T

*The JVT is a proposed J1850 VPW transceiver

10 kΩ

+5 V

+5 V

+ 12 V

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN1212/D
MC68HC705C8/JCI Interface Driver Routines

MOTOROLA J1850 Multiplex Bus Communication Using the MC68HC705C8 17
and the SC371016 J1850 Communications Interface (JCI)

Setup This setup routine is in two parts:
• The setup of host MCU RAM
• The reset of the JCI

It should only be necessary to run the setup routines following a host reset, or
possibly following the detection of a communication problem on the MUX bus.
All of the setup procedures described below can be performed by calling the
subroutine JCIRST.

The host MCU RAM is initialized with six bytes reserved for data transfer
commands, a single 11-byte transmit message buffer, plus two bytes for
transmit control, and a received message buffer pointer and 8-byte received
message buffer corresponding to each functional I.D. the user’s application
must recognize. The use of each RAM location will be explained as it is utilized.

Following a reset of the MC68HC705C8, three host registers are initialized for
communication with the JCI. Two port C I/O lines (PC0:1) are configured as
outputs, with PC0 connected to the CS input of the JCI to control serial
communication and PC1 connected to the RESET input to allow the host MCU
to reset the JCI through software. The serial peripheral interface control
register (SPCR) is configured for SPI interrupt disabled, SPI enabled, master
mode, CPOL = CPHA = 1, and bit rate configured for 500 kHz SPI
communication. The OPTION register is configured for RAM0 = RAM1 = 1 (128
additional bytes of RAM), and the IRQ input is programmed for negative edge-
sensitivity.

The host MCU must then load the RAM location "txcntrl" with the value $40.
"txcntrl" is used for tracking the status of messages transmitted to the JCI and
messages transmitted by the JCI onto the MUX bus. The use of "txcntrl" will be
explained more fully in Transmitting.

The only other initialization required in the host MCU is the initialization of the
received message buffer pointers (RMBP). Each RMBP is loaded with the
starting address of each corresponding received message buffer. In this
example, there are four received message buffers. However, the number of
these buffers can be increased, with the only limit being the amount of RAM
available and the amount of time the user is willing to spend sorting received
messages.

Once the host MCU has completed initializing its internal RAM and registers,
the host must perform the necessary initialization of the JCI. This simply
involves releasing the RESET input, delaying to allow the JCI’s internal
registers to reset to a known state, and then loading the ACR and AMR
registers. The values to be loaded in the ACR and AMR registers are assigned
in the equates segment, and each is loaded by calling the subroutines
LOADACR and LOADAMR, respectively. Once this is complete and the host
MCU clears the I bit, enabling interrupts, the MC68HC705C8 and the JCI are
loaded and ready for multiplex communication. Refer to Figure 9 for a
graphical representation of the reset sequence.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN1212/D

18 J1850 Multiplex Bus Communication Using the MC68HC705C8 MOTOROLA
and the SC371016 J1850 Communications Interface (JCI)

Figure 9. JCIRST Subroutine

CALL JCIRST
SUBROUTINE

INITIALIZE SPCR FOR
SPI ENABLED, MASTER

MODE, CPOL = CPHA = 1,
BIT RATE = 500 kHz

SET PORT C, BIT 1 TO A
LOGIC "1", NEGATING THE

JCI’S RESET INPUT,
RESETTING THE JCI

INITIALIZE PORT C,
BITS 0 AND 1, AS CS

AND RESET OUTPUTS

INITIALIZE OPTION
REGISTER FOR

RAM0 = RAM1 = 1
NEGATIVE EDGE IRQ

LOAD $40 INTO RAM
LOCATION "txcntrl", ITS

CORRECT RESET VALUE

LOAD STARTING
LOCATION OF EACH

RECEIVE BUFFER INTO
CORRESPONDING

RECEIVE BUFFER POINTER

LOAD ACCEPTANCE
MASK REGISTER VALUE

INTO MCU RAM
LOCATION "data"

LOAD "load as AMR
byte" BIT COMBINATION

INTO MCU RAM
LOCATION "command"

LOAD BYTE IN RAM
LOCATION "data": INTO

SPDR, INITIATING
SPI TRANSFER

IS
SPI TRANSFER

COMPLETE?

LOAD BYTE IN RAM
LOCATION "command"

INTO SPDR, INITIATING
SPI TRANSFER

IS
SPI TRANSFER

COMPLETE?

YES

NO

NO

YES

LOAD ACCEPTANCE
CODE REGISTER VALUE

INTO MCU RAM
LOCATION "data"

LOAD "load as ACR
byte" BIT COMBINATION

INTO MCU RAM
LOCATION "command"

LOAD BYTE IN RAM
LOCATION "data": INTO

SPDR, INITIATING
SPI TRANSFER

IS
SPI TRANSFER

COMPLETE?

LOAD BYTE IN RAM
LOCATION "command"

INTO SPDR, INITIATING
SPI TRANSFER

IS
SPI TRANSFER

COMPLETE?

YES

NO

NO

YES

RETURN FROM
SUBROUTINE

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN1212/D
MC68HC705C8/JCI Interface Driver Routines

MOTOROLA J1850 Multiplex Bus Communication Using the MC68HC705C8 19
and the SC371016 J1850 Communications Interface (JCI)

Transmitting Transmitting a message to the JCI for transmission onto the MUX bus simply
requires the host MCU to store the message bytes in the correct RAM location
and call the TRANSMIT subroutine. The software handles moving the data
from the host MCU to the JCI and determining when the message has been
transmitted successfully.

When the host MCU has data to be transmitted onto the MUX bus, the
’Message of Tx’ bit (labeled "txt") in the RAM location "txcntrl" should first be
cleared. This will ensure that a partial message will not inadvertently be
transferred to the JCI. The host then stores the message bytes including the
header bytes, into RAM, beginning at location "txbuf". The number of bytes in
the message is then loaded into the RAM location "txcount". The host then calls
the subroutine TRANSMIT. This subroutine will check the status of the JCI to
determine whether the previous message has been transmitted and, if so, will
transmit the new

message bytes to the JCI for transmission onto the MUX bus and then clear the
’Previous Tx Complete’ bit (labeled "txi"). If the previous message has not
completed transmission, the TRANSMIT subroutine will set the "txt" bit in the
RAM location "txcntrl", and then call a timer subroutine called TIMERSU which
enables a timer interrupt to check the JCI status at regular intervals. The
TRANSMIT subroutine will then return to the main application routine.

The TIMERSU subroutine reads the current value of the timer’s free-running
counter, adds a value approximately equal to the shortest valid multiplex frame
length, stores the new value in the output compare register, and enables the
output compare interrupt. When the counter reaches the output compare value,
an interrupt of the CPU occurs. The timer interrupt service routine then checks
the status of the JCI. If the previous message has still not completed
transmission, the output compare value advance sequence is repeated, and
the JCI status is regularly checked, until the current message in the JCI is
transmitted onto the MUX bus or is discarded due to reaching the retry limit.

