IS74

AN1177
APPLICATION NOTE

P51XA/PSD8XX Design Guide

CONTENTS

In-System Programming
and In-Application re-
Programming

— The IAP Problem

— A Common Solution
Physical Connections
Simple Design Example
— Memory Map

— PSDsoft Express Design
Entry

Enhanced Design Example

— Required Changes in the
PSDsoft Express Design
Entry

— Memory Map
Conclusion
References

Appendix A: Connecting to
a PSD813F with no
Secondary Memory

October 2001

Flash PSD8XX devices are members of a family of Flash mem-
ory-based peripherals for use with embedded microcontrollers
(MCUSs). These programmable system devices (PSDs) consist
of memory, logic, and 1/O. When coupled with a low-cost
P51XA MCU, the PSD forms a complete embedded flash sys-
tem that is 100% In-System Programmable (ISP) and In-Appli-
cation Programmable (IAP). There are many features in the
PSD silicon and in the PSDsoft Express development software
that make ISP easy, regardless of how much experience you
have with embedded design.

This document offers two designs using a ST PSD813F2 and
a Philips P51XA MCU. Note that a variety of 8-bit MCU/MPUs
can be used in place of the Philips part. Although the specifics
of this document are based on the P51XA, this document can
be used as a guide for other MCU/MPU applications. The first
design is a simple system to get up and running quickly for ba-
sic applications or to check out your prototype P51XA hard-
ware. The second design illustrates the use of enhanced
features of PSD In-System Programming as applied to the
P51XA. You can start with the first design and migrate to the
second as your functional requirements grow. There are other
members of the PSD8XX family, including the PSD813F1/F3/
F4/F5, the PSD833F2/834F2, and the PSD835G2. See the se-
lector guide on the website for a comparison of the products.
This application note is applicable to all PSD8XX family mem-
bers.

IN-SYSTEM PROGRAMMING AND IN-APPLICATION RE-
PROGRAMMING

Our industry uses the term In-System Programming (ISP) in a
general sense. ISP is applicable to programmable logic, as well
as programmable Non-Volatile Memory (NVM). However, an
additional term will be used in this document: In-Application
Programming (IAP). There are subtle yet significant differences
between ISP and IAP when microcontrollers are involved. ISP
of memory means that the MCU is off-line and not involved
while memory is being programmed. For IAP, the MCU partici-
pates in programming the memory, which is important for sys-
tems that must be online while updating firmware. Often, ISP is
well suited for manufacturing, while IAP is appropriate for field

1/26

AN1177 - APPLICATION NOTE

updates. PSD8XX devices are capable of both ISP and IAP. Keep in mind that IAP can only program the
memory sections of the PSD and not the configuration and programmable logic portions. With ISP, the
entire PSD can be erased or programmed.

The IAP Problem

Typically, a host computer downloads firmware into an embedded flash system through a communication
channel that is controlled by the MCU. This channel is usually a UART, but any communication channel
that the P51XA supports will do. The P51XA must execute the code that controls the IAP process from an
independent memory array that is not being erased or programmed. Otherwise, boot code and Flash
memory programming algorithms (IAP loader code) will be unavailable to the P51XA. It is absolutely nec-
essary to use an alternate memory array (an independent memory that is not being programmed) to store
the IAP loader code.

A system designer must choose the type of alternate memory to store IAP loader code (ROM, SRAM,
FLASH, or EEPROM); each type has advantages and disadvantages. This alternate memory may reside
external to the MCU or on-chip. A top-level view of an embedded IAP flash system with external memory
is shown in Figure 1.

Figure 1. Embedded Flash System Capable of IAP (5 devices)

Main Flash Memory PN
Host R 128 KBytes
Computer "
P51XA |« > ’ R Alternate Memory PN
for ISP Loader Code

CPLD

T
Communication PN System SRAM

Channel 8 KBytes

[«— > System I/O

Embedded System

Al03326B

Another problem, which is specific to the P51XA architecture, is related to the separate “Program” and
“Data” address spaces. The P51XA cannot write to Program space, but that is where the Flash memory
resides that holds P51XA firmware. How can one program Flash memory in-system if the P51XA cannot
write to program space?

A Common Solution

Without a PSD device, implementing IAP with the P51XA can be difficult and time consuming. Philips’ ap-
plication note AN440 contains a RAM loader program (bootstrap loader). It shows how to load code into
an external RAM over a serial link after power-up and how to switch execution to that RAM to complete
the boot sequence. This can be a cumbersome and error prone exercise using re-locatable code in volatile
memory, which is difficult to debug, vulnerable to power outages, and not supported by all emulators. Ad-
ditionally, this method restricts the designer to using a UART to implement IAP.

To overcome the issue of Program versus Data space, a common practice is to combine the two address
spaces, which reduces the total address space of the P51XA by 50%.

A BETTER, INTEGRATED SOLUTION
Figure 2 shows a two-chip solution using an Flash PSD813F. This system has ample main Flash memory,

2/26 ﬁ

AN1177 - APPLICATION NOTE

a second alternate Flash memory to hold the IAP loader code and general data, and more SRAM. All three
of these memories can operate independently and concurrently; meaning the MCU can operate from one
memory while erasing/writing the other. This allows the MCU to continue normal operation during 1AP,
which is crucial for some applications. This system also has programmable logic, expanded 1/O, and de-
sign security. The two-chip solution is 100% programmable in the factory or in the field.

Figure 2. Embedded Flash System Capable of ISP (2 devices)

PSD813F?
Host
Computer » 128 KByte Flash «—> JTAG
P51XA e Optional 32 KByte
EEPROM/Flash System
T . Optional 2KByte SRAM [€ > 1/0
=N Communication Programmable Logic
Channel 110
Embedded System

Al03327B

Note: 1. Other members of the PSD8XX family offer more Flash memory and more SRAM.
2. Only the PSD813F1 offers EEPROM, while the other members of the PSD8XX family offer secondary Flash memory.

By design, the IAP method described above requires MCU patrticipation to exercise a communication
channel to implement a download to the main Flash memory. The PSD8XX also offers an alternative
method called In-System Programming (ISP) to program the PSD using a built-in IEEE 1149.1 JTAG in-
terface requiring no MCU patrticipation. This means that a completely blank PSD can be soldered into
place and the entire chip can be programmed in-system in just a few seconds using ST's FlashLINK™
JTAG cable and PSDsoft Express development software. No P51XA firmware needs to be written. Just
plug in the FlashLINK cable to your PC’s parallel port and begin programming memory, logic, and config-
uration. This is a powerful feature of the PSD8XX that allows immediate development of application code
in your lab, smart manufacturing techniques, and easy field updates.

The FlashLINK™ cable and PSDsoft Express software are available in a kit from the website www.st.com/
psd.

Figure 3 gives a block diagram of the PSD813F for your reference.

