

μPD7507H/08H/75CG08HE 4-BIT, SINGLE-CHIP CMOS MICROCOMPUTERS

www.DataShoot/III.com

May 1987

Description

The μ PD7507H, μ PD7508H, and μ PD75CG08HE are pin-compatible, high-speed (4.19 MHz), 4-bit, single-chip CMOS microcomputers with the μ PD7500 series architecture. The subroutine stack is implemented in RAM for greater nesting depth and flexibility.

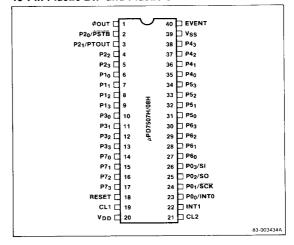
Thirty-two I/O lines are organized into eight 4-bit ports: input port/serial interface port 0, output ports 2 and 3, and I/O ports 1, 4, 5, 6, and 7.

The μ PD7507H and μ PD7508H execute 92 instructions of the μ PD7500 series A instruction set with a 2.86- μ s instruction cycle time.

Maximum power consumption is 3 mA at 5 V and less in the HALT and STOP low-power modes.

The 75CG08HE is a piggyback EPROM prototyping chip that is pin-compatible with 7507H and 7508H. A 2716 plugged into the top of the 75CG08HE emulates the ROM of a 7507H. A 2732 emulates the ROM of 7508H. When emulating the 7507H, the user must take care to use only the first 128 RAM locations. Although 7507H and 7508H can operate over a range of 2.7 to 6.0 V, 75CG08HE is limited to 5 V \pm 10%. Table 1 summarizes the differences among 7507H, 7508H, and 75CG08HE.

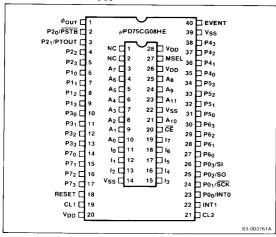
Features

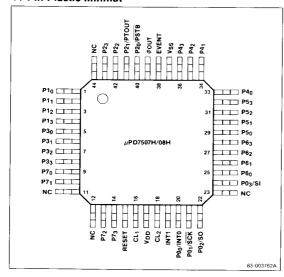

- ☐ Single-chip microcomputer
- ☐ Program ROM
 - μPD7507H: 2048 x 8-bit
 - -- μPD7508H: 4096 x 8-bit
 - µPD75CG08HE: piggyback EPROM
- ☐ Data RAM
 - $-\mu$ PD7507H: 128 x 4-bit
 - -- μPD7508H: 224 x 4-bit
 - μPD75CG08HE: 224 x 4-bit
- ☐ 8-bit timer/event counter
- ☐ Four 4-bit general purpose registers
- ☐ Four vectored, prioritized interrupts
- ☐ Executes 92 instructions of 7500 series A
- instruction set
- □ 2.86-µs instruction cycle/4.19-MHz external clock
- □ Two standby modes
- ☐ 32 I/O lines
- ☐ LED direct drive (ports 2-5; 16 lines)
- □ Low power HALT and STOP modes

Ordering Information

Part No.	Package Type	Max Frequency of Operation	
μPD7507HC	40-pin plastic DIP	4.19 MHz	
μPD7507HCU	40-pin plastic shrink DIP	4.19 MHz	
μPD7507HG-22	44-pin plastic miniflat	4.19 MHz	
μPD7508HC	40-pin plastic DIP	4.19 MHz	
μPD7508HCU	40-pin plastic shrink DIP	4.19 MHz	
μPD7508HG-22	44-pin plastic miniflat	4.19 MHz	
μPD75CG08HE	40-pin ceramic piggyback DIP	4.19 MHz	

Pin Configurations


40-Pin Plastic DIP and Plastic Shrink DIP



Pin Configurations (cont)

