TOSHIBA TPCF8B01

TOSHIBA Multi-Chip Device Silicon P Channel MOS Type (U-MOS III) / Schottky Barrier Diode

TPCF8B01

Notebook PC Applications Portable Equipment Applications

• Low drain-source ON resistance: RDS (ON) = 72 mÙ (typ.)

• High forward transfer admittance: $|Y_{fs}| = 4.7 \text{ S (typ.)}$

• Low leakage current: IDSS = -10 iA (max) (VDS = -20 V)

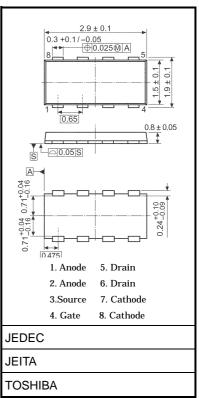
• Enhancement-model: V_{th} = -0.5 to -1.2 $V(V_{DS}$ =-10 V, I_{D} = -200 iA)

• Low forward voltage: V_{FM} = 0.46V(typ.)

Maximum Ratings

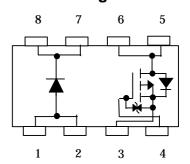
MOSFET (Ta = 25°C)

Characteristics			Symbol	Rating	Unit	
Drain-source voltage			V_{DSS}	-20	V	
Drain-gate voltage ($R_{GS} = 20 \text{ k}\Omega$)			V_{DGR}	-20	V	
Gate-source voltage			V_{GSS}	±8	V	
Drain current	DC	(Note 1)	I_{D}	-2.7	Α	
	Pulse	(Note 1)	I_{DP}	-10.8	Α	
Single pulse avalanche energy (Note 4)			E _{AS}	1.2	mJ	
Avalanche current			I _{AR}	-1.35	А	
Repetitive avalanche energy Single-device value at dual operation (Note 2a, 3b, 5)			E _{AR}	0.11	mJ	

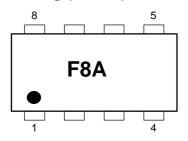

SBD ($Ta = 25^{\circ}C$)

Characteristics	Symbol	Rating	Unit
Repetitive peak reverse voltage	V_{RRM}	20	V
Average forward current (Note 2a, 6)	I _{F(AV)}	1.0	Α
Peak one cycle surge forward current (non-repetitive)	I _{FSM}	7(50Hz)	А

Maximum Ratings for MOSFET and SBD (Ta = 25°C)


Characteristics		Symbol	Rating	Unit	
Drain power dissipation	Single-device operation (Note 3a)	P _{D (1)}	1.35		
(t = 5 s) (Note 2a)	Single-device value at dual operation (Note 3b)	P _{D (2)}	1.12		
Drain power dissipation (t = 5 s) (Note 2b)	Single-device operation (Note 3a)	P _{D (1)}	0.53	W	
	Single-device value at dual operation (Note 3b)	P _{D (2)}	0.33		
Channel temperature		T _{ch}	150	°C	
Storage temperature range		T _{stg}	-55~150	°C	

Unit: mm



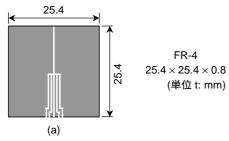
Weight: 0.011 g (typ.)

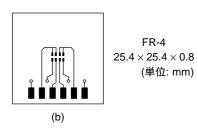
Circuit Configuration

Marking (Note 7)

Note: For (Note 1), (Note 2), (Note 3), (Note 4), (Note 5), (Note 6) and (Note 7), please refer to the next page.

Thermal Characteristics for MOSFET and SBD


Charac	Symbol	Max	Unit		
Thermal resistance, channel to ambient	Single-device operation (Note 3a)	R _{th (ch-a) (1)}	92.6	°C/W	
(t = 5 s) (Note 2a)	Single-device value at dual operation (Note 3b)	R _{th (ch-a) (2)}	111.6		
Thermal resistance, channel to ambient	Single-device operation (Note 3a)	R _{th (ch-a) (1)}	235.8	°C/W	
(t = 5 s) (Note 2b)	Single-device value at dual operation (Note 3b)	R _{th (ch-a) (2)}	378.8	5/ ۷۷	


This transistor is an electrostatic sensitive device. Please handle with caution.

Schottky barrier diodes are having large-reverse-current-leakage characteristic compare to the other rectifier products. This current leakage and improper operating temperature or voltage may cause thermal runaway. Please take forward and reverse loss into consideration when you design.

Note 1: Please use devices on condition that the channel temperature is below 150°C.