J

3/26

AN1177 - APPLICATION NOTE

Figure 3. Top Level Block Diagram of PSD8xx

1/0 Bus

Y

i

PSD813F MCU Address / Data / Control Bus
© Page
2 ¢ 128 KByte
5 Q> Reg Flash
< >0 g 8 sectors
=) >
s
< Optional 32 KByte
Decode |,/ EEPROM/Flash
m—> PLD 4 sectors
~ a Optional 2 KByte
5 8 9 SRAM
(SRS o
> Q
O Power CPLD
—| Mngt 16
Output Macrocells
24
g2 Input Macrocells
z 3
)
| JTAG Controller |«

i

[o Port D |||/o PortC | [Vo PortB | | /0 Port A |

Al03322B

PHYSICAL CONNECTIONS

Connect your P51XA to the PSD8XX as shown in Figure 4. The same connections can be used for all of
the members of the PSD8XX family except the PSD835G2, which has more I/0. The JTAG programming
channel, SRAM with battery backup, LCD module, and MCU I/O connections are all optional.

4/26

J

AN1177 - APPLICATION NOTE

Figure 4. Physical Connections, P51XA and PSD8XXFX

P51XA
AOMWRH PSD8XXFX
AL PAo |22
EA A2 PAL
g BUSW A3 paz |22
A4/ DO 300 ADIOO PA3 |23
ASID1 L{ ADIOL PAg |24
A6ID2 ADIO2 PAs 23
2
Connections: A7ID3 ADIO3 PA6
ABID4 341 ADIO4 PA7 2L
Philips P51XA MCU and A9/D5 5 | ADIOS
WSI Flash PSD8XXFX ALOID 6| ADIOS
PLCC Package. . 7
Note: only the necessary ALUD ADIO7 PBO
pins on the PS1XA are A12/D 9 ADIO8 pB1 ——
shown. AL 4010 ADIO9 PB2 —5—
41 [-
AL ADIO10 PB3
P51XA Assumptions:
P Al 424 ppio1 PB4 |3 —
*The logic levels on the EA\ and Ale———————————————431 ApiO12 PBS —2—
BUSW pins are low at reset. AL 441 ADI013 PB6 22—
*The Bus Configuration Register s 51
(BCR), bits BC2-BCO are set to Al ADIO14 PB7
010 to enable an 8-bit data AL 464 ADIO15
interface and a 20-bit address pCoTMS |20 TMS
output. 19 TCK
*The Bus Timing Registers PCL/TCK .
(BTRH/BTRL) are set up such pPc2ivsTaY (8
that there are no timing conflicts PC3/TSTAT HL TSTAT Optional
between the PSD8XXFX and the 14 TERR|
PS1XA WR\ 470 enTio PCAITERR 5 JTAG port
ROV sl on PCS/TDI
40 pcempo (12— TDO
PSEN\ CNTL2 11
10 pc7 1 —
ALE PDO-ALE
Vee —2 PD1-CLKIN N
—8 pp2-Csit == Optional 36V
RST\ 7y 48 | RESET\ g lithium battery or cap
RESET\ T
Al03329B

SIMPLE DESIGN EXAMPLE

The first design example outlines the steps required to get a P51XA system up and running quickly. A con-
nection diagram, memory map, and the necessary design file for the PSDsoft Express software develop-
ment environment are provided. A PSD813F2 was used for this example. However, other members of the
Flash PSD family may be used instead, with minor changes to the sample design file. See the selector
guide on the website for a comparison of the products.

Memory Map
For this simple design, we used a PSD813F2 with the following memories:
= 128 KBytes main Flash memory, broken into eight 16 KByte segments denoted fs;j (i = 1-g)

= 32 KBytes boot Flash memory, broken into four 8 KByte segments denoted csboot; (j = 1-4). The
PSD813F1 has an EEPROM instead of Flash memory. Therefore, eesj (j = 1-4) would be used in place
of csbootj.

= 2 KByte SRAM (rs0)
= 256 byte PSD813F configuration register (csiop).

Note: the PSD memory segments are defined in the “Chip Select Equations” screen in PSDsoft Express.
We’'ll use the boot memory to hold the ISP boot loader code, P51XA interrupt vectors, and common firm-
ware functions. For this example, we’ll execute from secondary Flash memory only and leave the main
Flash memory in Data Space. Let’s examine the sample memory map in Figure 5.

J

5/26

AN1177 - APPLICATION NOTE

Figure 5. Memory Map, Simple P51XA/PSD813FX Design

Program Space Data Space
F.FFFF F.FFFF
Not to Unmapped Not to Unmapped
Scale 13 x 64 KBytes Scale 13 x 64 KBytes
2:FFFF 2:FFFF

Main Flash Memory FS7
16 KBytes FLASH
Main Flash Memory FS6

2:8000 __16 KBytes FLASH
Main Flash Memory FS5
16 KBytes FLASH
Main Flash Memory FS4
16 KBytes FLASH
Main Flash Memory FS3

1.C000 16 KBytes FLASH
Unmapped ' Main Flash Memory FS2
160 KBytes 1:8000 16 KBytes FLASH
’ Main Flash Memory FS1
16 KBytes FLASH
Main Flash Memory FSO
1:0000 16 KBytes FLASH
Unmapped
57.75 KBytes
PSD Control Register (CSIOP)
0:1800 256 Bytes
Not to ’ Optional SRAM (RS0)
Scale 0:1000 2 KBytes
Optional Boot Flash/EEPROM (csboot3/ees3--8 Kbytes) ’ Unm apped
Optional Boot Flash/EEPROM (cshoot2/ees2--8 Kbytes) 3 to 3.75 KBytes

Optional Boot Flash/EEPROM (csboot1/ees1-8 Kbytes) 80C51XA On—Chip RAM

Optional Boot Flash/EEPROM (csboot0/ees0--8 Kbytes) 00 256 Bytes to 1 KByte
:0000

2:C000

2:4000

2:0000

1:4000

0:1900

Al03330B

Note the following about the sample memory map shown in Figure 5:
m Itis broken up into sixteen 64 KByte segments.

n All areas, except the unmapped regions and the 80C51XA On-Chip RAM region, are resident on the
PSD.

m It shows both Program Space and Data Space.

» The 32 KBytes of the PSD813F boot memory is mapped to Program Space. There are several
references to “boot” memory in this document, but the “boot” memory is simply a secondary memory
that can be used as boot memory or can serve any other purpose.

= The main Flash memory is mapped to Data Space so that the contents can be programmed.
m The PSD Control Register and SRAM are in the bottom 64 KByte segment of Data Space.

Note that placing the main Flash memory and secondary memory into Program Space or Data Space is
accomplished with the PSD VM Register. PSDsoft Express is used to define the initial value of the VM
Register when the system powers up or is reset. This initial value is stored in the fusemap that gets pro-
grammed into the PSD. At runtime, the VM register can be changed by writing to it with the MCU. This is
illustrated in the enhanced design of Section 4.

The boot memory holds the following information:

» P51XA reset vector and initialization routines

6/26

J

AN1177 - APPLICATION NOTE

m P51XA interrupt vectors and service routines
= 1/O management.