40-Pin Ceramic Piggyback DIP

44-Pin Plastic Miniflat

Pin Identification

40-Pin DIP, Shrink DIP, and Piggyback DIP

No.	Symbol	Function
1	₽ 0UT	f _{CC} /12 square wave
2-5	P2 ₀ / PSTB P2 ₁ /PT0UT, P2 ₂ , P2 ₃	Output port 2/output strobe pulse, timer out F/F signal
6-9	P1 ₀ -P1 ₃	I/O port 1
10-13	P3 ₀ -P3 ₃	Output port 3
14-17	P7 ₀ -P7 ₃	I/O port 7
18	RESET	RESET input
19, 21	CL1, CL2	System clock inputs
20	V_{DD}	Positive power supply
22	INT1	External interrupt
23-26	P0 ₀ /INT0, P0 ₁ /SCK, P0 ₂ /S0 P0 ₃ /SI	Input port O/external interrupt, seria I/O interface
27-30	P6 ₀ -P6 ₃	I/0 port 6
31-34	P5 ₀ -P5 ₃	I/O port 5
35-38	P4 ₀ -P4 ₃	1/0 port 4
39	V _{SS}	Ground
40	EVENT	External event input port

44-Pin Miniflat

No. Symbol		Function		
1-4	P1 ₀ -P1 ₃	I/O port 1		
5-8	P3 ₀ -P3 ₃	Port 3 output		
9, 10, 13, 14	P7 ₀ -P7 ₃	1/0 port 7		
11-12	NC	Not connected		
15	RESET	RESET input		
16, 18	CL1, CL2	System clock inputs		
17	V _{DD}	Positive power supply		
19	INT1	External interrupt 1		
20	PO _O /INTO	Port 0 input/Interrupt 0		
21	P0 ₁ /SCK	Port 0 input/Serial clock I/O		
22	P0 ₂ /S0	Port 0 input/Serial output		
23	NC	Not connected		
24	P0 ₃ /SI	Port 0 input/Serial output		
25-28	P6 ₀ -P6 ₃	I/O port 6		
29-32	P5 ₀ -P5 ₃	I/O port 5		
33-36	P4 ₀ -P4 ₃	I/O port 4		

www.DataSheet4U.com

Pin Identification (cont)

44-Pin Miniflat (cont)

No. Symbol		Function		
37	V _{SS}	Ground		
38	EVENT	External event input		
39	Φ 0UT	f _{CC} /12 square wave		
40	P2 ₀ /PSTB	Port 2 output/Output strobe pulse		
41	P2 ₁ /PT0UT	Port 2 output/Timer out F/F signal		
42, 43	P2 ₂ , P2 ₃	Port 2 output		
44	NC	Not connected		

28-Pin EPROM Socket on Piggyback DIP

No.	Symbol	Function		
1, 2	NC	Not connected		
3-10	A ₇ -A ₀	Address bits 7-0		
11-13	10-12	Data bits 0-2		
14, 22	V _{SS}	Ground		
15-19	13-17	Data bits 3-7		
20	CE	Chip enable		
21, 23	A10, A11	Address bits 10, 11		
24, 25	A9, A8	Address bits 9, 8		
26, 28	V _{DD}	Positive power supply		
27	MSEL	Memory select		

Pin Functions

P0₀/INT0, P0₁/SCK, [Port 0/External Interrupt, Serial Interface] P0₂/SO, P0₃/SI

4-bit input port/serial I/O interface. This port can be configured as a 4-bit parallel input port or as the 8-bit serial I/O interface under control of the serial mode select register. The serial input SI, serial output SO, and the serial clock \overline{SCK} (active low) used for synchronizing data transfer make up the 8-bit serial I/O interface. Line P00 is always shared with external interrupt INTO, a rising edge-triggered interrupt. If P00/INTO is unused, it should be connected to V_{SS} . If P01/ \overline{SCK} , P02/SO, or P02/SI are unused, connect them to V_{SS} or V_{DD} .

P10-P13 [Port 1]

4-bit input/three-state output port. Data output to port 1 is strobed in synchronization with a P2 $_0$ /PSTB pulse. Connect unused pins to V $_{SS}$ or V $_{DD}$.

P20/PSTB, P21/PTOUT, P22, P23 [Port 2]

4-bit latched three-state output port. Line $P2_0$ is shared with \overline{PSTB} , the port 1 output strobe pulse. Line $P2_1$ is shared with PTOUT, the timer out F/F signal. Leave unused pins open.