Once the timer interrupt routine determines that the JCI’s Tx buffer is empty,
the routine checks to see if the "txt" it is set in RAM location "txcntrl". If this bit
is set, indicating that a new message is ready for transmission, the "txt" bit is
cleared, and the message bytes are transferred to the JCI for transmission, and
the timer reset sequence continues.

If the "txt" bit is clear, the timer interrupt routine sets the "txi" bit, and disables
the timer interrupt. In this way, bits "txt" and "txi" in RAM location "txcntrl" act
as a double semaphore to track the status of both the JCI Tx buffer and the
transmit buffer in host MCU RAM, allowing the software to automatically
transfer messages to the JCI whenever the Tx buffer in the JCI can accept
them.

If the timer interrupt occurs while the host is loading message data into its
transmit buffer and the "txt" bit has not been cleared by the user, the number of
bytes in RAM location "txcount" will be transferred to the JCI, whether the host

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN1212/D

20 J1850 Multiplex Bus Communication Using the MC68HC705C8 MOTOROLA
and the SC371016 J1850 Communications Interface (JCI)

has completed updating this data or not. Therefore, the user must ensure that
the "txt" bit is cleared before updating data in the host MCU RAM transmit
buffer.

Refer to Figure 10 for a graphical representation of the use of the semaphore
bits, and what events cause each bit to be set and cleared.

Figure 10. Transmit Double Semaphore State Sequence

If the user’s application requires the use of more than one RAM transmit buffer,
a transmit queue can easily be set up to transmit messages to the JCI, either
in FIFO order, or by priority of the message.

If the host MCU wishes to transmit a message as soon as possible, the Tx
buffer in the JCI can be cleared by calling the TXFLUSH subroutine. This
subroutine will command the JCI to immediately empty the Tx buffer, preparing
it for another message from the host. If the JCI is attempting to transmit when
the Tx buffer is flushed, the JCI will abort the transmission, ensuring that the
transmission halts on a non-byte boundary.

Figure 11 shows the sequence of the example transmit routine, while
Figure 12 outlines the steps necessary for the actual message transfer
between the host MCU and the JCI. Figure 13 shows the sequence used to
check the status of the JCI.

INITIAL STATE

PREVIOUS Tx COMPLETED, NO NEW
MESSAGE AVAILABLE; txi BIT SET BY
TIMER INTERRUPT SREVICE ROUTINE
TO INDICATE NO PENDING Tx

PREVIOUS Tx COMPLETED, AVAILABLE
MESSAGE ISNOW TRANSFERRED FROM
HOST TO JCI; txt BIT CLEARED BY TIMER
INTERRUPT SERVICE ROUTINE TO
INDICATE NO NEW MESSAGE AVIALABLE

NO Tx PENDING, NEW MESSAGE IS
TRANSFERRED FROM HOST TO JCI;
txi BIT CLEARED BY "TRANSMIT"
SUBROUTINE CALLED BY USER’S
APPLICATION SOFTWARE TO INDICATE
PENDING Tx

PREVIOUS Tx PENDING, MESSAGE IS
NOT TRANSFERRED FROM HOST TO JCI;
txt BIT SET BY "TRANSMIT" SUBROUTINE
CALLED BY USER’S APPLICATION
SOFTWARE TO INDICATE THAT THE
NEXT MESSAGE IS AVAILABLE

txi = 1
txt = 0

txi = 0
txt = 0

txi = 0
txt = 1

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN1212/D
MC68HC705C8/JCI Interface Driver Routines

MOTOROLA J1850 Multiplex Bus Communication Using the MC68HC705C8 21
and the SC371016 J1850 Communications Interface (JCI)

Figure 11. Example Transmit Sequence

BEGIN TRANSMIT
SEQUENCE

LOAD HEADER
AND DATA BYTES
INTO MCU RAM,

BEGINNING AT "txbuf"

SET I BIT
TO PREVENT
INTERRUPTS

CLEAR "message to Tx"
BIT IN MCU RAM

LOCATION "txcntrl"

LOAD BYTE COUNT
INTO MCU RAM

LOCATION
"txcount"

CALL TXSTATUS
ROUTINE TO CHECK

CURRENT STATUS OF JCI

CLEAR I BIT TO ALLOW
INTERRUPTS

ADVANCE OUTPUT
COMPARE BY VALUE

EQUAL TO A
3-BYTE MESSAGE

YES

NO

SET "message to Tx"
BIT IN MCU

RAM LOCATION
"txcntrl"

CLEAR I BIT TO ALLOW
INTERRUPTS

END OF TRANSMIT
SEQUENCE

IS
"previous Tx

complete" BIT
SET?

CALL TXDATA ROUTINE
TO TRANSFER FRAME

BYTES TO JCI
(SEE Figure 12)

ENABLE OUTPUT
COMPARE INTERRUPT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN1212/D

22 J1850 Multiplex Bus Communication Using the MC68HC705C8 MOTOROLA
and the SC371016 J1850 Communications Interface (JCI)

Figure 12. TXDATA Subroutine

CALL TXDATA
SUBROUTINE

LOAD FIRST BYTE
OF FRAME INTO

MCU RAM
LOCATION "data"

LOAD BYTE IN SPDR
INTO MCU RAM

LOCATION "status"

LOAD BYTE IN RAM
LOCATION "data" INTO

SPDR, INITIATING
SPI TRANSFER

LOAD NEXT FRAME
BYTE INTO MCU
RAM LOCATION

"data"

LOAD BYTE IN RAM
LOCATION "data": INTO

SPDR, INITIATING
SPI TRANSFER

IS
SPI TRANSFER

COMPLETE?

LOAD BYTE IN SPDR
INTO MCU RAM

LOCATION "status"

IS
SPI TRANSFER

COMPLETE?

YES

NO

NO

YES

LOAD "load as last
byte" BIT COMBINATION

INTO MCU RAM
LOCATION "command"

LOAD BYTE IN RAM
LOCATION "data" INTO

SPDR, INITIATING
SPI TRANSFER

LOAD BYTE IN SPDR
INTO MCU RAM

LOCATION "status"

IS
SPI TRANSFER

COMPLETE?

LOAD BYTE IN RAM
LOCATION "command"

INTO SPDR, INITIATING
SPI TRANSFER

IS
SPI TRANSFER

COMPLETE?

YES

NO

NO

YES

RETURN FROM
SUBROUTINE

LOAD "load as data
byte" BIT COMBINATION

INTO MCU RAM
LOCATION "command"

IS
SPI TRANSFER

COMPLETE?
NO

YES

LOAD BYTE IN RAM
LOCATION "command"

INTO SPDR, INITIATING
SPI TRANSFER

IS
SPI TRANSFER

COMPLETE?
NO

YES

IS THIS
THE LAST BYTE

OF FRAME?