Since Figure 5 is a sample memory map, you may wish to change it. To do so, simply change the chip
select equations within the Design Assistant in PSDsoft Express. For example, if you have a PSD813F
part that doesn’t contain the optional secondary memory, you will want to have the main Flash memory
located in Program Space. See Appendix A for a sample memory map for parts with no secondary boot
memory.

PSDsoft Express Design Entry

Highlights of design entry will be given here. Please refer to the PSDsoft Express User Manual for a thor-
ough coverage of all the features of PSDsoft Express. This section is meant to show you just the essentials
to get you going. Here are the steps:

Invoke PSDsoft Express and Open a New Project.
m Start PSDsoft Express.
= Create a new project.

m Select your project folder and name the project (in this example, name the project “Easy51XA” in the
folder PSDsoft\my_project).

MCU and PSD Selection. When you click OK in the “New Project” window, the “MCU and PSD Selec-
tion” screen appears. When you see this screen, make the following selections:

= Select an MCU manufacturer and part number. In this example, we’re using a Philips P51XAG3x.
m For the Control Signals box, select /WR, /RD, /PSEN, Burst Mode

m Select the PSD8XX series for the PSD Family.

m Select a PSD813F2 and use the 52-pin PLCC package (J package).

= Based on the above selections, the “Bus Width”, “Bus Mode”, and “ALE/AS Active Level” will be set
automatically.

= Setthe main Flash memory to “Data Space Only” and the secondary Flash memory to “Program Space
Only”.

This is what the screen should look like after you've made the selections:

J

7/26

AN1177 - APPLICATION NOTE

MCU and PSD Selection
—Step 1: Select Microcontroller [MCU)]———————— - Step 2: Specify the P5D device -
Select an MCU and it control signal options, 1f your MCU dogs U se product selection wizard,
nat appear on the list, select 'Other’, then zpecify itz control zsignal \wizard
configuration. Check latest MCU and PSD data sheets to confirm =ard... |
AC timing compatibiliy. .
FSD F amily: IPSDB)‘X ;I
b anuf acturer: -
anutacturer IF'I"|I|I|:IS ;I P art Humber: I PSOE]IF2 ;I
Type: - :
N [=\ |Package [TEzPnricc) =
Conliel Signals:[nr; /D, /FSEN, Burst Made 1| |votage: LY,
~Step 3: MCU Parameters
Select a particular configuration Far the MCU/PSD interconnection.
Bz width; IS-bit ;I
Buis Mode: IMuItipIexed Bus ;I
ALEAAS Active-level IHigh ;I
tain PSD flazh memory will reside in thiz space at power-up: IData Space Only ;I

Secondary PSD flash memory will reside in this space at power-up: |XSs—-——"5 R

— Diescription for any selection above
T his choice sets the imitial configuration of how the secondary PSD flash memon autput enable sgnal is ﬂ

activated. The resulling configuration takes affect upon power-up or system reset and remainz in affect until
the MCU optionally owerides the settings at min-time uzing the PSD control register named "

Program Space Only =2 Choose this to allow the secondan PSD flagkh memon anay to drive the MCU data
buz while the PSEM signal iz active which places all of the secondary PSD flash sectors into "program
space. LI

ok I Carcel |

Now you have your project established based on a PSD813F2 and a P51XA. However, there are many
other MCU/MPUs you could have chosen in place of the P51XA and still have use of this document. Click
OK and the “Design Parameters” window will appear.

Design Parameters. Choose “Use Design Assistant” and click OK to be taken to the Pin Definitions
screen. Notice how all the pins functions on the left hand side of the diagram have been assigned for you
based on your MCU and PSD selection and configuration. To get an idea of how to add a pin function,
click on pc3 in the diagram, then “Dedicated JTAG — TSTAT” in the “Other” box and click the Add button.
Your screen should match the one below. Continue to add pin functions to match your design. When fin-
ished, click Next >> to be taken to the “Design Assistant” screen. Note: there are detailed instructions on
how to use this screen and other “Design Assistant” screens in the PSDsoft Express User Manual.

J

8/26

AN1177 - APPLICATION NOTE

[EdPin Definitions

Cief ne each 2in b reppe sdir o the ol awi-¢ steps:
(=tor cord pirs Zlreosy 2efined)
— Slwp 1. Sulud a pin vi hy chip Jdiagram boluw, —

ad © =rlin sed

o5 =dinl zab

ob =rlin- sak £ :l

ar =dioz zar
Tl | £ -dnd sl
- W S

2l £ -din- ol
B Y R Ll TP —

=1Y ' Zdioz b

al3 & =dinz b

a1d £ =dial0 zhG

alb = =diul” L7

alh o =dial2 p0 o “ms

T an | =dun N e —
a4 =dial-l pd o

T dots) T —

T = oo P e _bEtt

_rdl [(1 Pk -0

1l T _rart p-t :l
e r e T T
- = 2

al o i)

(o] x]
— Step 2: Pin MNunctian —

Di=dir & the pin funciio-. the- click she
AcdUpd Ao aulun Se o ooslep 1
repeallctrecpn

Sl figtet

— = h Furctaon
— CFLD npt
~ Lagic or —ddress

T 1 alr-erl =rldre=s
™ FT clocked 12g stzr
™ FT chocked kach

CHLD g
" Cntrknctnenl
" Frip=te-
i~ Belerniel _hopoeeleL- Ackes Fi
i~ Exarniel _hopossle L= A pe=-Lo

Cthet
(I D BT Yo'y
T M2 T mecle will pivesalk e
@ Cedicalae JTAG-"5 8
™ B3 2w cutput

D=lote

iLpdacc |

— Step 3 (Final Stcp] —

Colick. “leelzr 2ll=) =] gins w02 deinsud,
Click ¥ eaw 21 0w ie- e o check Zrograss
Click. 2usg wemea o pdale a0 d Slu-w

WiEew NF'J.'})l Sl I nnR |

Page Register Definition. In this example, the P51XA is assumed to be outputting 20 address bits, pro-
viding a one megabyte address space. As such, no page bits are required to extend the address space,
so there is nothing to do on this screen at this time except to move on. However, later, you will see how
the Page Register can be used for general logic inputs to the PLD. Click Next >> when finished.

Chip Select Equations. Use this screen to enter chip-select equations to match your memory map. The
entry for the PSD SRAM (rs0) is shown below.

g

9/26

AN1177 - APPLICATION NOTE

e Design Assistant

Page Register Definition Chip S=lect Equations |I,.’O Logic Equations | User-detined Mode Equations |

Far each chip select, select 3 page number if memany paging is uged. the active address range, and any

additional zignal qualifiers. Enzure PSD page register bits hawe been defined if uzed here.

Signal qualifiers are listed in baw an right. Lagically AMD qualifiers within zame line using %' sumbal, Create

logic OR by using nest line below Uze 1" spmbal for logical NOT.

bain 50 fash memony will rezide in this space at power-up:
Secondam PSD Aash memony will reside in this space at power-up

[ata Space Oy

Program Space Only

- [O]]

Double click any of the signal names
belowa ko append the signal name ta
the ‘Logical AMD of Signal Qualifiers'
bz where the cursor iz located.

