The PDSP16318/A contains two independent 20-bit Adder/Subtractors combined with accumulator registers and shift structures. The four port architecture permits full 20 MHz throughout in FFT and filter applications.

Two PDSP16318As combined with a single PDSP16112A Complex Multiplier provide a complete arithmetic solution for a Radix 2 DIT FFT Butterfly. A new complex Butterfly result can be generated every 50 ns allowing 1 K complex FFTs to be executed in 256μ s.

FEATURES

- Full 20 MHz Throughout in FFT Applications
- Four Independent 16-bit I/O Ports
- 20-bit Addition or Accumulation
- Fully Compatible with PDSP16112 Complex Multiplier
- On Chip Shift Structures for Result Scaling
- Overflow Detection
- Independent Three-State Outputs and Clock Enables for 2 Port 20MHz Operation
- 1.4 micron CMOS
- 500 mW Maximum Power Dissipation
- 100 CQFP package

APPLICATIONS

- High speed Complex FFT or DFTs
- Complex Finite Impulse Response (FIR) Filtering
- Complex Conjugation
- Complex Correlation/Convolution

Fig. 1 Pin connections - Top view (GC100)

ASSOCIATED PRODUCTS

PDSP16112 16×12 Complex Multiplier PDSP16116 16×16 Complex Multiplier PDSP1601 ALU and Barrel Shifter
PDSP16330 Pythagoras Processor

ORDERING INFORMATION

Industrial $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$
PDSP16318A/IG/GC1R (20MHz - QFP)
Military $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$
PDSP16318/MC/GC1R (10MHz - QFP
MIL STD 883C Screened)
N.B. Further details of the Military grade part are available in a separate datasheet

Fig. 2 PDSP16318 simplified block diagram

Fig. 3 Block diagram

FUNCTIONAL DESCRIPTION

The PDSP16318 is a Dual 20-bit Adder/Subtractor configured to support Complex Arithmetic. The device may be used with each of the adders allocated to real or imaginary data (e.g. Complex Conjugation), the entire device allocated to Real or Imaginary Data (e.g. Radix 2 Butterflys) or each of the adders configured as accumulators and allocated to real or imaginary data (Complex Filters). Each of these modes ensures that a full 20 MHz throughput is maintained through both adders, the first and last mode illustrating true Complex operation, where both real and imaginary data is handled by the single device.

Both Adder/Subtractors may be controlled independently via the ASR and ASI inputs. These controls permit $A+B, A-B, B-A$ or pass A operations, where the A input to the Adder is derived from the input multiplexer. The $\overline{\mathrm{CLR}}$ control line allows the clearing of both accumulator registers. The two multiplexers may be controlled via the MS inputs, to select either new input data, or fed-back data from
the accumulator registers. The PDSP16318 contains an 8cycle deskew register selected via the DEL control. This deskew register is used in FFT applications to ensure correct phasing of data that has not passed through the PDSP16112 Complex Multiplier.

The 16-bit outputs from the PDSP16318 are derived from the 20-bit result generated by the Adders. The three bit S2:0 input selects eight different shifted output formats ranging from the most significant 16 bits of the 20 -bit data, to the least significant 13 bits of the 20 -bit data. In this mode the 14th, 15 th and 16th bits of the output are set to zero. The shift selected is applied to both adder outputs, and determines the function of the OVR flag. The OVR flag becomes active when either of the two adders produces a result that has more significant digits than the MSB of the 16-bit output from the device. In this manner all cases when invalid data appears on the output are flagged.

Symbol	Type	Description
A15:0	Input	Data presented to this input is loaded into the input register on the rising edge of CLK. A15 is the MSB.
B15:0	Input	Data presented to this input is loaded into the input register on the rising edge of CLK. B15 is the MSB and has the same weighting as A15.
C15:0	Output	New data appears on this output after the rising edge of CLK. C15 is the MSB.
D15:0	Output	New data appears on this output after the rising edge of CLK. C15 is the MSB.
CLK	Input	Common Clock to all internal registers
$\overline{\mathrm{CEA}}$	Input	Clock enable: when low the clock to the A input register is enabled.
$\overline{\text { CEB }}$	Input	Clock enable: when low the clock to the B input register is enabled.
OEC	Input	Output enable: Asynchronous 3-state output control: The C outputs are in a high impedance state when this input is high.
$\overline{\text { OED }}$	Input	Output enable: Asynchronous 3-state output control: The D outputs are in a high impedance state when this input is high.
OVR	Output	Overflow flag: This flag will go high in any cycle during which either the output data overflows the number range selected or either of the adder results overflow. A new OVR appears after the rising edge of the CLK.
ASR1:0	Input	Add/subtract Real: Control input for the 'Real' adder. This input is latched by the rising edge of clock.
ASI1:0	Input	Add/subtract Imag: Control input for the 'Imag' adder. This input is latched by the rising edge of clock.
$\overline{\text { CLR }}$	Input	Accumulator Clear: Common accumulator clear for both Adder/Subtractor units. This input is latched by the rising edge of CLK.
MS	Input	Mux select: Control input for both adder multiplexers. This input is latched by the rising edge of CLK. When high the feedback path is selected.
S2:0	Input	Scaling control: This input selects the 16 -bit field from the 20 -bit adder result that is routed to the outputs. This input is latched by the rising edge of CLK.
DEL	Input	Delay Control: This input selects the delayed input to the real adder for operations involving the PDSP16112. This input is latched by the rising edge of CLK.
VCC	Power	+5V supply: Both Vcc pins must be connected.
GND	Ground	OV supply: Both GND pins must be connected.