P30-P33 [Port 3]

4-bit latched three-state output port. Leave unused pins open.

P40-P43 [Port 4]

4-bit latched three-state output port. Can also perform 8-bit parallel I/O with port 5. In input mode, connect unused pins to V_{DD} or GND. In output mode, leave unused pins open.

P5₃-P5₀ [Port 5]

4-bit input/latched three-state output port. This port also performs 8-bit parallel I/O with port 4. In input mode, connect unused pins to V_{SS} or V_{DD} . In output mode, leave unused pins open.

P63-P60 [Port 6]

4-bit input/latched three-state output port. The port 6 mode select register configures individual lines as inputs or outputs. In input mode, connect unused pins to V_{SS} or V_{DD} . In output mode, leave unused pins open.

P70-P73 [Port 7]

4-bit input/latched three-state output port. In input mode, connect unused pins to V_{SS} or V_{DD} . In output mode, leave unused pins open.

φ_{OUT} [Clock Out]

Outputs a square wave with frequency f_{CC}/12.

EVENT [External Event Input]

Pulses on this line are counted by the timer/event counter and an interrupt is generated when a predetermined count is reached.

CL1, CL2 [System Clock Input]

The system clock can be generated by connecting a crystal or a ceramic resonator across CL1 and CL2 and capacitors from each side of the crystal to ground. Alternatively a clock signal can be input to CL1 and its invert to CL2. See figure 1.

RESET [Reset]

A high level input to this pin initializes the μ PD7507H/08H after power up.

INT1 [Interrupt 1]

External rising edge-triggered interrupt. Connect to V_{SS} if unused.

V_{DD} [Power Supply]

Positive power supply. Apply a single voltage in the range 2.7 to 6.0 V for proper operation.

VSS [Ground]

Ground.

Block Diagram

L	

Table 1. Features Comparison				
	μP075CG08H	μPD7507H/7508H		
Program memory	2K x 8 EPROM (2716) 4K x 8 EPROM (2732)	2K x 8 masked ROM (7507H) 4K x 8 masked ROM (7508H)		
Data memory	224 x 4	128 x 4 (7507H) 224 x 4 (7508H)		
Data retention mode	Use more current than 7507H, 7508H	Yes		
Power supply	5 V ±10%	2.7 to 6.0 V		
Package types	40-pin ceramic piggyback DIP	40-pin plastic DIP 40-pin plastic shrink DIP 44-pin plastic miniflat		

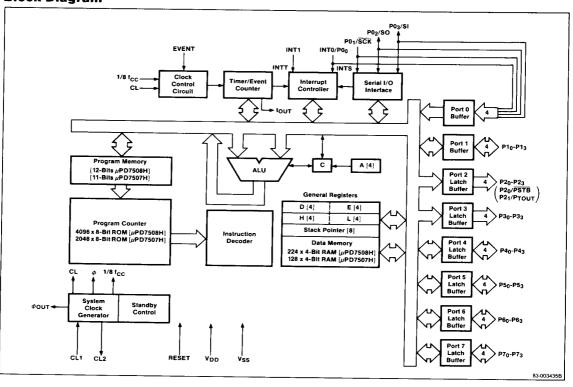
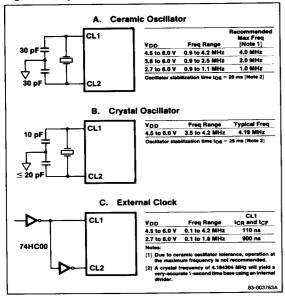



Figure 1. System Clock Options

Memory Map

Figure 2 shows the ROM program map of the 7507H/7508H.

Clock Control Circuit

The clock control circuit consists of a 4-bit clock mode register (bits CM0-CM3), prescalers 1, 2, and 3, and a multiplexer. It takes the output of the system clock generator (CL) and external EVENT input. It also selects the clock source and divides the signal according to the setting in the clock mode register. It outputs the count pulse (CP) to the timer/event counter. Figure 3 shows the clock control circuit.

Table 2 lists the codes set in the clock mode register by the OP or OPL instruction to specify the count pulse frequency. Bit CM3 controls the timer out F/F; it is disabled when the bit is 0 and output when the bit is 1.

