Typical Applications

- Local Oscillator Buffer Amplifiers

- FDD and TDD Communication Systems
- Commercial and Consumer Systems
- Portable Battery-Powered Equipment
- Wireless LAN
- ISM Band Applications

Product Description

The RF2301 is a high reverse isolation buffer amplifier. The device is manufactured on a low-cost Gallium Arsenide MESFET process, and has been designed for use as a general purpose buffer in high-end communication systems operating at frequencies from less than 300 MHz to higher than 2500 MHz . With +5 dBm output power, it may also be used as a driver in transmitter applications. The device is packaged in an 8-lead plastic package. The product is self-contained, requiring just a resistor and blocking capacitors to operate. The output power, combined with 50 dB reverse isolation at 900 MHz allows excellent buffering of LO sources to impedance changes. The device can be used in 3 V battery applications. The unit has a total gain of 17 dB with only 14 mA current from a 3V supply.

Optimum Technology Matching ${ }^{\circledR}$ Applied

\square Si BJT	\square GaAs HBT	\square GaAs MESFET
\square Si Bi-CMOS	\square SiGe HBT	\square Si CMOS

Functional Block Diagram

Package Style: SOIC-8

Features

- Single 2.7V to 6.0V Supply
- +4dBm Output Power
- 21 dB Small Signal Gain
- 50 dB Reverse Isolation at 900 MHz
- Low DC Current Consumption of 14 mA
- 300 MHz to 2500 MHz Operation

Ordering Information

RF2301	High Isolation Buffer Amplifier
RF2301 PCBA	Fully Assembled Evaluation Board

RF2301

Absolute Maximum Ratings

Parameter	Rating	Unit
Supply Voltage $\left(\mathrm{V}_{\mathrm{DD}}\right)$	-0.5 to +6.5	$\mathrm{~V}_{\mathrm{DC}}$
DC Supply Current	60	mA
Input RF Power	+10	dBm
Operating Ambient Temperature	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	-40 to +150	${ }^{\circ} \mathrm{C}$

RF Micro Devices believes the furnished information is correct and accurate at the time of this printing. However, RF Micro Devices reserves the right to make changes to its products without notice. RF Micro Devices does not assume responsibility for the use of the described product(s).

Parameter	Specification			Unit	Condition
	Min.	Typ.	Max.		
Overall Nominal Frequency Range Input IP 3 Noise Figure Input VSWR Output VSWR Power Supply Voltage		$\begin{gathered} 300 \text { to } 2500 \\ -8 \\ \\ <2: 1 \\ <2: 1 \\ 2.7 \text { to } 6.0 \end{gathered}$	8	MHz dBm dB V	$\mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}_{\mathrm{DC}}$ In a 50Ω system In a 50Ω system
Nominal 5V Configuration Gain $P_{1 d B}$ Output Power Supply Current Reverse Isolation	21 10	$\begin{aligned} & 24 \\ & +4 \\ & 30 \\ & 50 \\ & 50 \\ & 40 \\ & 40 \\ & \hline \end{aligned}$	26 40	$d B$ $d B m$ $m A$ $d B$ $d B$ $d B$ $d B$	Using Broad Band Application Circuit, $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}_{\mathrm{DC}}$, Freq $=2500 \mathrm{MHZ}, \mathrm{T}=25^{\circ} \mathrm{C}$ 900 MHz , without RF input 900 MHz , with RF input, saturated 2500 MHz , without RF input 2500 MHz , with RF input, saturated
Nominal 3V Configuration Gain $\mathrm{P}_{1 \mathrm{~dB}}$ Output Power Supply Current Reverse Isolation	15	$\begin{gathered} 17 \\ 0 \\ 14 \\ 50 \\ 50 \\ 40 \\ 40 \\ \hline \end{gathered}$		dB dBm mA dB dB dB dB	Using Broad Band Application Circuit, $V_{D D}=3 V_{D C}$, Freq $=2500 \mathrm{MHZ}, \mathrm{T}=25^{\circ} \mathrm{C}$ 900 MHz , without RF input 900 MHz , with RF input, saturated 2500 MHz , without RF input 2500 MHz , with RF input, saturated

RF2301

Pin	Function	Description	Interface Schematic
$\mathbf{1}$	GND	Low inductance ground connections. Use individual vias to backside ground plane, placed within 0.030" of pin landing for optimum perfor- mance.	
$\mathbf{2}$	GND	Same as pin 1.	
$\mathbf{3}$	RF IN	DC-coupled RF input. A broadband impedance match is produced by internal shunt resistive feedback. The DC level is 0V. If a DC voltage is present from connected circuitry, an external DC-blocking capacitor is required for the proper DC operating point.	
$\mathbf{4}$	GND	Same as pin 1.	
$\mathbf{5}$	GND	Same as pin 1.	
$\mathbf{6}$	RF OUT	Open drain RF output. A broadband impedance match is produced by an external 100 restor to power supply as shown in Application Schematic 1. Approximately 3dB improvement in gain and output power can be obtained over at least a 20\% bandwidth by replacing the resistor to power supply with an external chip inductor network as shown in Application Schematic 2. An external DC-blocking capacitor is required if the following circuitry is not DC-blocked.	RF IN O ?

Application Schematic 1

Broadband Match

Application Schematic 2 Optimum Match

Evaluation Board Schematic

(Download Bill of Materials from www.rfmd.com.)

Evaluation Board Layout

$1.43^{\prime \prime} \times 1.43^{\prime \prime}$
Board Thickness 0.031"; Board Material FR-4

RF2301

Typical Characteristics Broadband Application Circuit

S-Parameter Conditions:

All plots are taken at ambient temperature $=25^{\circ} \mathrm{C}$.

NOTE:
All S11 and S22 plots shown were taken from an RF2301 evaluation board with external input and output tuning components removed and the reference points at the RF IN and RF OUT pins.

RF2301

OP1dB versus Temperature

OP1dB versus Temperature
Freq = 1950 MHz

RF2301

S11 of Evaluation Board versus Frequency