Ligt of chip selects — Enber spshem memary information —Eligible signgls———————————
Page Hew Stat HexErd Logical AMD of Signal Bualifiers _psen ~
ciop Munber Address Address [mare than one Ok d —_
Fell - _nesek
e rj £ |1 000 e [P e o
fs2 : all
Fad Lagical OF with nest stabernent: al
fzd alld
fs5 =, . 2 all
fof =s | ! ! al2
Fs7 Logical OR with nest stakement: al3
czhoot0 ald
c+bioat] | alk
csbonot? o | I b I] I alk e
csboot3 : alf
-~ Hesukant equatian al9
2 |rternal chip select for 2K byte SRARM - al3
£ [7FF hiest locations, mas) az
i ad
ad -
di = - * =l
¢ Prev I Mest > | Reset all I Wi Done | Cancel I Show Eq |

Use the following table to fill in the rest of the Chip Select equations:

Table 1.
Chip Select Segment Hexadecimal Start Address Hexadecimal End Address
csiop 01800 018FF
fsO 10000 13FFF
fs1 14000 17FFF
fs2 18000 1BFFF
fs3 1C000 1FFFF
fs4 20000 23FFF
fs5 24000 27FFF
fs6 28000 2BFFF
fs7 2C000 2FFFF
csboot0 00000 01FFF
csbhootl 02000 03FFF
cshoot2 04000 O5FFF
csbhoot3 06000 07FFF

10/26

J

AN1177 - APPLICATION NOTE

I/0O Logic and User Defined Node Equations. The “l/O Logic Equations” and “User Defined Node
Equations” screens are used to enter equations for the registered logic within the PSD. Since this docu-
ment focuses on issues related to ISP and IAP, registered logic equations are not covered. However, for
more information on entering registered logic equations, refer to the PSDsoft Express User Manual. Also,
see Application Note AN1356—Design Guide: PSDsoft Express, section 5.2 for a tutorial on implementing
logic in the CPLD.

Click Done and the software will check your design for errors. If you have any errors, go back and fix them.
Otherwise, you should now see the “Design Flow” window:

Design Flow

Specify
Project

:

Define PSD
and MCL

:

Define PSD
Pin [Mode Functions

:

Adddtions!
P50 Settings = Mes

l MCL Firrnware

Fit Design to Genergte © Code
Silican Specific to PED

; !

Merge hCL & Exlitar, Compiler Your Application
Firmesvare with PSD Linker, Debugger C Code or Sazembly

Device Programming

Click on Additional PSD Settings in the “Design Flow” window and a dialog box will appear.
Additional PSD Settings. There are three functions that can be accomplished in this dialog box:

1. Setting the security bit—blocks all access to the contents of the PSD’s memories by means of JTAG or
a conventional programmer. That is, once the security bit is set, no programmer can read or copy the
configuration or memory contents of the PSD. The only way to erase the security bit is to completely
erase the PSD.

2. Specify the IEEE 1149.1 JTAG user code—allows you to enter a 32-bit code, which can be used for
various functions. Click on the “JTAG/ISP” tab for more details

3. Set the internal memories’ sector protections—allows the individual memory sectors within the PSD to
be write protected to prevent accidental data loss. The MCU/MPU cannot change these settings at run-
time; only a device programmer can alter these settings.

Click OK and you will see the Design Flow again. Next, we need to fit the design to silicon.

Fitting the Design to Silicon. To fit the design to silicon, click the Fit Design to Silicon box in the De-
sign Flow. PSDsoft Express will compile and synthesize the design and create part of the program data

573 11726

AN1177 - APPLICATION NOTE

file (.obj) that will later be programmed into the PSD813F2 silicon. When this process is complete, a report
will pop up that shows the resulting pin assignments PSD usage. This is the fitter report, which you can
use to document your design. Since you created a project from scratch, you might receive a fitter error. If
this is the case, you should check the PSDsoft Express User Manual for further instructions.

C Code Generation. You can take advantage of the provided low-level C code for accessing memory el-
ements within the PSD by clicking on the Generate C Code Specific to PSD box in the Design Flow win-
dow. To get the C functions and headers, specify the folder in which you want the ANSI C files to be
written. ANSI C code functions and headers are generated for you to paste into your P51XA C compiler
environment in the folder you specify. Simply tailor the code to meet your system needs. See the PSDsoft
Express User Manual for details on the C code generation feature.

Merge MCU Firmware with PSD. Now that the fitting process is complete, PSDsoft Express has created
a fuse pattern that reflects the PSD configuration and logic of your design. PSDsoft Express places this
fuse information into a file (the .obj file). However this fuse pattern does not yet contain the P51XA firm-
ware. The next step will accomplish this, producing an .obj file that contains the PSD configuration and the
P51XA firmware. This final .obj file is what gets programmed into the PSD. The same .obj file is appended
with MCU firmware in the next step below.

For this step, “Merge MCU Firmware with PSD”, you will input the firmware file(s) that contain absolute
addresses from your P51XA compiler/linker in Intel Hex format. The Merger will map these file(s) into the
memory segments of the PSD according to the chip select equations that you entered in the Design As-
sistant. This mapping process translates the absolute system addresses that P51XA uses into physical
internal PSD addresses that are used by a programmer to program the PSD. The address translation pro-
cess is transparent. All you need to do is enter the file(s) that were generated from your P51 XA linker into
the appropriate boxes and PSDsoft Express does the rest.

Go to the design flow window and click the Merge MCU Firmware with PSD box and you should see this:

Merging of MCU Firmware with PSD

~Step 1: MCU firmware placement

Specify name of MCL firmware file for each PSD memony segment below. Scroll to see all segments.
“Y'oumay need ko edit’add the start and stop addresses if paging or other memary manipulation i=
Liged.

i

Moare Irfa...

terman File Fil=
Select Memory Select Equations | Address Address File Mame
Mame Start [hex] | Stop [hex]
Ipdn & la19 & 1318 & 1al7 -
FSO | &al6 & lal5 & lald: |m [13FFF | Browse
Ipdr & 1819 & 1218 & 1817 &
F&1 |alB& lal5 6 al4: jeooofEreE] Browse..

Ipdn&lal8 81218 & 1517 &

FEEL

Fs2 16 & a15 % 114, ITSUDO I'IBFFF I Browse...
lpdn&!al3&1a18 & a1 7 &
Fi3 |alE&alBkald; |wcnm I‘IFFFF | Browse
Fecord Type tapping Maode
% Intel Hex Record Motomola S-Record & Direct " Relative

~5tep 2: Merge PSD configuration and MCU firmware
Click DK to create a programming data fils. 0K

Cancel

The far left column contains individual PSD memory segments. The next column shows the logic equa-
tions for selection of each memory segment (shown for reference only). In the middle are the address

12/26 ﬁ

AN1177 - APPLICATION NOTE

ranges that were specified in the “Chip Select Equations” screen to create the memory map. PSDsoft Ex-
press filled in these address fields for you. PSDsoft Express expects to find these absolute MCU address-
es within your P51XA linker file(s) when they are imported. On the right are boxes where you can type in
(or browse for) the name of the file(s) (including path) that indicates the location of your P51XA linker files.
Notice that you can select Motorola S-Record or Intel Hex Record for the input type. Leave the “Mapping
Mode” set to “Direct”.