Table 2. Selecting the Count Pulse Frequency

CM ₁	CMO	Frequency Selected	
0	0	f _{CC} /1536 (or CL/256)	
0	1	$f_{CC}/512 = (f_{CC}/8) (1/64)$	
1	0	EVENT input	
1	1	Not used	
0	0	f _{CC} /192 (or CL/32)	
0	1	$f_{CC}/64 = (f_{CC}/8) (1/8)$	
1	0	Not used	
1	1	Not used	
	CM ₁ 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 1 1 1 0 1 1 0 0 0 0 0 1	

Figure 2. ROM Map

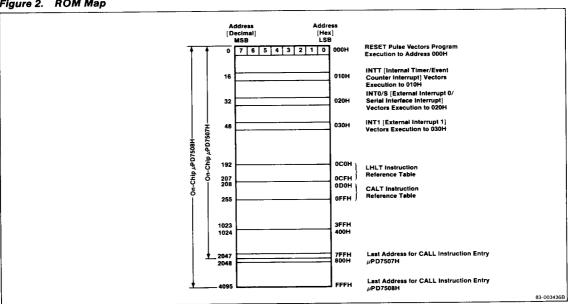
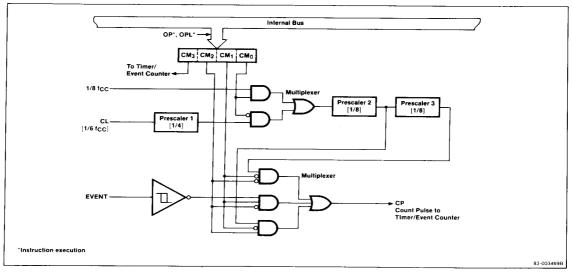



Figure 3. Clock Control Circuit

Timer/Event Counter

The timer/event counter consists of an 8-bit counter, an 8-bit modulo register, an 8-bit comparator, and a timer out flip flop as shown in figure 4.

The 8-bit count register is a binary 8-bit up counter, which is incremented each time a count pulse is input. The TIMER instruction, a RESET signal, or an INTT coincidence signal clears it to 00H.

The 8-bit modulo register determines the number of counts the count register holds. The TAMMOD instruction loads the contents of the modulo register. RESET sets the modulo register to FFH.

The 8-bit comparator compares the contents of the count register and the modulo register and outputs an INTT one clock pulse after they are equal.

Serial Interface

The 8-bit serial interface allows the μ PD7507H/08H to communicate with peripheral devices such as the μ PD7001 A/D converter, the μ PD7227 dot matrix LCD controller/driver, and other microprocessors or microcomputers.

The serial interface consists of an 8-bit shift register, a 3-bit SCK pulse counter, the SI input port, the SO output port, the SCK serial clock I/O port, and a 4-bit serial mode select register (MSR). The MSR selects serial I/O or port 0 operation.

Interrupts

The μ PD7507H/08H has four vectored, prioritized interrupts. Two of these interrupts, INTT and INTS, are internally generated from the timer/event counter and serial interface, respectively. INTO and INT1 are externally generated. Table 3 is a summary of the four interrupts.

Table 3. μPD7507H/08H Interrupts

Source	Function	Location	Priority	ROM Vector Address
INTT	Coincidence in timer/event counter	Internal	1	10H
INTS	Transfer complete signal from serial interface	Internal	2	20H
INTO	INTO pin	External	2	20H
INT1	INT1 pin	External	3	30H

Figure 4. Timer/Event Counter

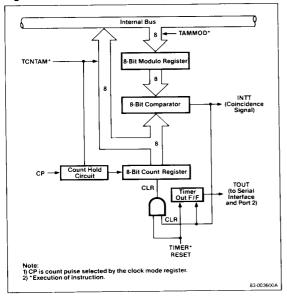
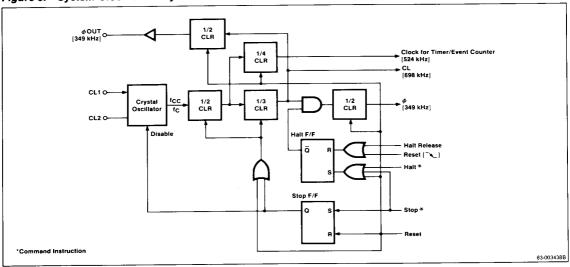