NO

YES

LOAD BYTE IN RAM
LOCATION "command"

INTO SPDR, INITIATING
SPI TRANSFER

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN1212/D
MC68HC705C8/JCI Interface Driver Routines

MOTOROLA J1850 Multiplex Bus Communication Using the MC68HC705C8 23
and the SC371016 J1850 Communications Interface (JCI)

Figure 13. TXSTATUS Subroutine

Receiving When the JCI has received an error-free message fro the MUX bus which
meets the filtering criteria, the IRQ interrupt service routine performs the
necessary data retrieval, some additional filtering, and then stores the data in
a specified location in host RAM where the main application software can
access it.

IS BIT 4 OF
"status" SET?

NO

YES

CALL TXSTATUS
SUBROUTINE

LOAD BYTE IN RAM
LOCATION "data" INTO

SPDR, INITIATING
SPI TRANSFER

LOAD BYTE IN SPDR
INTO MCU RAM

LOCATION "status"

READ VALUE IN TIMER
STATUS REGISTER

(TSR)

LOAD VALUE IN TCRL
INTO OCRL

IS BIT 5 OF
"status" SET?

CALL TXDATA
SUBROUTINE TO

TRANSFER MESSAGE
TO JCI

DISABLE TIMER
INTERRUPT

SET
"Previous Tx Complete"

BIT IN RAM
LOCATION "txcntrl"

NO

YES

RETURN FROM
SUBROUTINE

LOAD "do nothing"
BIT COMBINATION

INTO MCU RAM
LOCATION "command"

IS
SPI TRANSFER

COMPLETE?
NO

YES

LOAD BYTE IN RAM
LOCATION "command"

INTO SPDR, INITIATING
SPI TRANSFER

IS
SPI TRANSFER

COMPLETE?
NO

YES

NO

YES

ADD MINIMUM
MESSAGE LENGTH TIME

TO VALUE IN TCRH,
AND LOAD INTO OCRH

IS "message
to Tx" BIT

SET?

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN1212/D

24 J1850 Multiplex Bus Communication Using the MC68HC705C8 MOTOROLA
and the SC371016 J1850 Communications Interface (JCI)

As soon as a qualified message is stored in one of the JCI’s two Rx buffers, the
INT output is asserted. This output is connected to the MC68HC705C8 IRQ
input, generating a CPU interrupt. The interrupt service routine first retrieves
and discards the priority/type byte of the message. The second byte of the
message, the target address byte, is then retrieved. This byte is compared to
each functional I.D. for which a received message buffer has been reserved.
As soon as a match is found, the received message buffer pointer
corresponding to that functional I.D. is loaded into the X register. The target
address byte is then discarded, as is the next byte retrieved, the source
address byte. It is not necessary to retain these bytes of the message, since a
logical assumption is that the functional I.D. must be known to the receiver
already, and the source address is of no use since the function, and not the
source, of the message data is what is important.

The data bytes are then retrieved by the host MCU until the JCI status shows
the Rx buffer to be empty. Each of the retrieved data bytes is loaded into host
MCU RAM beginning at the RAM location whose value is in the appropriate
received message buffer pointer. The number of data bytes contained in each
received message is not saved because the number of data bytes of any
message transmitted on the J1850 MUX bus is pre-defined, and therefore the
user should already know how many data bytes will be retrieved for each
functional I.D. specified.

At anytime during the retrieval of a message from the JCI, if the host MCU
determines that the message is of no interest, the host MCU can call the
RXFLUSH subroutine. This subroutine will command the JCI to clear the
current Rx buffer immediately. Once the entire message has either been
retrieved or cleared from the JCI’s Rx buffer, the buffer is released to receive
another message from the MUX bus. The interrupt service routine then returns
to the point in the user’s application software where the interrupt occurred.
Refer to Figure 14 for the sequence followed during the IRQ interrupt service
routine.

This procedure results in each host MCU RAM receive buffer containing the
latest data received for a specified functional I.D., where the host MCU can
access it whenever it needs updated data. Whenever this stored data is
accessed, however, the host must first set the I bit to inhibit a receive interrupt.
If a receive interrupt is serviced while the host is accessing this stored data, it
is possible that the host could end up reading partial data from two different
received messages. Also, if physically addressed, or "node-to-node" messages
are to be utilized in the user’s system, it is a simple matter to modify the receive
routine to store the source address of the node-to-node message, if necessary,
in the first RAM location of a received message buffer, and to store the number
of data bytes received, if necessary, in a temporary storage location for use by
the host MCU.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN1212/D
MC68HC705C8/JCI Interface Driver Routines

MOTOROLA J1850 Multiplex Bus Communication Using the MC68HC705C8 25
and the SC371016 J1850 Communications Interface (JCI)

Figure 14. IRQ Interrupt Service Routine (Sheet 1 of 2)

IS
BIT 6 OF "status"

SET?

IS
BIT 7 OF "status"

SET?

IS
SPI TRANSFER

COMPLETE?
NO

LOAD BYTE IN RAM
LOCATION "command"

INTO SPDR, INITIATING
SPI TRANSFER

DOES
"data" MATCH I.D.

#4?

DOES
"data" MATCH I.D.

#3?

DOES
"data" MATCH I.D.

#2?

DOES
"data" MATCH I.D.

#1?

IS
SPI TRANSFER

COMPLETE?

LOAD BYTE IN RAM
LOCATION "command"

INTO SPDR, INITIATING
SPI TRANSFER

IRQ INTERRUPT
OCURS

STORE CURRENT
"command" AND "data"

VALUES IN
TEMPORARY STORAGE

LOAD "flush byte"
BIT COMBINATION INTO

MCU RAM
LOCATION "command"

LOAD BYTE IN RAM
LOCATION "data" INTO

SPDR, INITIATING
SPI TRANSFER

IS
SPI TRANSFER

COMPLETE?

LOAD BYTE IN SPDR
INTO MCU RAM

LOCATION "status"

LOAD BYTE IN RAM
LOCATION "command"

INTO SPDR, INITIATING
SPI TRANSFER

LOAD BYTE IN RAM
LOCATION "data"

INTO SPDR, INITIATING
SPI TRANSFER

IS
SPI TRANSFER

COMPLETE?

IS
SPI TRANSFER

COMPLETE?

NO

YES

NO

NO

YES

YES

LOAD BYTE IN SPDR
INTO MCU RAM

LOCATION "status"

NO

YES

LOAD BYTE IN SPDR
INTO MCU RAM

LOCATION "data"

A

YES

YES

YES

YES

NO

NO

NO

NO

IS
SPI TRANSFER

COMPLETE?