Note 2: (a) Device mounted on a glass-epoxy board (b) Device mounted on a glass-epoxy board (b)

- Note 3: a) The power dissipation and thermal resistance values are shown for a single device (During single-device operation, power is only applied to one device.).
 - b) The power dissipation and thermal resistance values are shown for a single device (During dual operation, power is evenly applied to both devices.).
- Note 4: $V_{DD} = -16 \text{ V}$, $T_{ch} = 25^{\circ}\text{C}$ (initial), L = 0.5 mH, $R_G = 25 \Omega$, $I_{AR} = -1.35 \text{ A}$
- Note 5: Repetitive rating; Pulse width limited by Max. Channel temperature.
- Note 6: Rectangular waveform ($\alpha = 180^{\circ}$), $V_R = 15V$.
- Note 7: Black round marking " "locates on the left lower side of parts number marking "F8A" indicates terminal No. 1.

Electrical Characteristics (Ta = 25°C)

MOSFET

Cha	aracteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Gate leakage current		I _{GSS}	$V_{GS} = \pm 8 \text{ V}, V_{DS} = 0 \text{ V}$	_	_	±10	μΑ
Drain cut-off curr	ent	I _{DSS}	$V_{DS} = -20 \text{ V}, V_{GS} = 0 \text{ V}$	_	_	-10	μΑ
Drain-source breakdown voltage		V (BR) DSS	$I_D = -10 \text{ mA}, V_{GS} = 0 \text{ V}$	-20	_	_	V
		V (BR) DSX	$I_D = -10 \text{ mA}, V_{GS} = 8V$	-12	_	_	v
Gate threshold ve	oltage	V _{th}	$V_{DS} = -10 \text{ V}, I_D = -200 \mu\text{A}$	-0.5	_	-1.2	V
		R _{DS (ON)}	$V_{GS} = -1.8 \text{ V}, I_D = -0.7 \text{ A}$	_	215	300	
Drain-source ON	resistance	R _{DS} (ON)	$V_{GS} = -2.5 \text{ V}, I_D = -1.4 \text{A}$	_	110	160	$m\Omega$
		R _{DS} (ON)	$V_{GS} = -4.5 \text{ V}, I_D = -1.4 \text{ A}$	_	72	110	
Forward transfer admittance		Y _{fs}	$V_{DS} = -10 \text{ V}, I_D = -1.4 \text{ A}$	2.4	4.7	_	S
Input capacitance		C _{iss}	V _{DS} = -10 V, V _{GS} = 0 V, f = 1 MHz	_	470	_	pF
Reverse transfer capacitance		C _{rss}		_	70	_	
Output capacitan	ice	C _{oss}		_	80	_	
1	Rise time	t _r	$V_{DS} = -10 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$ $V_{GS} = -1.4 \text{ A}$ $V_{GS} = -$	_	5	_	
Cuitabing time	Turn-on time	t _{on}		_	9	_	
Switching time	Fall time	t _f		_	8	_	ns
	Turn-off time	t _{off}	$V_{DD} \simeq -10 \text{ V}$ Duty \le 1%, $t_W = 10 \text{ µs}$	_	26	_	
Total gate charge (gate-source plus gate-drain)		Qg	$V_{DD} \simeq -16 \text{ V}, V_{GS} = -5 \text{ V},$	_	6	_	_
Gate-source charge		Q _{gs}	$I_D = -2.7 \text{ A}$	_	4	_	nC
Gate-drain ("miller") charge		Q _{gd}]	_	2	_	

MOSFET Source-Drain Ratings and Characteristics

Characterist	ics	Symbol	Test Condition	Min	Тур.	Max	Unit
Drain reverse current	Pulse (Note 1)	I _{DRP}	_	_	_	-10.8	Α
Forward voltage (diode)		V_{DSF}	$I_{DR} = -2.7 \text{ A}, V_{GS} = 0 \text{ V}$		_	-1.2	V

SBD

Characteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Peak forward voltage	V _{FM(1)}	I _{FM} = 0.7 A	_	0.43	_	V
	V _{FM(2)}	$I_{FM} = 1.0 A$	_	0.46	0.49	٧
Repetitive peak reverse current	I _{RRM}	V _{RRM} = 20 V			50	μΑ
Junction capacitance	Cj	$V_R = 10 \text{ V, f} = 1 \text{ MHz}$		54		pF

RESTRICTIONS ON PRODUCT USE

000707EAA

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other
 rights of the third parties which may result from its use. No license is granted by implication or otherwise under
 any intellectual property or other rights of TOSHIBA CORPORATION or others.

4

• The information contained herein is subject to change without notice.