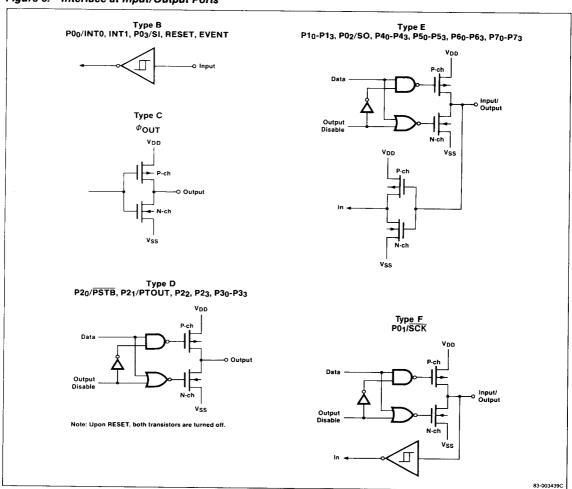
Figure 5. System Clock Circuitry

System Clock and Timing Circuitry

There are four time bases available for the μ PD7507H/08H. Table 4 shows these bases and the frequencies generated.

The CPU clock is used by the CPU and serial interface. The system clock is used by the timer/event counter and the INT1 signal.

Table 4. μPD7507H/08H Time Bases


Base	Symbol	Frequency	Derivation
System clock	CL	698 kHz	f _{CC} /6 (4.19 MHz/6)
CPU clock	φ	349 kHz	f _{CC} /12 (4.19 MHz/12)
External clock	0U T	349 kHz	f _{CC} /12 (4.19 MHz/12)
Timer/event counter clock		524 kHz	f _{CC} /8 (4.19 MHz/8)

www.DataSheet4U.com

I/O Port Interfaces

Figure 6 shows the internal circuit configurations at the I/O ports.

Figure 6. Interface at Input/Output Ports

www.DataSheet4U.com

Absolute Maximum Ratings

 $T_A = 25$ °C

Operating temperature, T _{OPT}	−10 to 70°C
Storage temperature, T _{STG}	−65 to 150°C
Power supply voltage, V _{DD}	−0.3 to +7.0 V
All input and output voltages	0.3 to V _{DD} + 0.3 V
Output current, high, I _{OH} One pin All pins, total	−5 mA −20 mA
Output current, low, I _{OL} One pin Ports 6, 7 Total ports	17 mA 20 mA 200 mA

Comment: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Capacitance

 $T_A = 25 \,^{\circ}C, V_{DD} = 0 \,^{\circ}V$

	Limits			Test	
Parameter	Symbol	Тур	Max	Unit	Conditions
Input capacitance	Cı		15	pF	f = 1 MHz;
Output capacitance	C ₀		15	pF	unmeasured pins returned to V _{SS}
I/O capacitance	C _{IO}		15	pF	

DC Characteristics

 $T_A = -10 \text{ to } +70 \,^{\circ}\text{C}; V_{DD} = 2.7 \text{ to } 6.0 \text{ V } (5 \text{ V} \pm 10\% \text{ for } 75\text{CG08HE})$