LOAD BYTE IN RAM
LOCATION "data" INTO

SPDR, INITIATING
SPI TRANSFER

LOAD POINTER TO
MATCHING Rx BUFFER
INTO INDEX REGISTER

NO

YES

LOAD BYTE IN SPDR
INTO MCU RAM

LOCATION "status"

B

YES

NO

YES

NO

YES C

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN1212/D

26 J1850 Multiplex Bus Communication Using the MC68HC705C8 MOTOROLA
and the SC371016 J1850 Communications Interface (JCI)

Figure 14. IRQ Interrupt Service Routine (Sheet 2 of 2)

Error Handling These basic driver routines do not contain extensive error handling procedures.
For received messages, the basic assumption made is "if it is no good, don’t
bother the host with it". Any messages being received which contain errors are
simply discarded. Likewise, when transmission or bus errors are detected there
are no procedures for dealing with them, since in many instances there is not
much the node can do to prevent them from occurring.

However, the JCI can supply the host MCU with extensive transmit, receive,
and bus error information, which the host can use to perform any procedures
deemed necessary whenever any of these errors are detected on the MUX bus.

RESTORE "command"
AND "data" VALUES
FROM TEMPORARY

STORAGE
IS

SPI TRANSFER
COMPLETE?

LOAD BYTE IN RAM
LOCATION "data"

INTO SPDR, INITIATING
SPI TRANSFER

LOAD BYTE IN RAM
LOCATION "data" INTO

SPDR, INITIATING
SPI TRANSFER

IS
SPI TRANSFER

COMPLETE?

LOAD BYTE IN SPDR
INTO MCU RAM

LOCATION "status"

LOAD BYTE IN RAM
LOCATION "command"

INTO SPDR, INITIATING
SPI TRANSFER

LOAD BYTE IN RAM
LOCATION "data"

INTO INTO NEXT Rx BUFFER
MEMORY LOCATION

IS
SPI TRANSFER

COMPLETE?

NO

YES

NO

YES

LOAD "flush message" BIT
COMBINATION INTO MCU

RAM LOCATION "command"

NO

YES

LOAD BYTE IN SPDR
INTO MCU RAM

LOCATION "status"

IS
SPI TRANSFER

COMPLETE?

LOAD BYTE IN RAM
LOCATION "command"

INTO SPDR, INITIATING
SPI TRANSFER

NO

YES

B

C

A

RETURN FROM
INTERRUPT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN1212/D
Summary

MOTOROLA J1850 Multiplex Bus Communication Using the MC68HC705C8 27
and the SC371016 J1850 Communications Interface (JCI)

Summary

These software driver routines are intended as examples which can be used as
a starting point for the development of application software which includes a
JCI interface. They should allow the user to quickly construct a basic
application using the MC68HC705C8 and JCI for communication onto a J1850
MUX bus, but do not provide a full range of error detection procedures, or
otherwise utilize all the information the JCI can provide about the status of the
MUX bus, and the messages transmitted and received. For a detailed
description of the functions of the JCI, refer to the J1850 Communications
Interface Specification.

References

J1850 Communications Interface Specification, Revision 1.0, Motorola, 1991

M68HC05 Applications Guide, M68HC05AG/AD, Motorola, 1989

MC68HC705C8 Technical Data, MC68HC705C8/D, Motorola, 1990

Society of Automotive Engineers Recommended Practice J1850 – Class B
Data Communication Network Interface, J1850, SAE, 1992

Society of Automotive Engineers Recommended Practice J2178 Class B
Communication Network Messages, J2178, SAE, 1992

Code Listings

These code listings follow:

• MC68HC705C8/JCI Sample Driver Routines

• MC68HC705C8/JCI Driver Code Example Program

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN1212/D

28 J1850 Multiplex Bus Communication Using the MC68HC705C8 MOTOROLA
and the SC371016 J1850 Communications Interface (JCI)

1 **
2 * *
3 * MC68HC705C8/JCI Sample *
4 * Driver Routines *
5 * *
6 * This code is memory mapped for the MC68HC705C8. It interfaces *
7 * to the JCI using the Enhanced SPI interface mode. *
8 * *
9 * *
10 * Revision History *
11 * Rev. 0.1: (initial release) Chuck Powers 6/30/92 *
12 * Rev. 0.2: Add Tx & Rx flush *
13 * routines Chuck Powers 7/10/92 *
14 * Rev. 0.3: Fix TXSTATUS and *
15 * message filtering Chuck Powers 7/17/92 *
16 * *
17 **
18
19 **
20 ***** Equates *****
21 **
22

0000 23 porta equ $00 ;Port A
0000 24 portb equ $01 ;Port B
0000 25 portc equ $02 ;Port C
0000 26 portd equ $03 ;Port D

27
0000 28 ddra equ $04 ;Data Direction, Port A
0000 29 ddrb equ $05 ;Data Direction, Port B
0000 30 ddrc equ $06 ;Data Direction, Port C

31
0000 32 spcr equ $0a ;Serial Peripheral Control Register
0000 33 spsr equ $0b ;Serial Peripheral Status Register
0000 34 spdr equ $0c ;Serial Peripheral Data Register

35
0000 36 tcr equ $12 ;Timer Control Register
0000 37 tsr equ $13 ;Timer Status Register
0000 38 ocrh equ $16 ;Timer Output Compare Register (High)
0000 39 ocrl equ $17 ;Timer Output Compare Register (Low)
0000 40 tcrh equ $18 ;Timer Count Register (High)
0000 41 tcrl equ $19 ;Timer Count Register (Low)

42
43 *** TCR Bit Assignments ***
44

0000 45 icie equ 7 ;Input Capture Interrupt Enable
0000 46 ocie equ 6 ;Output Compare Interrupt Enable
0000 47 toie equ 5 ;Timer Overflow Interrupt Enable

48
49 *** SPCR Bit Assignments ***
50

0000 51 spie equ 7 ;SPCR, Bit 7 - SPI Interrupt Enable
0000 52 spe equ 6 ;SPCR, Bit 6 - SPI Enable
0000 53 mstr equ 4 ;SPCR, Bit 4 - Master Mode Select
0000 54 cpol equ 3 ;SPCR, Bit 3 - Clock Polarity
0000 55 cpha equ 2 ;SPCR, Bit 2 - Clock Phase
0000 56 spr1 equ 1 ;SPCR, Bit 1 - \ SPI Clock
0000 57 spr0 equ 0 ;SPCR, Bit 0 - / Rate Bits

58

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN1212/D
Code Listings

MOTOROLA J1850 Multiplex Bus Communication Using the MC68HC705C8 29
and the SC371016 J1850 Communications Interface (JCI)

