Typical Applications

- CDMA/TDMA/DCS1900 PCS Systems

- PHS 1500/WLAN 2400 Systems
- General Purpose Downconverter
- Micro-Cell PCS Base Stations
- Portable Battery-Powered Equipment

Product Description

The RF2486 is a monolithic integrated receiver front-end for PCS, PHS, and WLAN applications. The IC contains all of the required components to implement the RF functions of the receiver front-end except for the passive filtering and LO generation. It contains an LNA (low-noise amplifiers), a double-balanced Gilbert cell mixer, a balanced IF output, an LO isolation buffer amplifier, and an LO output buffer amplifier for providing the buffered LO signal as an output. The IC is designed to operate from a single 3.6 V power supply.

Optimum Technology Matching® Applied

\square Si BJT	\square GaAs HBT	\square GaAs MESFET
\square Si Bi-CMOS	\square SiGe HBT	\square Si CMOS

Functional Block Diagram

Package Style: SSOP-24

Features

- Complete Receiver Front-End
- High Dynamic Range
- Single 3.6V Power Supply
- External LNA IP3 Adjustment
- 1500 MHz to 2500 MHz Operation

Ordering Information

RF2486 PCS Low Noise Amplifier/Mixer
RF2486 PCBA-L Fully Assembled Evaluation Board 1.96 GHz
RF2486 PCBA-H Fully Assembled Evaluation Board 2.4GHz

RF2486

Absolute Maximum Ratings

Parameter	Rating	Unit
Supply Voltage	-0.5 to 5.5	$\mathrm{~V}_{\mathrm{DC}}$
Input LO and RF Levels	+6	dBm
Ambient Operating Temperature	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	-40 to +150	${ }^{\circ} \mathrm{C}$

RF Micro Devices believes the furnished information is correct and accurate at the time of this printing. However, RF Micro Devices reserves the right to make changes to its products without notice. RF Micro Devices does no assume responsibility for the use of the described product(s).

Parameter	Specification			Unit	Condition
	Min.	Typ.	Max.		
Overall RF Frequency Range LO Frequency Range IF Frequency Range	$\begin{gathered} 1500 \\ 1200 \\ \text { DC } \\ \hline \end{gathered}$		$\begin{gathered} 2500 \\ 2500 \\ 500 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \mathrm{RF}=1959 \mathrm{MHz}, \\ & \mathrm{LO}=1749 \mathrm{MHz} @+1 \mathrm{dBm} \end{aligned}$
Cascaded Performance Cascade Conversion Gain Cascade Input IP3 Cascade Noise Figure	$\begin{gathered} 24 \\ -17 \end{gathered}$	$\begin{array}{r} 27 \\ -16 \\ 3.6 \end{array}$	28	$\begin{gathered} \mathrm{dB} \\ \mathrm{dBm} \\ \mathrm{~dB} \\ \hline \end{gathered}$	$1 \mathrm{k} \Omega$ balanced load, 2.5 dB Image Filter Loss. Single Sideband
First Section (LNA)					The LNA section may be left unused. Power is not connected to pin 1. The performance is then as specified for the Second Section (Mixer).
Noise Figure Input VSWR			$0 \cdot 1$		Input is internally matched for optimum noise
Input IP3		$+4$	2.0.1	dBm	figure from a 50Ω source. IP3 may be increased 10 dB by connecting pin 22 to V_{CC} through the matching inductor. The LNA's current then increases by 10 mA . Other in-between IP3 versus I_{CC} trade-offs may be made. See pin description for pin 20. R2=Open
Gain		$\begin{aligned} & +8.5 \\ & 13.5 \end{aligned}$		$\begin{gathered} \mathrm{dBm} \\ \mathrm{~dB} \end{gathered}$	R2=Short
Reverse Isolation Output VSWR		$\begin{gathered} 23 \\ <1.5: 1 \end{gathered}$		dB	
Second Section (Mixer) Noise Figure Input VSWR Input IP3 Conversion Gain Output Impedance		$\begin{gathered} 10 \\ 1.5: 1 \\ -5 \\ 16 \\ 1 \\ \hline \end{gathered}$		dB dBm dB $k \Omega$	With $1 \mathrm{k} \Omega$ balanced load. Single Sideband Balanced
LO Input LO Input Range LO Output Level LO to RF (Mix In) Rejection LO to IF1, IF2 Rejection LO Input VSWR	$\begin{aligned} & -3 \\ & -7 \end{aligned}$	$\begin{gathered} -3 \\ -22 \\ 30 \\ 20 \\ 1.5: 1 \end{gathered}$	$\begin{aligned} & +3 \\ & +1 \\ & -14 \end{aligned}$	dBm dBm dBm dB dB	Buffer On, +1 dBm input Buffer Off, +1 dBm input Single ended
Power Supply Voltage Current Consumption	2.7	$\begin{gathered} 3.6 \\ 7 \\ 52 \\ 48 \\ \hline \end{gathered}$	5.0	$\begin{gathered} \mathrm{V} \\ \mathrm{~mA} \\ \mathrm{~mA} \\ \mathrm{~mA} \end{gathered}$	LNA only LNA + Mixer, LO Buffer On LNA + Mixer, LO Buffer Off