		Limits				Test	
Parameter	Symbol	Min	Тур	Max	Unit	Conditions	
Input voltage, high	V _{IH1}	0.7 V _{DD}		V _{DD}	٧	Except CL1, CL2	
	V _{IH2}	$V_{DD}-0.5$		V _{DD}	٧	CL1, CL2	
	V _{IHDR}	0.9 V _{DDDR}		V _{DDDR} + 0.2	٧	RESET, data retention mode, μPD7507H/08H only	
Input voltage, low	V _{IL1}	0		0.3 V _{DD}	٧	Except CL1, CL2	
	V _{IL2}	0		0.5	V	CL1, CL2	
Output voltage, high	V _{OH}	V _{DD} −1.0			٧	$I_{OH} = -1.0$ mA; $V_{DD} = 4.5$ to 6.0 V; except A_{11}/V_{PP} , for μ PD75CG08HE	
		$V_{DD} - 0.5$			٧	$I_{0L} = -100 \mu\text{A}$	
		$V_{DD} - 0.75$			٧	A_{11}/V_{PP} ; $I_{OH} = -5$ mA (μ PD75CG08HE only)	
Output voltage, low	V _{OL}		0.5	1.5	٧	I _{OL} = 12 mA; V _{DD} = 4.5 to 6.0 V; Ports 2-5	
				0.4	٧	I _{OL} = 1.6 mA; V _{DD} = 4.5 to 6.0 V; Ports 6-7	
				0.5	٧	$I_{OL} = 400 \mu\text{A}$	
High level input current (MSEL)	l _{IH}	$v_{\text{IN}} = v_{\text{DD}}$.,	300	μΑ	μPD75CG08HE only	
Low level input current (I ₀ -I ₇)	I _{IL}	$V_{IN} = 0 V$		-200	μΑ	μPD75CG08HE only	
Input leakage current, high	l _{UH1}			3	μΑ	Except CL1, CL2; V _I = V _{DD}	
	I _{LIH2}			20	μΑ	CL1, CL2; $V_I = V_{DD}$	
Input leakage current, low	I _{LIL1}	***		-3	μΑ	Except CL1, CL2; V _I = 0 V	
	I _{LIL2}	ì		20	μΑ	CL1, CL2; V _I = 0 V	
Output leakage current, high	I _{LOH}	_		3	μΑ	$V_0 = V_{DD}$	
Output leakage current, low	I _{LOL}			-3	μΑ	V ₀ = 0 V	
Supply voltage	V _{DDDR}	2.0		6.0	٧	Data retention mode, µPD7507H/08H only	
Supply current	I _{DD1}		900 (1) 1000 (2)	3000 (1) 3000 (2)	μA μA	Normal operation, $V_{DD} = 4.5$ to 6.0 V; $f_{CC} = 4.19$ MHz	
		•	150 (2)	700 (2)	μΑ	Normal operation, $V_{DD} = 2.7$ to 3.3 V; $f_{CC} = 1$ MHz, μ PD7507H/08H only	
	I _{DD2}		350 (1) 500 (2)	800 (1) 1100 (2)	μA μA	HALT mode, X1 = 0 V; V_{DD} = 4.5 to 6.0 V; f_{CC} = 4.19 MHz	
			70 (2)	180 (2)	μΑ	HALT mode, X1 = 0 V; V_{DD} = 2.7 to 3.3 V; f_{CC} = 1 MHz, μ PD7507H/08H only	
	I _{DD3}		0.1	10	μΑ	STOP mode, µPD7507H/08H only	
		3	0.5	50	μΑ	STOP mode, µPD75CG08HE only	

Note:

⁽¹⁾ Crystal oscillation; C1 = C2 = 10 pF.

⁽²⁾ Ceramic oscillation; C1 = C2 = 30 pF.

www.DataSheet4U.com

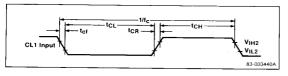
AC Characteristics

 $T_{A}=-10$ to +70 °C; $V_{DD}=$ 2.7 to 6.0 V (5 V $\pm 10\%$ for 75CG08HE)