59 *** SPSR Bit Assignments ***
60

0000 61 spif equ 7 ;SPSR, Bit 7 - SPI Data Transfer Flag
0000 62 wcol equ 6 ;SPSR, Bit 6 - Write Collision
0000 63 modf equ 4 ;SPSR, Bit 4 - Mode Fault

64
65 *** JCI Control Bit Assignments ***
66

0000 67 rst equ 1 ;Port C, Bit 1 - Reset*
0000 68 cs equ 0 ;Port C, Bit 0 - Chip Select*

69
70 *** Port D Bit Assignments ***
71

0000 72 ss equ 5 ;Port D, Bit 5 - Slave Select
0000 73 sck equ 4 ;Port D, Bit 4 - Serial Clock
0000 74 mosi equ 3 ;Port D, Bit 3 - Master Out, Slave In
0000 75 miso equ 2 ;Port D, Bit 2 - Master In, Slave Out

76
77 *** Transmit Control Bit Assignments ***
78

0000 79 txt equ 7 ;Txcntrl, Bit 7 (Message to Tx status)
0000 80 txi equ 6 ;Txcntrl, Bit 6 (Previous Tx Complete status)

81
82 *** General Equates ***
83

0000 84 ram equ $0030 ;Beginning of user RAM
0000 85 rom equ $0180 ;Beginning of user ROM
0000 86 service equ $0300 ;Beginning of Rx IRQ service routine
0000 87 timer equ $0360 ;Beginning of Timer IRQ service routine
0000 88 vectors equ $1ff4 ;Beginning of user vectors
0000 89 option equ $1fdf ;Option Register Location
0000 90 none equ $0000 ;Bogus Location

91
92 *** JCI Command Byte Equates ***
93

0000 94 nothing equ $00 ;"Do Nothing" Command Byte
0000 95 databyte equ $04 ;"Load as Data Byte" Command Byte
0000 96 lastbyte equ $0C ;"Load as Last Byte" Command Byte
0000 97 maskbyte equ $10 ;"Load as I.D. Mask Byte" Command Byte
0000 98 idbyte equ $18 ;"Load as I.D.Byte" Command Byte
0000 99 flshbyte equ $02 ;"Flush First Byte in FIFO" Command Byte
0000 100 flshfifo equ $03 ;"Flush Current FIFO" Command byte
0000 101 flshtx equ $E0 ;"Abort Tx and Flush FIFO" Command byte
0000 102 tar equ $80 ;"Terminate Auto Retry" Command byte

103
104 *** JCI Status Byte Bit Assignments ***
105

0000 106 busa equ 0 ;Bus Status Bit B
0000 107 busb equ 1 ;Bus Status Bit A
0000 108 busact equ 2 ;Bus Active Bit
0000 109 tfifoc equ 3 ;Tx FIFO Status Bit C
0000 110 tfifob equ 4 ;Tx FIFO Status Bit B
0000 111 tfifoa equ 5 ;Tx FIFO Status Bit A
0000 112 rfifob equ 6 ;Rx FIFO Status Bit B
0000 113 rfifoa equ 7 ;Rx FIFO Status Bit A

114

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN1212/D

30 J1850 Multiplex Bus Communication Using the MC68HC705C8 MOTOROLA
and the SC371016 J1850 Communications Interface (JCI)

115 *** Timer Interrupt Periods ***
116

0000 117 vdelay equ $04 ;Counter advance for VPW Tx status routine
0000 118 pdelay equ $02 ;Counter advance for PWM Tx status routine

119
120 *** ACR/AMR Initialization Equates ***
121

0000 122 acrbyte equ %00100110 ;Init value for ACR
0000 123 amrbyte equ %11010001 ;Init value for AMR

124
125 *** Functional Message I.D.s ***
126

0000 127 id1 equ $00
0000 128 id2 equ $20
0000 129 id3 equ $04
0000 130 id4 equ $24

131
132 **
133 ***** HC05 RAM Storage Assignments *****
134 **
135

0030 136 org ram
137
138 *** Data Transfer Storage ***
139

0030 140 command rmb $1 ;Command Byte Storage
0031 141 status rmb $1 ;Status Byte Storage
0032 142 data rmb $1 ;Data Byte Storage
0033 143 cmdtemp rmb $1 ;Temporary Command Byte Storage
0034 144 statemp rmb $1 ;Temporary Status Byte Storage
0035 145 datatemp rmb $1 ;Temporary Data Byte Storage

146
147 *** Transmit Message Buffer ***
148

0036 149 txcount rmb $1 ;Host Transmit Message Byte Counter
0037 150 txbuf rmb $b ;Host Transmit Message Buffer
0042 151 txcntrl rmb $1 ;Host Transmit Message Control Byte

152
153 *** Received Message Buffer Pointer Table ***
154

0043 155 msg1 rmb $1 ;Pointer to RAM holding message w/id1
0044 156 msg2 rmb $1 ;Pointer to RAM holding message w/id2
0045 157 msg3 rmb $1 ;Pointer to RAM holding message w/id3
0046 158 msg4 rmb $1 ;Pointer to RAM holding message w/id4

159
160 *** Received Message Buffers ***
161

0047 162 buff1 rmb $8 ;RAM holding last received message w/id1
004F 163 buff2 rmb $8 ;RAM holding last received message w/id2
0057 164 buff3 rmb $8 ;RAM holding last received message w/id3
005F 165 buff4 rmb $8 ;RAM holding last received message w/id4

166

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN1212/D
Code Listings

MOTOROLA J1850 Multiplex Bus Communication Using the MC68HC705C8 31
and the SC371016 J1850 Communications Interface (JCI)

167 **
168 * *
169 * MC68HC705C8/JCI Driver Code *
170 * Example Program *
171 * *
172 * This sample program transmits a message consisting of pri/type=$03, *
173 * target address $73, source address $55, and a data byte, beginning *
174 * with $00. After a delay of 50ms, the data byte is incremented, and *
175 * the message is retransmitted. Anytime a message is received, it *
176 * will be stored in one of the Received Message Buffers, which have *
177 * been reserved for target addresses: $00, $20, $04 & $24 (see *
178 * equates). The Acceptance Mask Register is loaded with $D1, and the *
179 * Acceptance Code Register is loaded with $26. This prevents the *
180 * messages transmitted by the JCI from being received by the JCI, *
181 * and passed back to the host MCU. *
182 * *
183 **
184

0000 185 vardata equ $70 ;Initialize variable data storage location
186

0180 187 org rom
188

0180 CD01AE 189 jsr JCIRST ;Initialize the MC68HC705C8, and reset
190 ;and initialize the JCI for MUX bus
191 ;communication
192

0183 3F70 193 clr vardata ;Clear the location where the variable
194 ;data byte is stored
195

0185 1F42 196 doover: bclr txt,txcntrl ;Clear the "Message to Tx" bit to
197 ;prevent an incomplete message from
198 ;being transmitted onto the MUX bus
199