GC pin	Function						
77	D7	6	C7	31	A1	56	B10
82	D8	7	C6	32	A2	57	B9
83	D9	8	C5	33	A3	58	B8
84	D10	9	C4	34	A4	59	B7
85	GND	10	C3	35	A5	60	B6
86	VCC	11	C2	36	A6	61	B5
87	D11	12	C1	37	A7	62	B4
88	D12	13	C0	38	A8	63	B3
89	D13	14	OED	39	A9	64	B2
90	D14	15	OEC	40	A10	65	B1
91	D15	16	S2	41	A11	66	B0
92	C15	17	S1	42	A12	67	CLK
93	C14	18	S0	43	A13	68	CEB
94	C13	19	MS	44	A14	69	OVR
95	C12	20	ASI1	45	A15	70	D0
96	VCC	21	ASI0	46	CEA	71	D1
97	GND	22	DEL	47	B15	72	D2
98	C11	23	CLR	48	B14	73	D3
99	C10	24	ASR1	49	B13	74	D4
100	C9	25	ASR0	50	B12	75	D5
5	C8	26	A0	51	B11	76	D6

Device Pinout for ceramic QFP (GC100)

ASR or ASI		ALU Function
ASX1	ASX0	
0	0	$\mathrm{~A}+\mathrm{B}$
0	1	A
1	0	$\mathrm{~A}-\mathrm{B}$
1	1	$\mathrm{~B}-\mathrm{A}$

DEL	Delay Mux Control
0	A port input
1	Delayed A port input

MS	Real and Imag' Mux Control
0	B port input/Del mux output
1	C accumulator/D accumualtor

S2:0			Adder result																			
S2	S1	S0	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0				
0	0	1		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
0	1	0			15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
0	1	1				15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
1	0	0					15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	1						15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
1	1	0							15	14	13	12	11	10	9	8	7	6	5	4	3	2
1	1	1								15	14	13	12	11	10	9	8	7	6	5	4	3

NOTE
This table shows the portion of the adder result passed to the D15:0 and C15:0 outputs. Where fewer than 16 adder bits are selected the output data is padded with zeros.

ABSOLUTE MAXIMUM RATINGS (Note 1)

Supply voltage Vcc	-0.5 V to 7.0 V
Input voltage VIN	-0.9 V to $\mathrm{Vcc}+0.9 \mathrm{~V}$
Output voltage Vout	-0.9 V to $\mathrm{Vcc}+0.9 \mathrm{~V}$
Clamp diode current per pin Ik (see Note 2)	18 mA
Static discharge voltage (HMB) V CTAT	500 V
Storage temperature range Ts	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient temperature with	
power applied Tamb	
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction temperature	$150^{\circ} \mathrm{C}$
Package power dissipation Ртот	1000 mW

NOTES

1. Exceeding these ratings may cause permanent damage.

Functional operation under these conditions is not implied.
2. Maximum dissipation or 1 second should not be exceeded, only one output to be tested at any one time.
3. Exposure to absolute maximum ratings for extended periods may affect device reliability.