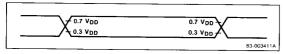
Parameter	Symbol	Limits				Test
		Min	Тур	Max	Unit	Cenditions
System clock period	t _{CY}	2.86		120	μS	V _{DD} = 4.5 to 5.5 V
		6.7		120	μS	
Clock high pulse width	t _{CH}					see figure 1
lock low pulse width	t _{CL}					see figure 1
Clock rise time	t _{CR}	 -		0.2	μS	
Clock fall time	t _{CF}			0.2	μS	
EVENT input frequency	fE	0		700	kHz	V _{DD} = 4.5 to 6.0 V
		0		250	kHz	
EVENT input high	†EH	0.7			μS	V _{DD} = 4.5 to 6.0 V
EVENT input low	t _{EL}	3.3			μS	
SCK cycle time	tkcy	2.5			μS	SCK as input; $V_{DD} = 4.5 \text{ to } 6.0 \text{ V}$
		10			μS	SCK as input
		2.86			μS	SCK as output; $V_{DD} = 4.5$ to 6.0 V
		11			μS	SCK as output
SCK pulse width	t _{KH} , t _{KL}	1.1		***	μS	SCK as input; $V_{DD} = 4.5$ to 6.0 V
		4.5			μS	SCK as input
		1.3			μS	SCK as output; $V_{DD} = 4.5$ to 6.0 V
		5.0	_		μS	SCK as output
SI setup time to SCK †	tsik	300			ns	
SI hold time after SCK †	t _{KSI}	450			ns	
SO delay time after SCK ↓	t _{KS0}			850	ns	V _{DD} = 4.5 to 6.0 V
				1200	ns	
Port 1 output setup time to PSTB †	tpst	(Note 1)			μS	V _{DD} = 4.5 to 6.0 V
		(Note 2)			μS	
Port 1 output hold time after PSTB 1	tSTP	80			ns	
PSTB pulse width	tswL	(Note 1)			μS	V _{DD} = 4.5 to 6.0 V
		(Note 2)			μS	
INTO pulse width	tion, tion	10			μS	
INT1 pulse width	tinwh, tinwi	1 (Note 3)			t _{CY}	
RESET pulse width	t _{RSH} , t _{RSL}	10			μS	
RESET setup time	t _{SRS}	0			ns	μPD7507H/08H only
Clock stabilization time	tos	25			ms	After V _{DD} reaches 4.5 V

Note

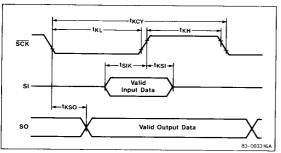
⁽¹⁾ $(3 \times 10^3) \div (f_{CC} \text{ or } f_{C} \text{ in kHz}) - 0.35 \,\mu\text{s}.$

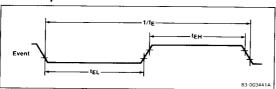

⁽²⁾ $(3 \times 10^3) \div (f_{CC} \text{ or } f_{C} \text{ in kHz}) - 1.00 \,\mu\text{s}.$

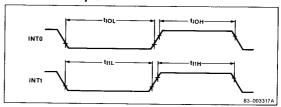
⁽³⁾ $t_{CY} = 12 \div f_{CC}$ or f_{C} .



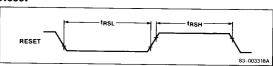
Timing Waveforms


Clocks

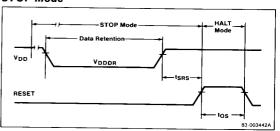

Timing Measurement Points


Serial Interface

EVENT Input



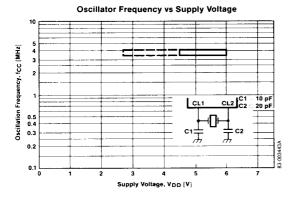
External Interrupts

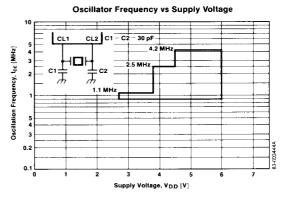


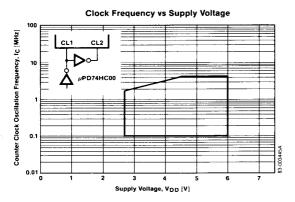
www.DataSheet4U.com

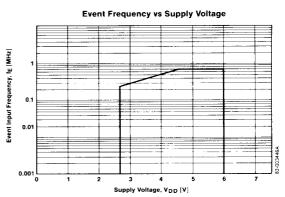
Reset

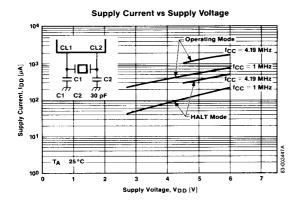
STOP Mode

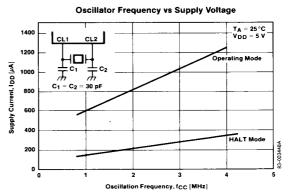


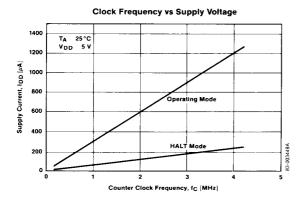


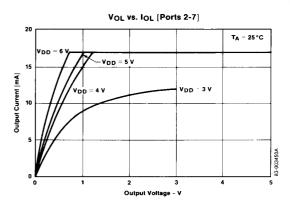


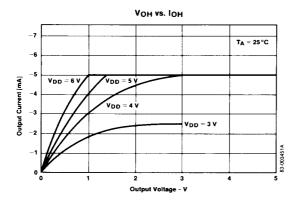

Operating Characteristics (cont)