RF2486

Pin	Function	Description	Interface Schematic
1	NC	No connection. This pin may be grounded (recommended) or left open.	
2	VCC1	Supply voltage for the mixer and RF buffer amplifier. External RF bypassing is required. The trace length between the pin and the bypass capacitor should be minimized. The ground side of the bypass capacitor should connect immediately to ground plane.	$\mathrm{vCC} 1 \mathrm{O} \underbrace{150 \Omega}_{\text {BIAS }} \mathrm{O}$
3	VCC2	Supply voltage for the LNA. External RF bypassing is required. The trace length between the pin and the bypass capacitor should be minimized. The ground side of the bypass capacitor should connect immediately to ground plane.	
4	GND1	Ground connection for the LNA. For best performance, keep traces physically short and connect immediately to ground plane.	
5	LNA IN	RF input pin for the LNA. This pin is internally matched for minimum noise figure (NOT for minimum VSWR), given a 50Ω source impedance. This pin is not internally DC-blocked.	
6	GND2	Same as pin 4.	
7	GND3	Ground connection for the RF buffer amplifier. For best performance, keep traces physically short and connect immediately to ground plane.	
8	NC	No connection. This pin may be grounded (recommended) or left open.	
9	GND4	Same as pin 7.	
10	VCC3	Supply voltage for both LO buffer amplifiers. External RF bypassing is required. The trace length between the pin and the bypass capacitor should be minimized. The ground side of the bypass capacitor should connect immediately to ground plane.	
11	$\begin{gathered} \hline \text { LO BUFF } \\ \text { EN } \end{gathered}$	Enable pin for the LO output buffer amplifier. This is a digitally controlled input. A logic "high" ($\geq 3.1 \mathrm{~V}$) turns the buffer amplifier on, and the current consumption increases by 3 mA (with -2 dBm LO input). A logic "low" ($\leq 0.5 \mathrm{~V}$) turns the buffer amplifier off.	
12	LO IN	Mixer LO input pin. This pin is internally DC-blocked and matched to 50Ω.	
13	$\begin{gathered} \hline \text { LO BUFF } \\ \text { OUT } \end{gathered}$	Optional buffered LO output. This pin is internally DC-blocked and matched to 50Ω. The buffer amplifier is switched on or off by the voltage level at pin 11.	
14	GND5	Ground connection for both LO buffer amplifiers. For best performance, keep traces physically short and connect immediately to ground plane.	
15	IF+	Open-collector IF output pin. This is a balanced output. The output impedance is set by an internal 1000Ω resistor to pin 16 . Thus the differential IF output impedance is 1000Ω. The resistor sets the operating impedance, but an external choke or matching inductor to V_{CC} must be supplied in order to bias this output. This inductor is typically incorporated in the matching network between the output and IF filter. Because this pin is biased to V_{CC}, a DC blocking capacitor must be used if the IF filter input has a DC path to ground.	
16	IF-	Same as pin 15, except complementary output.	See pin 15.
17	GND6	Ground connection for the mixer. For best performance, keep traces physically short and connect immediately to ground plane.	
18	MIX RF IN	Mixer RF input pin. This pin is internally DC-blocked and matched to 50Ω.	
19	GND7	Same as pin 17.	

