

RoHS Sxx35x Series

Description

Excellent unidirectional switches for phase control applications such as heating and motor speed controls.

Standard phase control SCRs are triggered with few milliamperes of current at less than 1.5V potential.

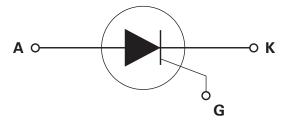
Features & Benefits

- RoHS compliant
- Glass passivated junctions
- Voltage capability up to 1000 V
- Surge capability up to 500 A

Agency Approval

Agency	Agency File Number		
. 9 U	J & K Packages: E71639		

Applications


Typical applications are AC solid-state switches, industrial power tools, exercise equipment, white goods and commercial appliances.

Internally constructed isolated packages are offered for ease of heat sinking with highest isolation voltage.

Main Features

Symbol	Value	Unit
I _{T(RMS)}	35	А
V_{DRM}/V_{RRM}	400 to 1000	V
I _{GT}	40	mA

Schematic Symbol

Absolute Maximum Ratings

Symbol	Parameter	Test Conditions	Value	Unit
I _{T(RMS)}	RMS on-state current	T _C = 95°C	35	А
	Peak non-repetitive surge current	single half cycle; f = 50Hz; T _J (initial) = 25°C	7 7 1 1 /126	
I _{TSM}	reak non-repetitive surge current	single half cycle; f = 60Hz; T _J (initial) = 25°C	500	А
l ² t	I²t Value for fusing	$t_{p} = 8.3 \text{ ms}$	1035	A ² s
di/dt	Critical rate of rise of on-state current	f = 60Hz ; T _J = 125°C	150	A/µs
I _{GM}	Peak gate current	T _J = 125°C	3.5	А
P _{G(AV)}	Average gate power dissipation $T_J = 125$ °C		0.8	W
T _{stg}	Storage temperature range		-40 to 150	°C
T _J	Operating junction temperature range		-40 to 125	°C

Teccor® brand Thyristors 35 Amp Standard SCRs

Electrical Characteristics (T_J = 25°C, unless otherwise specified)

Symbol	Test Conditions	Value	Unit			
1			MAX.	40	mA	
I _{GT}	$V_D = 12V; R_L = 60\Omega$		MIN.	5	IIIA	
V _{GT}			MAX.	1.5	V	
		400V		450		
	\\ -\\ : gata apan:T = 100°C	600V	MIN.	425	V/µs	
d∨/dt	$V_D = V_{DRM}$; gate open; $T_J = 100$ °C	800V		400		
		1000V		200		
		400V		350		
	$V_D = V_{DRM}$; gate open; $T_J = 125$ °C	600V		325		
		800V		300		
V_{GD}	$V_{D} = V_{DRM}$; $R_{L} = 3.3 \text{ k}\Omega$; $T_{J} = 125^{\circ}\text{C}$		MIN.	0.2	V	
I _H	$I_T = 200 \text{mA (initial)}$		MAX.	50	mA	
t _q	(1)		MAX.	35	μs	
t _{gt}	$I_{G} = 2 \times I_{GT}$ PW = 15 μ s; $I_{T} = 70$ A		TYP.	2	μs	

Notes:

(1) I_T =2A; t_p =50 μ s; dv/dt=5V/ μ s; di/dt=-30A/ μ s

Static Characteristics

Symbol		Value	Unit			
V _{TM}	$I_{T} = 70A; t_{p} = 380 \mu s$ MAX.			MAX.	1.8	V
		T 250C	400 – 600V		10	
I _{DRM} / I _{RRM} V _{DRM} / V		T _J = 25°C	800 – 1000V	MAX.	20	μΑ
		T _J = 100°C	400 – 600V		1000	
	V _{DRM} / V _{RRM}		800V		1500	
			1000V		3000	
		T _J = 125°C	400 – 600V		2000	
			800V		3000	

Thermal Resistance

Symbol	Parameter	Value	Unit
$R_{\theta(J-C)}$	Junction to case (AC)	0.7	°C/W

Figure 1: Normalized DC Gate Trigger Current vs. Junction Temperature

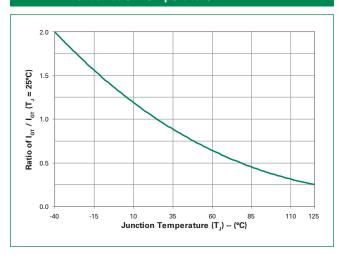


Figure 2: Normalized DC Gate Trigger Voltage vs. Junction Temperature



Figure 3: Normalized DC Holding Current vs. Junction Temperature

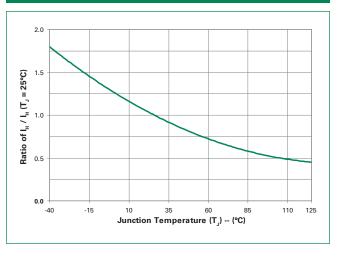


Figure 4: On-State Current vs. On-State Voltage (Typical)

