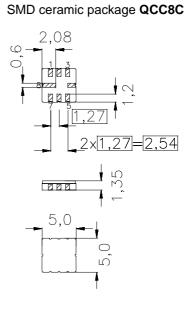


Data Sheet B4843

B4843

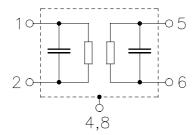
Low-Loss Filter for Mobile Communication


360,00 MHz

Data Sheet

Features

- Low-loss IF filter for mobile telephone
- Channel selection in GSM, PCN systems
- Ceramic SMD package
- Very small size


Terminals

■ Gold-plated Ni

Dimensions in mm, approx. weight 0,10 g

Pin configuration

- 1 Input or input ground
- 2 Input or balanced input
- 5 Output or output ground
- 6 Output or balanced output
- 4,8 Case ground
- 3,7 To be grounded

Туре	Ordering code	Marking and Package according to	Packing according to		
B4843	B39361-B4843-U310	C61157-A7-A56	F61074-V8070-Z000		

Electrostatic Sensitive Device (ESD)

Maximum ratings

Operable temperature range	T	- 20 / +75	°C
Storage temperature range	$T_{\rm stg}$	– 35 / +85	°C
DC voltage	$V_{\rm DC}$	3	V
Source power	P_{s}	10	dBm

B4843

Low-Loss Filter for Mobile Communication

360,00 MHz

Data Sheet

Characteristics

Ambient temperature: $T = -20^{\circ} \text{C to } +75^{\circ} \text{C}$ Terminating source impedance: $Z_{\text{S}} = 780 \ \Omega \parallel -1,9 \ \text{pF}$ Terminating load impedance: $Z_{\text{L}} = 780 \ \Omega \parallel -1,9 \ \text{pF}$

		min.	typ.	max.	
Nominal frequency	f _N	_	360,00	_	MHz
(center frequency between 3 dB points)					
Minimum insertion attenuation					
including loss in matching network	α_{min}	5,0	5,6	6,4	dB
excluding loss in matching elements		4,3	4,9	5,5	dB
Amplitude ripple (p-p)	$\Delta \alpha$				
f _N -67,5kHz f _N +67,5 kHz		_	0,5	2,0	dB
f _N -80,0 kHz f _N +80,0 kHz		_	0,5	3,0	dB
Group delay ripple (p-p)	Δau				
f _N -67,5 kHz f _N +67,5 kHz		_	0,50	1,5	μs
f _N -80,0 kHz f _N +80,0 kHz		_	0,65	2,0	μs
Relative attenuation (relative to α_{min})	$lpha_{ m rel}$				
$f_N \pm 300 \text{ kHz} \dots f_N \pm 400 \text{ kHz}$		8	16	_	dB
$f_N \pm 400 \text{ kHz} \dots f_N \pm 600 \text{ kHz}$		21	25	_	dB
$f_N \pm 600 \text{ kHz} \dots f_N \pm 800 \text{ kHz}$		35	38	_	dB
$f_N \pm 800 \text{ kHz} \dots f_N \pm 1,6 \text{ MHz}$		40	46	_	dB
$f_N \pm 1,6 \text{ MHz} \dots f_N \pm 3,0 \text{ MHz}$		48*)	54	_	dB
$f_N \pm 3.0 \text{ MHz} \dots f_N \pm 4.0 \text{ MHz}$		50	55	_	dB
$f_N \pm 4,0 \text{ MHz} \dots f_N \pm 15 \text{ MHz}$		50	65		dB
Impedance within the pass band					
Input: $Z_{IN} = R_{IN} \parallel C_{IN}$		_	780 1,9	_	$\Omega \parallel pF$
Output: $Z_{OUT} = R_{OUT} \parallel C_{OUT}$		_	780 1,9	_	$\Omega \parallel pF$
Temperature coefficient of frequency 1)	TC_{f}	_	-0,028	_	ppm/K ²
Turnover temperature		_	25		°C

¹⁾ Temperature dependence of f_c : $f_c(T) = f_c(T_0)(1 + TC_f(T - T_0)^2)$

 $^{^{*)}}$ In the frequency range from 357,8 MHz to 358,2 MHz there exists one spurious response with a maximum 3 dB - bandwidth of 150 kHz. The minimum attenuation α_{rel} of this spurious response is more than 46 dB.