Now slide the scroll bar down until you see csboot0 and csbootl.

Merging of MCU Firmware with PSD
~Step 1: MCU firmware placement
Specify name of MCU Firweare file for each PSD memon segment below. Scoll to see all zegments.
Yo may reed o edit/add the skart and stap addresses iF paging o ather merman maninulation i Hore Infa... |
used.
Mernomy File: File=
Select Memane 5 elect Equations Address Address File Mame
Name Skart (hex) | Stop (hex]
Ipdn %1419 % 1518 & 1a17 |‘
CSBOOTO | ¢ 1a16 6 1415 L 1214 & 0 1FFF back. hex Browse.. |
1 P ! [
lpdn & 11951218 %1217 &
CSROOT! (1216 & 1a15 & lald & a13; |20|JU |3FFF Iboot.hex Browse...
lpdn & !T85 1518 & 1417 &
CSBOOTZ 13163 la15% aTd & 1a13; |[4000 Eii f Biniwse.
lpdn & 119 & 1418 %1417 &
CsB00TE |lalE b lal5t ald & a13; IBDUD I?FFF | Browse. . r
Fecord Tupe apping Made
% |ntel Hex Recard ™ Matorola §-Resad " Dtz ™ Relative
- Step 2: Merge PSD configuration and MCU firmware
Click OK. to create a programming data file.
LCancel

Type in the name of the file from your P51XA linker that contains the firmware that will boot up your sys-
tem. For this example we called it boot.hex. This file can contain very simple P51XA code that configures
your system hardware and performs rudimentary tasks to check out your new hardware. In this example,
there are 32 KBytes available in secondary Flash memory segments csboot0 and csbootl, which is more
than enough for this simple boot and test code. After your new hardware is proven, you can add more code
to the boot area for advanced tasks, such as implementing a download to main Flash memory from a host
computer, as shown in the enhanced design of Section 4.

No file names are required for the main Flash memory regions (fsO-fs7) because we are only operating
out of boot Flash memory for now. Click OK, and the address translate process will produce the final .obj
file that you can use to program the PSD.

Programming the PSD. The .obj file can be programmed into the PSD in one of three ways:
The ST FIashLINKT'VI JTAG cable, which connects to the PC parallel port.
The ST PSDpro device programmer, which also connects to the PC parallel port.

Third-party programmers, such as Stag and Needhams. See the website at www.st.com/psd for a list of
compatible third-party programmers.

First we’ll show you how to use the FIashLINKTM JTAG cable to program the PSD.

Programming with Flash LINKTM. Connect the FIashLINKT'VI cable to your PC’s parallel port. Click the
ST JTAG/ISP box in the Design Flow window. You will be prompted for the number of devices in the JTAG
chain on your circuit board. Make the appropriate selection and click OK. This document assumes only

‘ﬁ 13/26

AN1177 - APPLICATION NOTE

one device is in the JTAG chain. If you have more than one device, refer to the PSDsoft Express User
Manual. For single device JTAG chains, the window will look similar to the following one:

JTAG-ISF Operations - Single Device

—Siep 1: Select Programming file and PSD
Select folder and programming file: Select device:

IE:'\F'SDSEIFT 20004y _propectE agy5#s, obj Erowse.. | IF'SD a13F2 - i

—olep 2: Specifty JTAG-ISP operation and conditions

Select operation: Select PSD regon: Select # of JTAG pins to use on cincuit board: Other conditions:
IF‘rogram - I I.t\II - IE pimg - tdi.tdo tck tms tstat,_ter - | IF'roperties.._

Click here to perform specified JTAGISF operation »> Execute |

—Step J: Save or retrieve JTAG-ISP setup
Specify folder and filename to save the setup of this JTAG-ISP session or retrigve a previous session. Save |

Select folder and file: || Browze |

I™ Log Mode - Click box ta recard session infomation in the lag File = plg.

[
]

HWSetupl HesetTalgetI Close |

To use this window, ensure that the correct programming data file and PSD device appear in Step 1. For
Step 2, select the desired operation, the regions of the PSD that the operation affects, and the number of
JTAG pins (4 or 6) to use on the circuit board.

Before you perform the selected operation, click the Properties... button. This dialog box allows you to
do the following:

Set Port Pins: with this screen, you can set up the PSD’s 1/O pins during JTAG operations. The default
(except for the JTAG pins) is Input, which is usually fine for most pins. (Note that the PSD will not respond
to any non-JTAG 1I/0.) However, sometimes it may be desirable to set a pin or pins to output during JTAG.
For example, if you have chip-select signal being generated from the PSD that selects a device that po-
tentially could drive signals on the JTAG lines (if you are multiplexing the pins), you would want that chip-
select to be inactive during the JTAG operation.

JTAG-ISP Attributes: this screen allows you to view the device name and Instruction Register length. This
information may be useful to other design programs.

User Code: basically, by clicking on the “User Code” tab, you are provided with a space to enter an IEEE
1149.1 User Code that will be compared to the value previously entered in the “Additional PSD Settings”
screen.

Once you are satisfied with your property settings, click OK to return to the “JTAG-ISP Operations” win-
dow. You can now perform the selected operation by clicking Execute.

Before you leave this screen, you may wish to save your JTAG configuration. This can be done in Step 3
by clicking on the Save button and specifying a file name. This file can be used next time by clicking the
Retrieve button.

Programming with PSDpro. Ensure that the PSDpro device programmer is connected to your PC’s par-
allel port. Click on the ST Conventional Programmers box in the Design Flow window. You will see this:

14726 573

AN1177 - APPLICATION NOTE

Pl conventional Programming : Easy51XA.obj - No Hardware
S| | z|slslwE [T sla] 2=l w2l |

P3DO13F2 Displayed region: Main Flash [00000 - 1FFFF] | F50: goooo Easyh1Xh obj
Direct Address Hexadecimal display of programming data file ASCIl Representation
(INNTT] FF |FF |FF |FF |FF |FF |FF |FF [FF |FF |FF |FF |FF |FF |FF |FF [*~] - - -«
00010 [rF [FF JFF [FF [FF [FF JFe Jre [P Jre Jre [Re [Pe Jre Jrr e] o
00020 [Fr[FF[FF[FF [FF[FF [FF[FF [FE [FF[F [FR[FF [FRIFF [P | oo
00030 FF |FF |FF |FF |FF |FF |FF |FF [FF |FF |FF |FF |FF |FF |[FF |FF | | -« .o o oo
00040 FF |FF |FF |FF |FF |FF |FF |FF [FF [FF |FF |FF |FF |FF |FF |FF [| «ccoooiiiioia..
00050 [FF[FF|FF[FE[FF|FF [FFJFF [FEJFF[FE[FE[FF[FRJFF [P | [-
00060 FF |FF |FF |FF |FF |FF |FF |FF [FF |FF |FF |FF |FF |FF |FF |FF | | -« .o oo
00070 FF |FF |FF |FF |FF |FF |FF |FF [FF [FF |FF |FF |FF |FF |FF |FF [| «ccoooiiiioia..
00080 |FF[FF|FF[FE[FF|[FF [FFJFF [FEJFF[FE [FE[FF[FRJFF [P | [-
[T e e el el e e e e N A GGG T
000A0 FF |FF |FF |FF |FF |FF |FF |FF [FF |[FF |FF |FF |FF |FF |FF |FF (] = cccccociacioa.