0187 A603 200 lda #$03 ;Load the pri/type byte into
0189 B737 201 sta txbuf ;RAM location"txbuf"
018B A673 202 lda #$73 ;Load the target address byte
018D B738 203 sta txbuf+1 ;into RAM location "txbuf"+1
018F A655 204 lda #$55 ;Load the source address byte
0191 B739 205 sta txbuf+2 ;into RAM location "txbuf"+2
0193 B670 206 lda vardata ;Load the variable data byte
0195 B73A 207 sta txbuf+3 ;into RAM location "txbuf"+3
0197 A604 208 lda #04 ;Load the number bytes in the
0199 B736 209 sta txcount ;message into RAM location "txcount"

210
019B CD01FE 211 jsr TRANSMIT ;Call the subroutine TRANSMIT,

212 ;initiating the transmit sequence
213

019E 9D 214 nop
215

019F AE3F 216 ldx #$3f ;Delay loop . . .
217

01A1 A6FF 218 lp1: lda #$ff
01A3 4A 219 lpo: deca
01A4 26FD 220 bne lpo

221
01A6 5A 222 decx
01A7 26F8 223 bne lpl ;End delay loop.

224

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN1212/D

32 J1850 Multiplex Bus Communication Using the MC68HC705C8 MOTOROLA
and the SC371016 J1850 Communications Interface (JCI)

01A9 3C70 225 inc vardata ;Increment the variable data byte
226

01AB CC0185 227 jmp doover ;Jump back, and transmit again
228
229 **
230 * *
231 * Subroutines *
232 * *
233 **
234
235 **
236 ***** Initialization Subroutine *****
237 **
238
239 *** Initialization of Port C for JCI Handshake ***
240

01AE A601 241 JCIRST: lda #%00000001 ;C7-C2 user i/o, C1 - reset*,
01B0 B702 242 sta portc ;C3-C0 - cs*
01B2 A603 243 lda #%00000011 ;C7-C2 - user assigned
01B4 B706 244 sta ddrc ;C1=C0 - outputs

245
246 *** Initialization of SPCR for JCI Serial Comm. ***
247

01B6 A65D 248 lda #$01011101 ;B7 - spie, B6 - spe, B4 - mstr
01B8 B70A 249 sta spcr ;B3 - cpol, B2 - cpha, B1:0 - Bit Rate

250
251 *** Option Reg. IRQ Sensitivity ***
252

01BA A6C0 253 lda #%11000000 ;Program RAM0=RAM1=0 for more RAM
01BC C71FDF 254 sta option ;Program IRQ* for negative edge only

255
256 *** Clear Txmit Control Register ***
257

01BF 3F42 258 clr txcntrl ;This will prepare the transmit control
01C1 1C42 259 bset txi, txcntrl ;register for Host/JCI communication

260
261 *** Initialization of Receive Message Buffer Pointers ***
262

01C3 A647 263 lda #buff1 ;Load location of message buffer w/id1
01C5 B743 264 sta msg1 ;in message buffer pointer msg1

265
01C7 A64F 266 lda #buff2 ;Load location of message buffer w/id2
01C9 B744 267 sta msg2 ;in message buffer pointer msg2

268
01CB A657 269 lda #buff3 ;Load location of message buffer w/id3
01CD B745 270 sta msg3 ;in message buffer pointer msg3

271
01CF A65F 272 lda #buff4 ;Load location of message buffer w/id4
01D1 B746 273 sta msg4 ;in message buffer pointer msg4

274
275
276 *** Release JCI Reset* Input ***
277

01D3 1202 278 bset rst,portc ;Negate reset
279

01D5 9D 280 nop ;Delay to allow
01D6 9D 281 nop ;All internal registers in
01D7 9D 282 nop ;JCI to reset
01D8 9D 283 nop

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN1212/D
Code Listings

MOTOROLA J1850 Multiplex Bus Communication Using the MC68HC705C8 33
and the SC371016 J1850 Communications Interface (JCI)

284
01D9 CD0263 285 jsr LOADAMR ;Call subroutine to load Acceptance Mask

286 ;Byte into Acceptance Mask Register in JCI
287

01DC CD026F 288 jsr LOADACR ;Call subroutine to load Acceptance Code
289 ;Byte into Acceptance Code Register in JCI
290

01DF 9A 291 cli ;Clear Host Interrupt Mask Bit
292

01E0 81 293 rts ;End of JCI init subroutine
294
295
296 **
297 ***** Other Subroutines ******
298 **
299
300 *** MC68HC705C8/JCI Data Exchange Subroutine ***
301

01E1 1102 302 TRANSFER: bclr cs,portc ;Assert Chip Select*
303

01E3 B632 304 lda data ;Load data byte in acc.
01E5 B70C 305 sta spdr ;Store in SPI data reg., initiating tx

306
01E7 3D0B 307 txwait1: tst spsr ;Is previous transfer complete?
01E9 2AFC 308 bpl txwait1 ;loop until done

309
01EB B60C 310 lda spdr ;Load received status byte into acc.
01ED B731 311 sta status ;Store in status byte storage location

312
01EF B630 313 lda command ;Load command byte into acc.
01F1 B70C 314 sta spdr ;Store in SPI data reg., initiating tx

315
01F3 3D0B 316 txwait2: tst spsr ;Is previous transfer complete?
01F5 1AFC 317 bpl txwait2 ;loop until done

318
01F7 B60C 319 lda spdr ;Load received data byte into acc.
01F9 B732 320 sta data ;Store in Data byte storage location

321
01FB 1002 322 bset cs,portc ;Negate Chip Select*

323
01FD 81 324 rts ;Return from subroutine

325
326 *** TRANSMIT Subroutine ***
327

01FE CD0233 328 TRANSMIT: jsr TXSTATUS ;Call TXSTATUS subroutine to check
329 ;status of previously Tx’ed message
330

0201 9B 331 sei ;Set I-bit to make sure "PreviousTX
332 ;Complete" bit is not set before "Message
333 ;to Tx" bit can be set
334

0202 0C4206 335 brset txi,txcntrl,clr6 ;Has Tx completed?
336

0205 1E42 337 bset txt,txcntrl ;Set txt bit - message to Tx
338

0207 9A 339 cli ;Clear I-bit
340

0208 CC0216 341 jmp tdone ;Jump to end of Tx subroutine routine

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN1212/D

34 J1850 Multiplex Bus Communication Using the MC68HC705C8 MOTOROLA
and the SC371016 J1850 Communications Interface (JCI)

342
020B 9A 343 clr6: cli ;Clear I-bit

344
020C CD0217 345 jsr TXDATA ;Jump to routine to transmit message

346 ;data to JCI
347

020F 1D42 348 bclr txi,txcntrl ;Clear txi bit - previous Tx not complt
349

0211 CD0256 350 jsr TIMERSU ;Call subroutine to setup timer int.
351

0214 1C12 352 bset ocie,tcr ;Enable Output Compare Interrupt
353

0216 81 354 tdone: rts ;Return from subroutine
355
356 *** Tx Message Data Transfer Subroutine ***
357