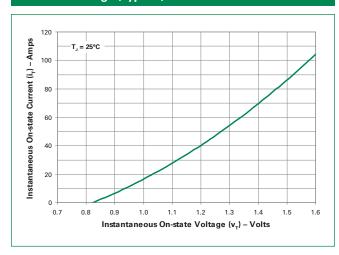


Figure 5: Power Dissipation (Typical) vs. RMS On-State Current

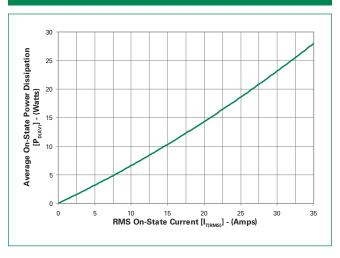


Figure 6: Maximum Allowable Case Temperature vs. RMS On-State Current

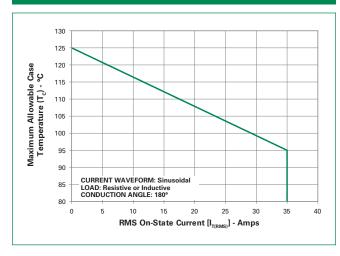
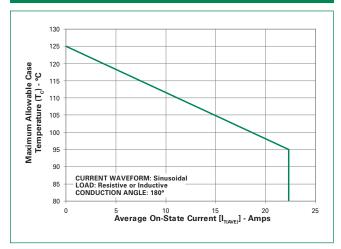
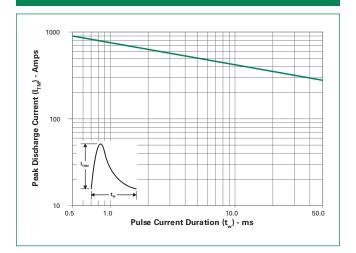




Figure 7: Maximum Allowable Case Temperature vs.
Average On-State Current

Figure 8: Peak Capacitor Discharge Current

Figure 9: Peak Capacitor Discharge Current Derating

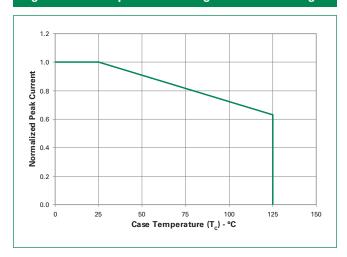
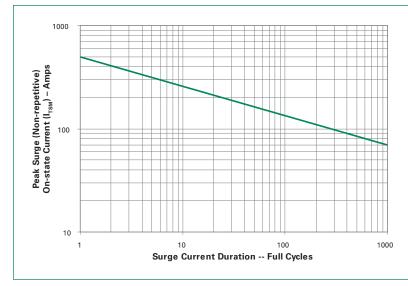



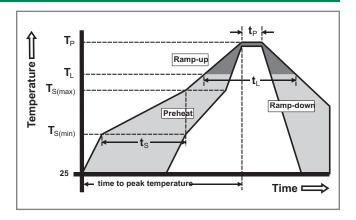
Figure 10: Surge Peak On-State Current vs. Number of Cycles

SUPPLY FREQUENCY: 60 Hz Sinusoidal

LOAD: Resistive

RMS On-State Current: $[I_{T(RMS)}]$: Maximum Rated Value at Specified Case Temperature

Notes


- 1. Gate control may be lost during and immediately following surge current interval.
- Overload may not be repeated until junction temperature has returned to steady-state rated value.

Sxx35x Series

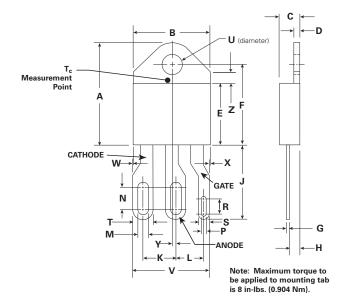
Soldering Parameters

Reflow Co	ndition	Pb – Free assembly	
	-Temperature Min (T _{s(min)})	150°C	
Pre Heat	-Temperature Max (T _{s(max)})	200°C	
	-Time (min to max) (t _s)	60 – 190 secs	
Average ramp up rate (Liquidus Temp) (T _L) to peak		5°C/second max	
T _{S(max)} to T _L	- Ramp-up Rate	5°C/second max	
Reflow	-Temperature (T _L) (Liquidus)	217°C	
nellow	-Temperature (t _L)	60 – 150 seconds	
PeakTemp	erature (T _P)	260 ^{+0/-5} °C	
Time within 5°C of actual peak Temperature (t _p)		20 - 40 seconds	
Ramp-dov	vn Rate	5°C/second max	
Time 25°C	to peakTemperature (T _P)	8 minutes Max.	
Do not exc	ceed	280°C	

Physical Specifications

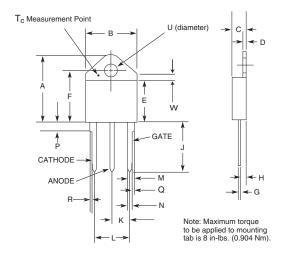
Terminal Finish	100% Matte Tin-plated
Body Material	UL recognized epoxy meeting flammability classification 94V-0
Lead Material	Copper Alloy

Design Considerations


Careful selection of the correct device for the application's operating parameters and environment will go a long way toward extending the operating life of the Thyristor. Good design practice should limit the maximum continuous current through the main terminals to 75% of the device rating. Other ways to ensure long life for a power discrete semiconductor are proper heat sinking and selection of voltage ratings for worst case conditions. Overheating, overvoltage (including dv/dt), and surge currents are the main killers of semiconductors. Correct mounting, soldering, and forming of the leads also help protect against component damage.