If this is the first use of the PSDpro, click on the “Htest” icon to perform a test of the PSDpro and the PC
port. After testing, place a PSD813F2 into the socket of the PSDpro and click on the “Program” icon. (The
.obj file is automatically loaded when this process is invoked). The messaging of PSDsoft Express will in-
form you when programming is complete.

This window is also helpful even if you do not have a PSDpro programmer. You can use this window to
see where the Merge MCU Firmware utility of PSDsoft Express has placed the P51XA firmware within
physical memory of the PSD. For example, you can click on the secondary Flash memory icon in the tool
bar. Notice the P51 XA reset vector that would be at absolute MCU addresses 0000h and 0002h, translates
to PSD secondary Flash memory physical addresses 20000h and 20002h, respectively. To see how all of
your P51XA absolute addresses translated into physical PSD memory addresses, click Report->Address
Translation. The start and stop addresses in the report are the absolute MCU system addresses that you
have specified. The addresses shown in square brackets are direct physical addresses used by a device
programmer to access the memory elements of the PSD in a linear fashion (a special device programming
mode that the MCU cannot access).

ENHANCED DESIGN EXAMPLE

This second design example builds upon the first to add enhanced features to this ISP/IAP capable sys-
tem. The physical connections between the P51XA and PSD813F2 do not change, but the memory map
and chip select equations do. The focus of this enhanced design is to show how the memories of the
PSD813F2 can be used concurrently. This means swapping the boot code out of Program Space after the
initial boot sequence has completed. The boot code can then be updated if desired.

Required Changes in the PSDsoft Express Design Entry

The steps to implement the second design in PSDsoft Express are almost identical to those in the first
design. In fact, you can repeat the steps outlined in Sections 3.2.1 to 3.2.3, except you should give your
new project a different name.

Change the Page Register Definition. For section 3.2.4, you will need to define a logic bit that will allow
the swapping of memory segments within the PSD during IAP. To do so, with the “Page Register Defini-
tion” tab clicked in the “Design Assistant” screen, make the following addition: for pgr7, click the “logic”
checkbox and type “swap” in the “Name of Logic Signal” column. This bit will be used in the chip select

573 15/26

AN1177 - APPLICATION NOTE

equations to implement memory swapping (as shown in the next subsection). This bit can be modified at
runtime by writing to its location in the Page Register within the CSIOP address space. See the PSD8XX
Family Data Sheet for details. When you have made the addition, your screen should look like this:

B Design Assistant _ (O] %]

Page Register Definition |Chip Select Equations | YO Logic Equatinnsl User-detined Node Equatinnsl

Defing how individual P30 page reqister bits will be uged.
E ach bit added for ‘paging’ can double the MMCL address ange. Start with poi
Each bit added for logic' can be uged as logic input to the PLD =, Start with pgre.

— Deline use of page register bit

Page Feag Bit Type of Use Mame of Logic Signal

pOrr: [~ pagng ¥ logic Iwap—
parE: [~ paging [logic I—
pars; [~ pagng [logic I—
pard: " pagng [~ logic I—
par: [~ paging [logic I—
paiz: [~ paging [logic I—
por: [~ pagng [logic I—
parl: [~ paging [logic I

— Descnplion

Select this bit for memorny paging, Use one bit to define two memany pages, -~

uze byao bitz to define fouwr pages, thres bits for eight pages and so on, Sebect

enough bits bo cover the number required pages. &avs stat with pai0 and _|
-

£¢ Back | Tflentss il Resetal I Wiew I Done I Cancel |

Modify the Chip Select Equations. The chip selects equations need to be modified (from what they
were in Section 3.2.5) to match the situational memory maps outlined in Figure 6 to Figure 9 in Section
4.2. That is, the memory map that is presented to the MCU will vary dynamically based on the settings of
the VM Register and pgr7 (“swap”) of the Page Register. In order to make the memory maps of Section
4.2 work, csboot0, csbootl, and fs7 need to be modified. Below, the modified csboot0 is shown as an ex-
ample.

J

16/26

AN1177 - APPLICATION NOTE

Bl Design Assistant _ (O] %]
Page Fegister Definition Chip Select Equstions | It Logic Equations | User-defined Mode Equations |
For each chip select, select a page number F memony paging i used, the active address range, and any Double click any of the signal names
additional signal qualifiers. Engure PED page regigter bit have been defined if used here. below to append the signal name to
g o MY g g m Ru f A the "Logical AMD of Signal Qualifiers'
5|glna\ quahflerg are hste_d i bos o nghE_l Logically S8 D. qualifiers within zame line using &' spmbol. Create box where the cursor s located,
lagic OF by uzing nest line below, Use ' spmbal far lagical HOT.
kaits PSD flash remone will rsside in this space at poser-up: Data Space Only
Secondany PSD flazh memony will reside in thiz space at power-up: Pragram Space Onlp
Lizt af chip selects — Enter system meman infarmation — Eligible zigral
] Fage Hew Start Hex End Logical AMD of Signal Quaifiers 1~ _p3en -
csiop Mumber Addiess Address [more than one OK] rd —
fald - reset
e I_IIE ||:| i [TFFF B o
fe2 _ _ all
] Logizal OF with nest statement al
fsd all
5 j& [eoooo™ "y [2DFFF y [ower all
fek al2
T Logical OR with next statement aﬁ
[a
— alh |
oshaot? |k I & I & I . alf
cshoatd = al?
i Fiesultant equahion aln
¢ Internial PSD chip gelect for one 8K byte segment of zecondary boot Hazh Y all
/¢ [1FFF hex locations, max) az
il a3
q b & -]
i N :
<< Prew | Mext 55 | Reset &l I Wiew I Dane | Cancel | Show Eq |

Continue to modify csbootl and fs7 according to the following screen captures:

Lizgt of chip selects — Enter system memory infoimation —Eligible signals———
=0 Page Hex Start Hex End Lagical AMD af Signal Qualifiers 17 psen -
ciop MHumber Address Address [rmore than one OF) :nj —_—
f=0 = _rezel
e rj& 2000y [FFFy flewan g
fsd all
f=3 Lngirzal OR with nest statement: a1
fz4 all
fs5 —la 000 forrrE T fowen al
fsB al2
f=7 Logical OR with nest statement: al3
csbootl) ald

| I o | alh -

Lizt of chip zelects . Enter system memam information . Eligible signals
1= Page Hex Start Hex End Logical AND of Signal Qualifiers j _pseh .
cHiop Murnber Addiess Address [maoie than one OF.) rd —_
et [e oo o [FRF g [~feset
f al
I3 Logizal OF with nzwt statement: al
fed all
I35 —: | g [P [ower all
IsE alz

W | nniral MR with next statement al3

The steps outlined in Sections 3.2.6 to 3.2.9 can be repeated for the Enhanced Design Example at this
time. For Section 3.2.10, when mapping the P51XA firmware in the Address Translate utility of PSDsoft

573

17/26

AN1177 - APPLICATION NOTE

Express for this second design example, you still do not need to specify any Hex file for the PSD main
Flash memory area. You only need to specify the P51XA linker file(s) for the secondary Flash memory
area (as in the first simple design) because the P51 XA will execute code from secondary Flash memory
and download to main Flash memory. See the next subsection for more details.