THERMAL CHARACTERISTICS

Package Type
GC

日лc ${ }^{\circ} \mathbf{C} / \mathbf{W}$
12
$\theta \mathrm{JA}{ }^{\circ} \mathrm{C} / \mathrm{W}$
35

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):
$\mathrm{T}_{\text {amb }}$ (Commercial) $=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{Vcc}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{GND}=0 \mathrm{~V}$
$\mathrm{T}_{\text {amb }}$ (Industrial) $=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$
$\mathrm{T}_{\text {amb }}$ (Military) $=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$

STATIC CHARACTERISTICS

Characteristic	Symbol	Value			Units	Conditions
		Min.	Typ.	Max.		
Output high voltage	$\mathrm{V}_{\text {О }}$	2.4		-	V	$\mathrm{IOH}=3.2 \mathrm{~mA}$
Output low voltage	$\mathrm{V}_{\text {o }}$	-		0.4	V	$\mathrm{loL}=-3.2 \mathrm{~mA}$
Input high voltage	V_{IH}	3.5		-	V	
Input low voltage	$V_{\text {IL }}$	-		0.5	V	
Input leakage current	$1 /$	-10		+10	$\mu \mathrm{A}$	GND $\leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {c }}$
Output leakage current	${ }_{0}$	-50	-	+50	$\mu \mathrm{A}$	$G N D \leq V_{\text {OUT }} \leq V_{\text {cc }}$
Output SC current	I_{os}	20	-	200	mA	$\mathrm{V}_{\mathrm{cc}}=\overline{\mathrm{M} a x}$
Input capacitance	$\mathrm{C}_{\text {IN }}$	-	9	-	pF	

SWITCHING CHARACTERISTICS

Characteristic	Value Industrial		Value Military		Units	Conditions
	PDSP16318A		PDSP16318			
	Min.	Max.	Min.	Max.		
Clock period	50	-	100	-	ns	
Clock High Time	15	-	20	-	ns	
Clock Low Time	15	-	20	-	ns	
A15:0, B15:0 setup to clock rising edge	5	-	8	-	ns	
A15:0, B15:0 hold after clock rising edge	2	-	2	-	ns	
MS, S2:0, ASI setup to clock rising edge	10	-	10	-	ns	
DEL, ASR, CLR setup to clock rising edge	5	-	8	-	ns	
DEL, ASR, $\overline{C L R}, M S, S 2: 0$, ASI hold after clock rising edge	2	-	2	-	ns	
$\overline{\mathrm{CEA}}, \overline{\mathrm{CEB}}$ setup to clock falling edge	2	-	2	-	ns	
$\overline{\mathrm{CEA}}, \overline{\mathrm{CEB}}$ hold after clock rising edge	8	-	8	-	ns	
Clock rising edge to OVR, C15:0, D15:0	5	30	5	40	ns	2 x LSTTL + 20pF
OEC/OED low to C15:0/D15:0 high data valid	-	30	-	40	ns	$2 \times$ LSTTL + 20pF
OEC/OED low to C15:0/D15:0 low data valid	-	30	-	40	ns	$2 \times$ LSTTL + 20pF
OEC/OED high to C15:0/D15:0 high impedance	-	30	-	40	ns	$2 \times$ LSTTL + 20pF
Vcc current	-	110	-	70	mA	$\mathrm{Vcc}=\max ,$ TTL input levels Outputs unloaded, fcLk $=\max$
Vcc current	-	60	-	30	mA	$\mathrm{Vcc}=$ max, CMOS input levels Outputs unloaded, fcLk $=$ max

NOTES

1. LSTTL is equivalent to $\mathrm{I}_{\mathrm{OH}}=20$ microamps, $\mathrm{I}_{\mathrm{OL}}=-0.4 \mathrm{~mA}$
2. Current is defined as negative into the device
3. CMOS input levels are defined as:
$\mathrm{V}_{\mathrm{IL}}=0.5$
$\mathrm{V}_{I H}=\mathrm{V}_{\mathrm{DD}}-0.5$

http://www.mitelsemi.com

World Headquarters - Canada

Tel: +1 (613) 5922122
Fax: +1 (613) 5926909

North America
Tel: +1 (770) 4860194
Fax: +1 (770) 6318213

Asia/Pacific
Tel: +65 3336193
Fax: +65 3336192

Europe, Middle East, and Africa (EMEA)
Tel: +44 (0) 1793518528
Fax: +44 (0) 1793518581

Information relating to products and services furnished herein by Mitel Corporation or its subsidiaries (collectively "Mitel") is believed to be reliable. However, Mitel assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual property rights owned by Mitel or licensed from third parties by Mitel, whatsoever. Purchasers of products are also hereby notified that the use of product in certain ways or in combination with Mitel, or non-Mitel furnished goods or services may infringe patents or other intellectual property rights owned by Mitel.

This publication is issued to provide information only and (unless agreed by Mitel in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other information appearing in this publication are subject to change by Mitel without notice. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to Mitel's conditions of sale which are available on request.

M Mitel (design) and ST-BUS are registered trademarks of MITEL Corporation
Mitel Semiconductor is an ISO 9001 Registered Company
Copyright 1999 MITEL Corporation
All Rights Reserved
Printed in CANADA