 $T_A = 25 \,^{\circ}C$



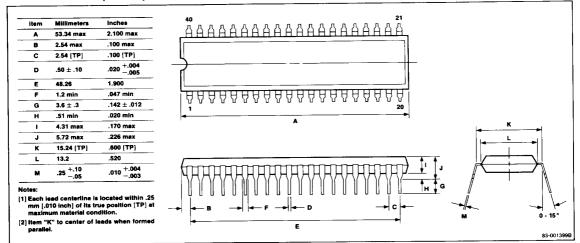


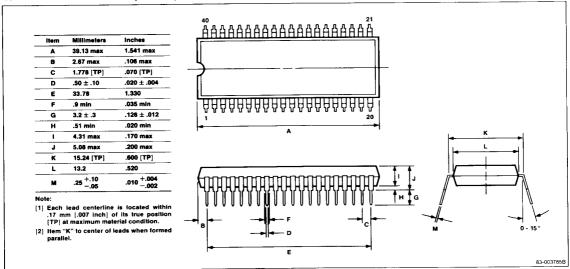




Operating Characteristics (cont)

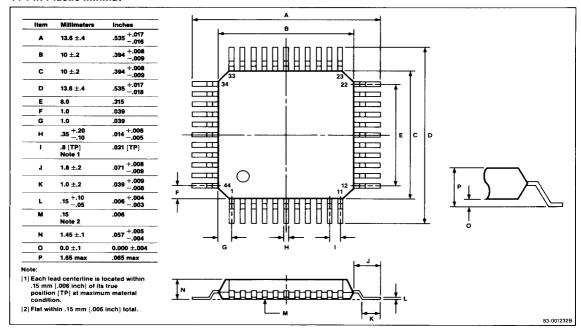
 $T_A = 25 \,^{\circ}C$

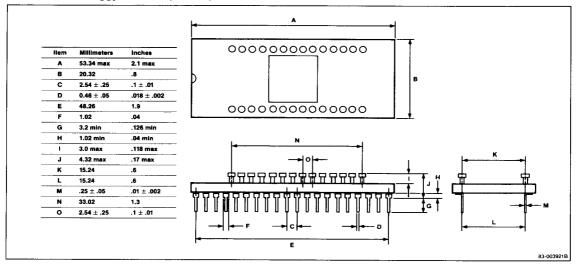




Packaging Information

40-Pin Plastic DIP (600 mil)


40-Pin Plastic Shrink DIP (600 mil)



Packaging Information (cont)

44-Pin Plastic Miniflat

40-Pin Ceramic Piggyback DIP (600 mil)

www.DataSheet4U.com

Notes:

Notes:

www.DataSheet4U.com

Notes:

CORPORATE HEADQUARTERS

401 Ellis Street P.O. Box 7241 Mountain View, CA 94039 TEL 415-960-6000 TWX 910-379-6985 For Literature Call Toll Free: 1-800-632-3531

1-800-632-3532 (In California)

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics Inc. The information in this document is subject to change without notice. Devices sold by NEC Electronics Inc. are covered by the warranty and patent indemnification provisions appearing in NEC Electronics Inc. Terms and Conditions of Sale only. NEC Electronics Inc. makes no warranty, express, statutory, implied, or by description, regarding the information set forth nerior or regarding the freedom of the described devices from patent informent. NEC Electronics Inc. makes no warranty of merchantability or fitness for any purpose. NEC Electronics Inc. assumes no responsibility for any errors that may appear in this document. NEC Electronics Inc. makes no commitment to update or to keep current the information contained in this document.