RF2486

Pin	Function	Description	Interface Schematic
20	LNA OUT	LNA output pin. This is an open-collector output. This pin is typically connected to pin 22 through a bias/matching inductor. This inductor, in conjunction with a series blocking/matching capacitor, forms a matching network to the 50Ω image filter and provides bias (see application schematic). The LNA's IP3 may be increased 10 dB by connecting pin 20 to V_{CC} through the inductor. The LNA's current then increases by 10 mA . Other in-between IP3 versus ICc trade-offs may be made by connecting resistance values between V_{CC} and the matching inductor. The two reference points for consideration are with 150Ω used, which is what connection to pin 22 achieves, the input IP3 is +5.5 dBm and the LNA I_{CC} is 5 mA . Using no resistance, the input IP3 is +15.5 dBm and the LNA $I_{C C}$ is 15 mA . Desired operating points in between these values may be roughly interpolated.	COLNAOUT
21	GND8	Same as pin 17.	
22	VCC4	Output supply voltage for the LNA output (pin 20). This pin is typically connected to pin 20 through a bias/matching inductor (see application schematic). External RF bypassing is required. The trace length between the pin and the bypass capacitor should be minimized. The ground side of the bypass capacitor should connect immediately to ground plane.	See pin 2.
23	GND9	Same as pin 17.	
24	NC	No connection. This pin may be grounded (recommended) or left open.	

Application Schematic $1.96 \mathrm{GHz}, 210 \mathrm{MHz} \mathrm{IF}$

FRONT-ENDS

Evaluation Board Schematic
 $1.96 \mathrm{GHz}, 210 \mathrm{MHz}$ IF
 (Download Bill of Materials from www.rfmd.com.)

$$
\begin{aligned}
& \text { recommended resistance values. } \\
& \text { C1a and C2a are normally not oopula }
\end{aligned}
$$

$$
\begin{aligned}
& \text { recommended resistance values. } \\
& \text { C1a and C2a are normally not populated. If C1a and C2a are populated, the LNA and mixer can be }
\end{aligned}
$$

$$
\begin{aligned}
& \text { a ander } \\
& \text { tested independently. In this case, C1 and C2 should be removed. } \\
& \text { ouse the part with onboard filter, do not populate C1a, and C2a. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { To use the part with onboard filter, do not populate C1a, and C2a } \\
& \text { Use C1 and C2 instead. This will allow cascaded operation only. }
\end{aligned}
$$

Evaluation Board Schematic $2.4 \mathrm{GHz}, 280 \mathrm{MHz}$ IF
 (Download Bill of Materials from www.rfmd.com.)

C11 selected to Fine Tune L4 for IF Output Match at 280 MHz .
R2 is normally not populated. For applications requiring additio
R1 pop applications requiring additional LNA IP3, see the datasheet for recommended resistance values,
and C 2 a are normally not populated. If C 1 a and C 2 a are populated, the LNA and mixer can be tested independently. In this case, C1 and C2 should be removed.
To use the part with onboard filter, do not populate C1a, and C2a.
Use C1 and C2 instead. This will allow cascaded operation only.

RF2486

Evaluation Board Layout 1.96 GHz
 Board Size 3.0" x 3.0"

Board Thickness 0.075.6", Board Material FR-4, Multi-Layer (8 mils between Layers 1 and 2, 31 mils between Layers 2 and 3, 1 ounce copper all layers)

Evaluation Board Layout 2.4GHz Board Size 3.0" x 3.0"

