Typical Applications

- CDMA/FM Cellular Systems
- Supports Dual-Mode AMPS/CDMA
- Supports Dual-Mode TACS/CDMA
- General Purpose Linear IF Amplifier
- Portable Battery Powered Equipment
- Commercial and Consumer Systems

Product Description

The RF2609 is a complete AGC amplifier designed for the transmit section of dual-mode CDMA/FM cellular applications. It is designed to amplify IF signals while providing more than 84 dB of gain control range. Noise Figure, IP3, and other specifications are designed to be compatible with the IS-95 Interim Standard for CDMA cellular communications. This circuit is designed as part of the RFMD CDMA Chip Set, consisting of this Transmit IF AGC Amp, a Transmit Upconverter, a Receive LNA/Mixer, and a Receive IF AGC Amp. The IC is manufactured on an advanced high frequency Silicon Bipolar process and is packaged in a standard miniature 16-lead plastic SSOP package.

Optimum Technology Matching ${ }^{\circledR}$ Applied

Functional Block Diagram

- Supports Dual Mode Operation
- -48 dB to +42 dB Gain Control Range
- IS-95 CDMA Compatible
- Monolithic Construction
- 12 MHz to 175 MHz Operation
- Miniature Surface Mount Package

Ordering Information

RF2609	CDMA/FM Transmit AGC Amplifier
RF2609 PCBA	Fully Assembled Evaluation Board

RF2609

Absolute Maximum Ratings

Parameter	Rating	Unit
Supply Voltage	-0.5 to +7.0	$\mathrm{~V}_{\mathrm{DC}}$
Control Voltage	-0.5 to +5.0	V
Input Power Levels	+10	dBm
Operating Ambient Temperature	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	-40 to +150	${ }^{\circ} \mathrm{C}$

4 Caution! ESD sensitive device.

RF Micro Devices believes the furnished information is correct and accurate at the time of this printing. However, RF Micro Devices reserves the right to make changes to its products without notice. RF Micro Devices does not assume responsibility for the use of the described product(s).

Parameter	Specification			Unit	Condition
	Min.	Typ.	Max.		
Overall					$\mathrm{T}=25^{\circ} \mathrm{C}, 130 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \mathrm{Z}_{\mathrm{S}}=1 \mathrm{k} \Omega$, $Z_{L}=1 \mathrm{k} \Omega, 1 \mathrm{k} \Omega$ External Output Terminating Resistor (Effective $Z_{L}=500 \Omega$) (See Application Example)
Frequency Range Maximum Gain	+39	$\begin{gathered} 12 \text { to } 175 \\ +42 \end{gathered}$		$\begin{gathered} \mathrm{MHz} \\ \mathrm{~dB} \end{gathered}$	$\mathrm{GC}=2.76 \mathrm{~V}$
Minimum Gain		-48	-45	dB	$\mathrm{V}_{\mathrm{GC}}=0.2 \mathrm{~V}$
Gain Slope		47		dB / V	Measured in 0.5 V increments
Gain Control Voltage Range		0 to 3		$V_{D C}$	<
Gain Control Input Impedance		30		$k \Omega$	
Noise Figure		10		dB	At maximum gain and 130 MHz
Input IP3	-26	-25		dBm	At +10 gain and referenced to $1 \mathrm{k} \Omega$
Input Impedance		1		$\mathrm{k} \Omega$	Differential
Stability (Max VSWR)	10:1				Spurious<-70dBm
Power Supply					
Voltage		3.3 to 3.6		V	
Current Consumption			25	mA	Maximum gain
Current Consumption				mA	Minimum gain

RF2609

Pin	Function	Description	Interface Schematic
1	CDMA+	CDMA Balanced Input Pin. This pin is internally DC biased and should be DC blocked if connected to a device with a DC level, other than V_{CC}, present. A DC to connection to V_{CC} is acceptable. For single-ended input operation, one pin is used as an input and the other CDMA input is AC coupled to ground. The balanced input impedance is $1 \mathrm{k} \Omega$, while the single-ended input impedance is 500Ω.	
2	CDMA-	Same as pin 2, except complementary input.	See pin 1 schematic.
3	GND	Ground connection. Keep traces physically short and connect immediately to ground plane for best performance.	
4	GND	Same as pin 3.	
5	GND	Same as pin 3.	
6	GND	Same as pin 3.	
7	GND	Same as pin 3.	
8	NC	No Connection pin. This pin is internally biased and should not be connected to any external circuitry, including ground or V_{CC}.	\cap
9	OUT-	Balanced Output pin. This is an open-collector output, designed to operate into a 500Ω balanced load. The load sets the operating impedance, but an external choke or matching inductor to V_{CC} must also be supplied in order to correctly bias this output. This bias inductor is typically incorporated in the matching network between the output and next stage. Because this pin is biased to V_{CC}, a DC blocking capacitor must be used if the next stage's input has a DC path to ground.	$\mathrm{O}^{\text {OUT }+\mathrm{O}}$
10	OUT+	Same as pin 9, except complementary output.	See pin 9 schematic.
11	GND	Same as pin 3.	
12	GND	Same as pin 3.	
13	VCC	Supply Voltage pin. External bypassing is required. The trace length between the pin and the bypass capacitors should be minimized. The ground side of the bypass capacitors should connect immediately to ground plane. Pins 13,14 , and 15 may share one bypass capacitor if trace lengths are kept minimal.	
14	VCC	Same as pin 13.	
15	VCC	Same as pin 13.	
16	GC	Analog gain adjustment for all amplifiers. Valid control ranges are from 0 V to 3.0 V . Maximum gain is selected with 3.0 V . Minimum gain is selected with 0 V . These voltages are valid only for a $3.3 \mathrm{k} \Omega$ DC source impedance.	

RF2609

Application Schematic

Evaluation Board Schematic

 (Download Bill of Materials from www.rfmd.com.)

10

RF2609

Evaluation Board Layout

RF2609

RF2609

F2609 IIP3 vs. Gain
(Vcc=3.3 V, 130 MHz)