B4843

Low-Loss Filter for Mobile Communication

360,00 MHz

Data Sheet

Characteristics

Ambient temperature: $T = 25^{\circ}C$

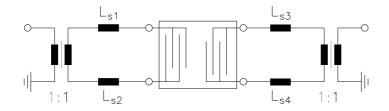
Terminating source impedance: $Z_{\rm S}=780~\Omega$ || -1,9 pF Terminating load impedance: $Z_{\rm L}=780~\Omega$ || -1,9 pF

		min.	typ.	max.	
Nominal frequency	f _N	_	360,01	_	MHz
(center frequency between 3 dB points)					
Minimum insertion attenuation					
including loss in matching network	α_{min}	5,0	5,6	6,4	dB
excluding loss in matching elements	α_{min}	4,3	4,9	5,5	dB
Amplitude ripple (p-p)	Δα				
f _N -67,5kHz f _N +67,5 kHz		_	0,5	2,0	dB
f _N -80,0 kHz f _N +80,0 kHz			0,5	3,0	dB
Group delay ripple (p-p)	Δau				
f _N -67,5 kHz f _N +67,5 kHz		_	0,50	1,5	μs
f _N -80,0 kHz f _N +80,0 kHz			0,65	2,0	μs
Relative attenuation (relative to α_{min})	$lpha_{ m rel}$				
$f_N \pm 300 \text{ kHz} \dots f_N \pm 400 \text{ kHz}$		11	18	_	dB
$f_N \pm 400 \text{ kHz} \dots f_N \pm 600 \text{ kHz}$		22	27	_	dB
$f_N \pm 600 \text{ kHz } f_N \pm 800 \text{ kHz}$		36	39	_	dB
$f_N \pm 800 \text{ kHz} \dots f_N \pm 1,6 \text{ MHz}$		40	46	_	dB
$f_N \pm 1,6 \text{ MHz} \dots f_N \pm 3,0 \text{ MHz}$		48*)	54	_	dB
$f_N \pm 3.0 \text{ MHz} \dots f_N \pm 4.0 \text{ MHz}$		50	55	_	dB
$f_N \pm 4.0 \text{ MHz} \dots f_N \pm 15 \text{ MHz}$		50	65	_	dB
Impedance within the pass band					
Input: $Z_{IN} = R_{IN} \parallel C_{IN}$		_	780 1,9	<u> </u>	$\Omega \parallel pF$
Output: $Z_{OUT} = R_{OUT} C_{OUT}$		_	780 1,9		ΩpF
Temperature coefficient of frequency 1)	TC_{f}	_	-0,028	_	ppm/K ²
Turnover temperature		_	25		°C

¹⁾ Temperature dependence of f_c : $f_c(T) = f_c(T_0)(1 + TC_f(T - T_0)^2)$

 $^{^{*)}}$ In the frequency range from 357,8 MHz to 358,2 MHz there exists one spurious response with a maximum 3 dB - bandwidth of 150 kHz. The minimum attenuation α_{rel} of this spurious response is more than 46 dB.

B4843


Low-Loss Filter for Mobile Communication

360,00 MHz

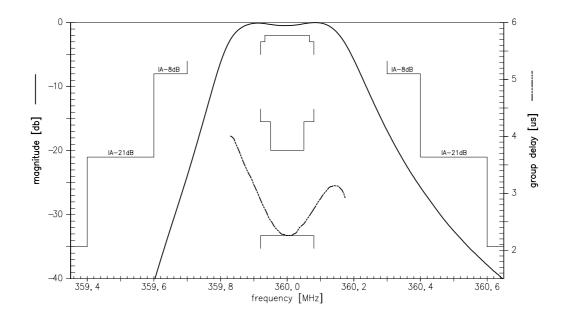
Data Sheet

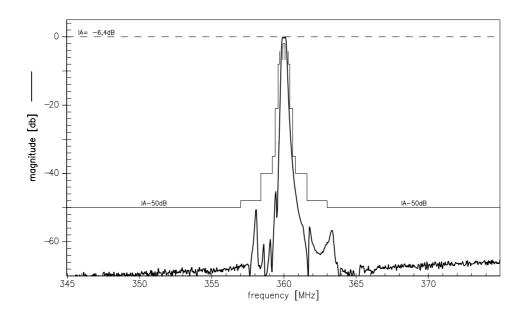
Test matching network to 50 Ω (element values depend on PCB layout):

$$L_{s1} = L_{s2} = 25,5 \text{ nH}$$

 $L_{s3} = L_{s4} = 25,5 \text{ nH}$

B4843


Low-Loss Filter for Mobile Communication


360,00 MHz

Data Sheet

Transfer function (normalized plot):

Low-Loss Filter for Mobile Communication

360,00 MHz

Data Sheet

Published by EPCOS AG Corporate Communications, P.O. Box 80 17 09, 81617 Munich, GERMANY ++49 89 636 09, FAX (0 89) 636-2 26 89

© EPCOS AG 2002. Reproduction, publication and dissemination of this brochure and the information contained therein without EPCOS' prior express consent is prohibited.

Purchase orders are subject to the General Conditions for the Supply of Products and Services of the Electrical and Electronics Industry recommended by the ZVEI (German Electrical and Electronic Manufacturers' Association), unless otherwise agreed.

This brochure replaces the previous edition.

For questions on technology, prices and delivery please contact the Sales Offices of EPCOS AG or the international Representatives.

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our Sales Offices.