0217 5F 358 TXDATA: clrx ;Set X-register to 0
359

0218 5C 360 nexttx: incs ;Increment X-register
361

0219 E636 362 lda txcount,x ;Load message data byte into
021B B732 363 sta data ;Data storage location

364
021D B336 365 crz txcount ;Compare x-register with # of bytes
021F 270A 366 beg lasttx ;If last byte, jump to last byte sequence

367
0221 A604 368 lda #databyte ;Load "load as data byte" command
0223 B730 369 sta command ;into RAM location "command"

370
0225 CD01E1 371 jsr TRANSFER ;Call TRANSFER subroutine to transfer

372 ;data and command bytes to JCI
373

0228 CC0218 374 jmp nexttx ;Go get next byte
375

022B A60C 376 lasttx: lda #lastbyte ;Load "load as last byte" command
022D B730 377 sta command ;into RAM location "command"

378
022F CD01E1 379 jsr TRANSFER ;Call TRANSFER subroutine to transfer

380 ;last data and command byte to JCI
381

0232 81 382 rts ;Return from subroutine
383
384 *** Tx Status Check Subroutine ***
385

0233 A600 386 TXSTATUS: lda #nothing ;Load "do nothing" command
0235 B730 387 sta command ;into RAM location "command"

388
0237 CD01E1 389 jsr TRANSFER ;Call TRANSFER subroutine to

390 ;retreive current status from JCI
391

023A CD0256 392 jsr TIMERSU ;Call TIMERSU subroutine to reset
393 ;OC value for timer interrupt
394

023D 0B3106 395 brclr tfifoa,status,txdone ;Is Tx FIFO empty?
396

0240 083103 397 brset tfifob,status,txdone ;Has transmitter made best
398 ;attempt to Tx message?
399

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN1212/D
Code Listings

MOTOROLA J1850 Multiplex Bus Communication Using the MC68HC705C8 35
and the SC371016 J1850 Communications Interface (JCI)

0243 CC0255 400 jmp return ;Jump to end of subroutine
401

0246 0F4208 402 txdone: brclr tx,txcntrl,set6 ;Message to Tx?
403

0249 CD0217 404 jsr TXDATA ;Jump to routine to transmit message
405 ;data to JCI
406

024C 1F42 407 bclr txt,txcntrl ;Clear txt bit, no message to Tx
408

024E CC0255 409 jmp return ;Jump to end of subroutine
410

0251 1D12 411 set6: bclr ocie,tcr ;Clear OCIE bit in TCR, disabling int.
412

0253 1C42 413 bset txi,txcntrl ;Set txi bit, previous Tx complete
414

0255 81 415 return: rts ;Return from subroutine
416
417 *** Timer Setup Subroutine ***
418

0256 B613 419 TIMERSU: lda tsr ;Read TSR
420

0258 B618 421 lda tcrh ;Load MSB timer value into acc.
025A AB04 422 add #vdelay ;Add appropriate delay value
025C B716 423 sta ocrh ;Store in OCR MSB

424
025E B619 425 lda tcrl ;Load LSB timer value into acc.
0260 B717 426 sta ocrl ;Store in OCR LSB

427
0262 81 428 rts ;Return from subroutine

429
430 *** Load Acceptance Mask Register Subroutine ***
431

0263 A6D1 432 LOADAMR: lda #amrbyte ;Load AMR data byte into
0265 B732 433 sta data ;Data storage location

434
0267 A610 435 lda #maskbyte ;Load "load as AMR byte" command
0269 B730 436 sta command ;into RAM location "command"

437
026B CD01E1 438 jsr TRANSFER ;Call TRANSFER subroutine to transfer

439 ;data and command bytes to JCI
440

026E 81 441 rts ;Return From Subroutine
442
443 *** Load Acceptance Code Register Subroutine ***
444

026F A626 445 LOADACR: lda #acrbyte ;Load ACR data byte into
0271 B732 446 sta data ;Data storage location

447
0273 A618 448 lda #idbyte ;Load "load as ACR byte" command
0275 B730 449 sta command ;into RAM location "command"

450
0277 CD01E1 451 jsr TRANSFER ;Call TRANSFER subroutine to transfer

452 ;data and command bytes to JCI
453

027A 81 454 rts ;Return From Subroutine
455

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN1212/D

36 J1850 Multiplex Bus Communication Using the MC68HC705C8 MOTOROLA
and the SC371016 J1850 Communications Interface (JCI)

456 *** Flush Rx FIFO Subroutine ***
457

027B A603 458 RXFLUSH: lda #flshfifo ;Load "flush Rx FIFO" command
027D B730 459 sta command ;into RAM location "command"

460
027F CD01E1 461 jsr TRANSFER ;Call "TRANSFER" subroutine to transfer

462 ;data and command bytes to JCI
463

0282 81 464 rts :Return From Subroutine
465
466 *** Flush Tx FIFO Subroutine ***
467

0283 A6E0 468 TXFLUSH: lda #flshtx ;Load "flush Tx FIFO" command
0285 B730 469 sta command :into RAM location "command"

470
0287 CD01E1 471 jsr TRANSFER ;Call TRANSFER subroutine to transfer

472 ;data and command bytes to JCI
473

028A 81 474 rts ;Return From Subroutine
475
476 **
477 * *
478 * Received Message Interrupt Service Routine *
479 * *
480 **
481

0300 482 org service
483

0300 B630 484 lda command ;Save current command byte in
0302 B733 485 sta cmdtemp ;temporary storage location

486
0304 B632 487 lda data ;Save current data bye in
0306 B735 488 sta datatemp ;temporary storage location

489
490 *** Received Message Interrupt Service Routine ***
491

0308 A602 492 lda #flshbyte ;Load "flush first byte in FIFO" command
030A B730 493 sta command ;in command storage location

494
030C CD01E1 495 jsr TRANSFER ;Call TRANSFER subroutine, retrieving

496 ;Status and pri/type data byte.
497

030F CD01E1 498 jsr TRANSFER ;Call TRANSFER subroutine, retrieving
499 ;Status and target i.d. data byte
500

0312 5F 501 clrx ;Clear X-Register
502

0313 B632 503 lda data ;Load target i.d. byte into acc.
504

0315 A100 505 cmp #id1 ;Compare target i.d. with first message
0317 2712 506 beq getmsg ;buffer i.d., if match, get message

507
0319 5C 508 incx ;Increment X-Register

509
031A A120 510 cmp #id2 ;Compare target i.d. with next message
031C 270D 511 beq getmsg ;buffer i.d., if match, get message