Environmental Specifications

Test	Specifications and Conditions
AC Blocking	MIL-STD-750, M-1040, Cond A Applied Peak AC voltage @ 125°C for 1008 hours
Temperature Cycling	MIL-STD-750, M-1051, 100 cycles; -40°C to +150°C; 15-min dwell-time
Temperature/ Humidity	EIA / JEDEC, JESD22-A101 1008 hours; 320V - DC: 85°C; 85% rel humidity
High Temp Storage	MIL-STD-750, M-1031, 1008 hours; 150°C
Low-Temp Storage	1008 hours; -40°C
Thermal Shock	MIL-STD-750, M-1056 10 cycles; 0°C to 100°C; 5-min dwelltime at each temperature; 10 sec (max) transfer time between temperature
Autoclave	EIA / JEDEC, JESD22-A102 168 hours (121°C at 2 ATMs) and 100% R/H
Resistance to Solder Heat	MIL-STD-750 Method 2031
Solderability	ANSI/J-STD-002, category 3, Test A
Lead Bend	MIL-STD-750, M-2036 Cond E



Dimensions - TO- 218X (J Package) — Isolated Mounting Tab

Dimension	Inc	hes	Millim	eters
Difficusion	Min	Max	Min	Max
А	0.810	0.835	20.57	21.21
В	0.610	0.630	15.49	16.00
С	0.178	0.188	4.52	4.78
D	0.055	0.070	1.40	1.78
Е	0.487	0.497	12.37	12.62
F	0.635	0.655	16.13	16.64
G	0.022	0.029	0.56	0.74
Н	0.075	0.095	1.91	2.41
J	0.575	0.625	14.61	15.88
K	0.256	0.264	6.50	6.71
L	0.220	0.228	5.58	5.79
M	0.080	0.088	2.03	2.24
N	0.169	0.177	4.29	4.49
Р	0.034	0.042	0.86	1.07
R	0.113	0.121	2.87	3.07
S	0.086	0.096	2.18	2.44
Т	0.156	0.166	3.96	4.22
U	0.164	0.165	4.10	4.20
V	0.603	0.618	15.31	15.70
W	0.000	0.005	0.00	0.13
X	0.003	0.012	0.07	0.30
Y	0.028	0.032	0.71	0.81
Z	0.085	0.095	2.17	2.42

Dimensions - TO- 218AC (K Package) — Isolated Mounting Tab

Dimension	Inc	hes	Millimeters		
Dimension	Min	Max	Min	Max	
А	0.810	0.835	20.57	21.21	
В	0.610	0.630	15.49	16.00	
С	0.178	0.188	4.52	4.78	
D	0.055	0.070	1.40	1.78	
Е	0.487	0.497	12.37	12.62	
F	0.635	0.655	16.13	16.64	
G	0.022	0.029 0.56		0.74	
Н	0.075	0.095	1.91	2.41	
J	0.575	0.625	14.61	15.88	
K	0.211	0.219	5.36	5.56	
L	0.422	0.437	10.72	11.10	
М	0.058	0.068	1.47	1.73	
N	0.045	0.055	1.14	1.40	
Р	0.095	0.115	2.41	2.92	
Q	0.008	0.016	0.20	0.41	
R	0.008	0.016	0.20	0.41	
U	0.164	0.165	4.10	4.20	
W	0.085	0.095	2.17	2.42	

Teccor® brand Thyristors 35 Amp Standard SCRs

Product Selector

Part Number	Voltage	Coto Sonoitivity	Gate Sensitivity Type					
rait ivuilibei	400V	600V	800V	1000V	date Sensitivity	туре	Package	
Sxx35K	X	X	X	X	40mA	Standard SCR	TO-218AC	
Sxx35J	X	X	X		40mA	Standard SCR	TO-218X	

Note: xx = Voltage

Packing Options

Part Number	Marking	Weight	Packing Mode	Base Quantity
Sxx35K	Sxx35K	4.40g	Bulk	250
Sxx35KTP	Sxx35K	4.40g	Tube	500
Sxx35J	Sxx35J	5.23g	Bulk	250
Sxx35JTP	Sxx35J	5.23g	Tube	500


Note: xx = Voltage

Part Numbering System

Part Marking System

TO-218 AC (K Package) TO-218 X – (J Package)