Memory Map

The boot sequence and memory swap is a four-step process, as shown in Figure 6 to Figure 9.

For more information on both the Page Register and VM Register, see the data sheets and the PSDsoft
Express User Manual.

Memory Map Configuration at Boot-Up. Figure 6 (next page) shows how the memory map looks at
system power-on or at system reset. The “swap” bit is one of the eight internal PSD page register bits,
whose value is zero by default. The “swap” bit is an example of how the page register bits can be imple-
mented for uses other than memory paging. The VM Register controls which space (Program or Data) the
PSD memories appear in and can be set prior to runtime using PSDsoft Express Configuration. The VM
register resides in the PSD and can be accessed at any time by the P51XA. (See the PSD8XX data
sheets.) Here’s what the P51XA does upon power-up or reset:

= Boot from Flash memory boot csbootO at address Oh
m Perform a checksum of main Flash memory
= Download main Flash memory from a host computer if needed and validate contents.

J

18/26

AN1177 - APPLICATION NOTE

Figure 6. Memory Map, Enhanced Design at Boot-Up/ISP

Program Space Data Space
F.FFFF F.FFFF
Not to Unmapped Not to Unmapped
Scale 13 x 64 KBytes Scale 13 x 64 KBytes
2:FFFF 2:FFFF

Main Flash Memory FS7
16 KBytes FLASH
Main Flash Memory FS6

2:8000 16 KBytes FLASH
Main Flash Memory FS5
16 KBytes FLASH

2:C000

2:4000 -
Main Flash Memory FS4
16 KBytes FLASH
2:0000 -
Main Flash Memory FS3
1.C000 16 KBytes FLASH
Unmapped ' Main Flash Memory FS2
160 KBytes 1:8000 16 KBytes FLASH
’ Main Flash Memory FS1
16 KBytes FLASH
1:4000 -
Main Flash Memory FSO
1:0000 16 KBytes FLASH
Unmapped
01900 57.75 KBytes
PSD Control Register (CSIOP)
256 Bytes
0:1800 -
Not to Optional SRAM (RSO0)
Scale 0:1000 2 KBytes
Optional Boot Flash/EEPROM (csboot3/ees3--8 Kbytes) U nmapped
Optional Boot Flas/EEPROM (csboot2/ees2--8 Kbytes) 3 to 3.75 KBytes
Optional Boot Flas/EEPROM (csbootl/ees1--8 Kbytes) 80C51XA On—Chip RAM
Optional Boot Flash/EEPROM (csboot0/ees0--8 Kbytes) 0:0000 256 Bytes to 1 KByte

swap =0

VM Register = 12h
AI03334

Memory Map Configuration After Moving the Main Flash. The next step is to move the main Flash
memory from Data Space to Program Space. To do so, while executing out of the boot Flash memory,
write 06h to the VM register. You will now have the memory map shown in Figure 7.

J

19/26

AN1177 - APPLICATION NOTE

Figure 7. Memory Map After Moving the Main Flash Memory to Program Space

Program Space Data Space
F.FFFF F.FFFF
Not to Unmapped Not to Unmapped
Scale 13 x 64 KBytes Scale 13 x 64 KBytes
2:FFFF 2:FFFF

Main Flash Memory FS7
16 KBytes FLASH
Main Flash Memory FS6
16 KBytes FLASH
Main Flash Memory FS5
16 KBytes FLASH
Main Flash Memory FS4
16 KBytes FLASH
Main Flash Memory FS3 Unmapped

16 KBytes FLASH 185.75 KBytes
Main Flash Memory FS2
16 KBytes FLASH
Main Flash Memory FS1
16 KBytes FLASH

Main Flash Memory FSO
16 KBytes FLASH

2:C000

2:8000

2:4000

2:0000

1:C000

1:8000

1:4000

1:0000

0:1900

Execute Unmapped PSD Control Register (CSIOP)
from 32 KBytes 256 Bytes
0:1800 "
Here Optional SRAM (RS0)
Not to 0:1000 2 KBytes
Optional Boot Flas/EEPROM (csboot3/ees3--8 Kbytes) Scale U nmapped
Optional Boot Flash/EEPROM (csboot2/ees2--8 Kbytes) 3 to 3.75 KBytes
Optional Boot Flas/EEPROM (csboot1/eesl--8 Kbytes) 80C51XA On—Chip RAM
Optional Boot Flash/EEPROM (csbootO/ees0--8 Kby
ptional Boot Flast (cshoot0/ees ytes) 0:0000 256 Bytes to 1 KByte
swap =0

VM Register = 06h
Al03335B

Memory Map Configuration After Setting the swap bit. Next, we want to swap main and secondary
Flash memory and transfer execution to main Flash memory segment fs7. To do so, the “swap” bit must
be set to HI to re-map the Flash memory boot segments csbootO/csbootl out of the MCU boot area and
replace it with main Flash memory segment fs7, as shown in Figure 8. So that no program continuity is
lost, the instruction that sets the “swap” bit is executed from csbootO and the next contiguous instruction
must be in fs7. For example, if the instruction that executes the swap is at location 1000h in csboot0, then
fs7 must contain the next instruction to be executed at location 1002h.

J

20/26

AN1177 - APPLICATION NOTE

Figure 8. Memory Map After Setting the SWAP bit

Not to
Scale

Execute
from
Here

F:FFFF

Program Space

2:FFFF

Unmapped
13 x 64 KBytes

Optional Boot Flash/EEPROM (csbootl/ees1-8 Kbytes)

2:E000

Optional Boot Flash/EEPROM (csboot0/ees0--8 Kbytes)

2:C000

2:8000

Main Flash Memory FS6
16 KBytes FLASH

2:4000

Main Flash Memory FS5
16 KBytes FLASH

Main Flash Memory FS4
16 KBytes FLASH

2:0000

1:C000

Main Flash Memory FS3
16 KBytes FLASH

1:8000

Main Flash Memory FS2
16 KBytes FLASH

Main Flash Memory FS1
16 KBytes FLASH

1:4000

1:0000

Main Flash Memory FSO
16 KBytes FLASH

Unmapped
32 KBytes

Optional Boot Flash/EEPROM (csboot3/ees3-8 Kbytes)

‘Optional Boot Flash/EEPROM (csboot2/ees2-8 Kbytes)

Main Flash Memory FS7
16 KBytes FLASH

0:0000

F:FFFF
Not to
Scale
2:FFFF
0:1900
0:1800
Not to 0:1000
Scale
0:0000
swap =0

VM Register = 06h

Data Space

Unmapped
13 x 64 KBytes

Unmapped
185.75 KBytes

PSD Control Register (CSIOP)
256 Bytes

Optional SRAM (RSO0)
2 KBytes

Unmapped
3 to 3.75 KBytes

80C51XA On-Chip RAM
256 Bytes to 1 KByte

Al03336B

Memory Map Configuration After Moving the Boot Flash memory to Data Space. The final step is
to move the secondary Flash memory to Data Space so that it can be updated if desired. To move the
secondary Flash memory to Data Space, write 0Ch to the VM register. Once the VM register has been
written, you can program either half of the secondary Flash memory, depending on how the “unlock” bit is
set. Figure 9 shows the final state of the memory map.