512
031E 5C 513 incx ;Increment X-Register

514

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN1212/D
Code Listings

MOTOROLA J1850 Multiplex Bus Communication Using the MC68HC705C8 37
and the SC371016 J1850 Communications Interface (JCI)

031F A104 515 cmp #id3 ;Compare target i.d. with next message
0321 2708 516 beq getmsg ;buffer i.d., if match, get message

517
0323 5C 518 incx ;Increment X-Register

519
0324 A124 520 cmp #id4 ;Compare target i.d. with next message
0326 2703 521 beq getmsg ;buffer i.d., if match, get message

522
0328 CC0340 523 jmp dump ;Not interested in this message

524
032B EE43 525 getmsg: ldx msgl,x ;Load pointer to corresponding message RAM

526 ;buffer into X-Register
527

032D CD01E1 528 jsr TRANSFER ;Call TRANSFER subroutine, retrieving
529 ;Status and source i.d. data byte
530

0330 0E3110 531 rxdata: brset rfifoa,status,finish ;Was previous byte "last byte"
532 ;If so, don’t load any data
533

0333 0D310D 534 brclr rfifob,status,finish ;Again, if no valid data,
535 ;end routine
536

0336 CD01E1 537 jsr TRANSFER ;Call TRANSFER subroutine, retrieving
538 ;Status and data bytes
539

0339 B632 540 lda data ;Load received data into acc., then store
033B F7 541 sta ,x ;it in next location in message buffer

542
033C 5C 543 incx ;Increment X-Register

544
033D CC0330 545 jmp rxdata ;Loop back to "rxdata" to check for

546 ;another data byte
547

0340 CD027B 548 dump: jst RXFLUSH ;Flush current Rx FIFO
549

0343 B633 550 finish: lda cmdtemp ;Retrieve command byte and
0345 B730 551 sta command ;store in command byte location

552
0347 B635 553 lda datatemp ;Retrieve data byte and
0349 B732 554 sta data ;store in data byte location

555
034B 80 556 rti ;Return from interrupt

557
558 **
559 * *
560 * Timer Interrupt Service Routine *
561 * *
562 **
563

0360 564 org timer
565

0360 B630 566 lda command ;Store current command byte in
0362 B733 567 sta cmdtemp ;temporary storage location

568
0364 B632 569 lda data ;Store current data byte in
0366 B735 570 sta datatemp ;temporary storage location

571

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN1212/D

38 J1850 Multiplex Bus Communication Using the MC68HC705C8 MOTOROLA
and the SC371016 J1850 Communications Interface (JCI)

572 *** Timer Interrupt Service Routine ***
573

0368 CD0233 574 jsr TXSTATUS ;Call TXSTATUS subroutine
575

036B B633 576 lda cmdtemp ;Retrieve command byte and
036D B730 577 sta command ;store in command byte location

578
036F B635 579 lda datatemp ;Retrieve data byte and
0371 B732 580 sta data ;store in data byte location

581
0373 80 582 rti ;Return from interrupt

583
584 **
585 *** MC68HC705C8 Reset Vectors *****
586 **
587

1FF4 588 org vectors
589

1FF4 0000 590 fdb none ;SPI
1FF6 0000 591 fdb none ;SCI
1FF8 0360 592 fdb timer ;Timer
1FFA 0300 593 fdb service ;external int. vector
1FFC 0000 594 fdb none ;software int. vector
1FFE 0180 595 fdb rom ;reset vector

596
597 **
598 *** End of MC68HC705C8/JCI Sample Driver Routines *****
599 **

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN1212/D
Code Listings

MOTOROLA J1850 Multiplex Bus Communication Using the MC68HC705C8 39
and the SC371016 J1850 Communications Interface (JCI)

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

HOW TO REACH US:

USA/EUROPE/LOCATIONS NOT LISTED:

Motorola Literature Distribution;
P.O. Box 5405, Denver, Colorado 80217
1-303-675-2140 or 1-800-441-2447

JAPAN:

Motorola Japan Ltd.; SPS, Technical Information Center,
3-20-1, Minami-Azabu Minato-ku, Tokyo 106-8573 Japan
81-3-3440-3569

ASIA/PACIFIC:

Motorola Semiconductors H.K. Ltd.;
Silicon Harbour Centre, 2 Dai King Street,
Tai Po Industrial Estate, Tai Po, N.T., Hong Kong
852-26668334

TECHNICAL INFORMATION CENTER:

1-800-521-6274

HOME PAGE:

http://www.motorola.com/semiconductors

Information in this document is provided solely to enable system and software

implementers to use Motorola products. There are no express or implied copyright

licenses granted hereunder to design or fabricate any integrated circuits or

integrated circuits based on the information in this document.

Motorola reserves the right to make changes without further notice to any products

herein. Motorola makes no warranty, representation or guarantee regarding the

suitability of its products for any particular purpose, nor does Motorola assume any

liability arising out of the application or use of any product or circuit, and specifically

disclaims any and all liability, including without limitation consequential or incidental

damages. “Typical” parameters which may be provided in Motorola data sheets

and/or specifications can and do vary in different applications and actual

performance may vary over time. All operating parameters, including “Typicals”

must be validated for each customer application by customer’s technical experts.

Motorola does not convey any license under its patent rights nor the rights of

others. Motorola products are not designed, intended, or authorized for use as

components in systems intended for surgical implant into the body, or other

applications intended to support or sustain life, or for any other application in which

the failure of the Motorola product could create a situation where personal injury or

death may occur. Should Buyer purchase or use Motorola products for any such

unintended or unauthorized application, Buyer shall indemnify and hold Motorola

and its officers, employees, subsidiaries, affiliates, and distributors harmless

against all claims, costs, damages, and expenses, and reasonable attorney fees

arising out of, directly or indirectly, any claim of personal injury or death associated

with such unintended or unauthorized use, even if such claim alleges that Motorola

was negligent regarding the design or manufacture of the part.

Motorola and the Stylized M Logo are registered in the U.S. Patent and Trademark
Office. digital dna is a trademark of Motorola, Inc. All other product or service
names are the property of their respective owners. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.

© Motorola, Inc. 2001

AN1212/D

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

	Introduction
	J1850 Overview
	Features
	Frame Headers and Addressing
	Error Detection
	Arbitration
	In-Frame Response
	Modulation

	MC68HC705C8 Microcontroller
	Memory
	Input/Output
	Serial Peripheral Interface
	16-Bit Timer

	JCI Overview
	Host Interface
	JCI Control/ Configuration Inputs
	Message Buffers
	Message Filter
	Error Detection
	Message Transmitter and Receiver

	MC68HC705C8/JCI Interface Driver Routines
	Setup
	Transmitting
	Receiving
	Error Handling

	Summary
	References
	Code Listings