J

21/26

AN1177 - APPLICATION NOTE

Figure 9. Memory Map After Moving the Boot Flash Memory to Data Space

Program Space Data Space
F.FFFF F.FFFF
Not to Unmapped Not to Unmapped
Scale 13 x 64 KBytes Scale 13 x 64 KBytes
2:FFFF 2:FFFF
Un mapped 2:E000 Optional Boot Flas/EEPROM (csbootl/e esl1--8 Kbytes)
2:C000 i 16 KBytes 2;C000 Optional Boot Flash/EEPROM (csboot0/e es0--8 Kbytes)
Main Flash Memory FS6
2:8000 16 KBytes FLASH

Main Flash Memory FS5
16 KBytes FLASH
Main Flash Memory FS4

16 KBytes FLASH
20000 6 KBytes FLAS Unmapped

Main Flash Memory FS3 144 KBytes
16 KBytes FLASH
Main Flash Memory FS2
16 KBytes FLASH
Main Flash Memory FS1

16 KBytes FLASH
1:4000 0:8000

2:4000

1:C000

1:8000

Maln Flash Memory FSO 0:6000 Optional Boot FlasWEEPROM (csboot3/e es3--8 Kbytes)
1:0000 16 KByteS FLASH 0:4000 Optional Boot Flash/EEPROM (cshoot2/e es2--8 Kbytes)
Unmapped
8.75 KBytes
0:1900 -
Execute PSD Control Register (CSIOP)
from Unmapped 01500 256 Bytes
Here 48 KBytes ’ Optional SRAM (RS0)
Not to 0:1000 2 KBytes
Scale Unmapped
0:4000 3 to 3.75 KBytes
’ Main Flash Memory FS7 80C51XA On-Chip RAM
16 KBytes FLASH § 256 Bytes to 1 KByte
0:0000 0:0000
swap =0

VM Register = 0Ch
Al03337B

In this final configuration, the P51XA has available:

= 16 KBytes main Flash memory in the boot area (00000h-03FFFh)

= 112 KBytes main Flash memory in Program Space (10000h-2BFFFh)

» 2 KBytes of SRAM in addition to the SRAM that resides on the P51XA

= 16 KBytes of boot Flash memory for general data storage (04000h-07FFFh)

= 16 KBytes of boot Flash memory for boot and IAP loader code (2C000h-2FFFFh).

Each time this P51XA system gets reset or goes through a power-on cycle, the PSD presents the memory
map of Figure 6 to the MCU, and the boot sequence is repeated.

CONCLUSION

These examples are just two of an endless number of ways to configure the Flash PSD for your system.
Concurrent memories with a built-in programmable decoder at the segment level offer excellent flexibility.
Also, as you have seen with the “swap” and “unlock” bits, the page register bits do not have to be used
just for paging through memory. The ability to expand your system does not require any physical connec-
tion changes, as everything is configured internal to the PSD. And finally, the JTAG channel can be used

22/26 ﬁ

AN1177 - APPLICATION NOTE

for ISP anytime, and anywhere, with no participation from the MCU. All of these features are crosschecked
under the PSDsoft Express development environment to minimize your effort to design a Flash memory
P51XA system capable of IAP.

REFERENCES

PSD8XX Family Data Sheets for detailed PSD8XX information

PSDsoft Express User Manual for details on how to use the design software

Application Note AN1153: JTAG ISP Information: Flash PSD for detailed use of the JTAG port
Application Note AN1171: Flash PSD CPLD Primer

APPENDIX A: CONNECTING TO A PSD813F WITH NO SECONDARY MEMORY

The following is a sample memory map for connecting to a PSD813F with no secondary memory (such as
the PSD813F3 or PSD813F5). This memory map assumes you have downloaded the main Flash memory
with the FlashLINK cable or you have booted from a separate PROM and have downloaded the Flash
memory using the MCU. In either case, you must change your design to account for the different segment
locations.

J

23/26

AN1177 - APPLICATION NOTE

Figure 10. Memory Map for a PSD813F Device (with No Secondary Boot Memory)

Not to
Scale

F:FFFF

2:FFFF

2:0000

1:C000

1:8000

1:4000

1:0000

0:C000

0:8000

0:4000

0:0000

Program Space

Unmapped
13 x 64 KBytes

Unmapped
64 KBytes

Main Flash Memory FS7
16 KBytes FLASH

Main Flash Memory FS6
16 KBytes FLASH

Main Flash Memory FS5
16 KBytes FLASH

Main Flash Memory FS4
16 KBytes FLASH

Main Flash Memory FS3
16 KBytes FLASH

Main Flash Memory FS2
16 KBytes FLASH

Main Flash Memory FS1
16 KBytes FLASH

Main Flash Memory FSO
16 KBytes FLASH

F:FFFF
Not to
Scale
2:FFFF
0:1900
0:1800
Not to 0:1000
Scale
0:0000

Data Space

Unmapped
13 x 64 KBytes

Unmapped
169.75 KBytes

PSD Control Register (CSIOP)
256 Bytes

Optional SRAM (RSO0)
2 KBytes

Unmapped
3 to 3.75 KBytes

80C51XA On-Chip RAM
256 Bytes to 1 KByte

Al03338B

24/26

J

AN1177 - APPLICATION NOTE

Table 2. Document Revision History

Date Rev. Description of Revision
Nov-2000 2.0 | Document written in the WSI format
30-Oct-2001 | 3.0 | Document converted to the ST format

J

25/26

AN1177 - APPLICATION NOTE

For current information on PSD products, please consult our pages on the world wide web:
www.st.com/psd

If you have any questions or suggestions concerning the matters raised in this document, please send
them to the following electronic mail addresses:

apps.psd@st.com (for application support)
ask.memory@st.com (for general enquiries)

Please remember to include your name, company, location, telephone number and fax number.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is registered trademark of STMicroelectronics
All other names are the property of their respective owners

© 2001 STMicroelectronics - All Rights Reserved
STMicroelectronics group of companies Austalia - Brazil - Canada - China - Finland - France - Germany - Hong Kong -

India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.
www.st.com

26/26 ﬁ

