Features

- Positive Voltage Control ($0 /+5 \mathrm{~V}$)
- High Isolation: $54 \mathrm{~dB} @ 0.9 \mathrm{GHz}$ $52 \mathrm{~dB} @ 1.9 \mathrm{GHz}$
- 50-Ohm Internal Terminations
- Low Insertion Loss: 0.6 dB @ 0.9 GHz $0.7 \mathrm{~dB} @ 1.9 \mathrm{GHz}$
- Lead-Free Package: 4 mm 16-Lead PQFN
- 100\% Matte Tin Plating over Copper
- Halogen-Free "Green" Mold Compound
- $260^{\circ} \mathrm{C}$ Reflow Compatible
- RoHS* Compliant Version of SW-475

Description

The M/A-COM MASWSS0121 GaAs monolithic switch provides high isolation in a low-cost, lead-free plastic surface mount package. The MASWSS0121 is ideal for applications across a broad range of frequencies including synthesizer switching, transmit / receive switching, switch matrices and filter banks in systems such as radio and cellular equipment, PCS, GPS, and fiber optic modules.

M/A-COM fabricates the MASWSS0121 using a 1.0-micron gate length MESFET process. The process features full chip passivation for performance and reliability.

Ordering Information

Part Number	Package
MASWSS0121	Bulk Packaging
MASWSS0121TR	1000 piece reel
MASWSS0121TR-3000	3000 piece reel
MASWSS0121SMB	Sample board

Note: Reference Application Note M513 for reel size
information.

Functional Schematic

PIN Configuration

Pin	Function	Description
1	RF2	RF port
2	GND	RF ground
3	GND	RF ground
4	V1	Control 1
5	V2	RF ground
6	GND	RF port
7	RFC	RF ground
8	GND	RF ground
9	GND	RF ground
10	GND	RF port
11	GF1	RF ground
12	GND	RF ground
13	GND	RF ground
14	GND	RF ground
15	GFD ground	
16	(pad)	
17		

1. The exposed pad centered on the package bottom must be connected to RF and DC ground.
[^0]- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

Visit www.macom.com for additional data sheets and product information.

Electrical Specifications: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{Z}_{0}=50 \mathrm{Ohms}, \mathrm{V}_{\mathrm{C}}=\mathbf{0}, 5.0 \mathrm{~V}^{2}$

Parameter	Test Conditions	Units	Min.	Typ.	Max.
Insertion Loss	$\begin{gathered} 0.5-1 \mathrm{GHz} \\ 1.0-2.0 \mathrm{GHz} \\ 2.0-3.0 \mathrm{GHz} \end{gathered}$	dB dB dB	—	$\begin{gathered} 0.6 \\ 0.7 \\ 0.75 \end{gathered}$	$\begin{aligned} & 0.7 \\ & 0.8 \\ & 0.9 \end{aligned}$
Isolation	$\begin{gathered} 0.5-1 \mathrm{GHz} \\ 1.0-2.0 \mathrm{GHz} \\ 2.0-3.0 \mathrm{GHz} \end{gathered}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & 51 \\ & 48 \\ & 45 \\ & \hline \end{aligned}$	$\begin{aligned} & 54 \\ & 52 \\ & 50 \\ & \hline \end{aligned}$	-
Return Loss	$\begin{gathered} 0.5-1 \mathrm{GHz} \\ 1.0-2.0 \mathrm{GHz} \\ 2.0-3.0 \mathrm{GHz} \end{gathered}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$	-	$\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & \hline \end{aligned}$	-
Input IP_{2}	2-Tone $900 \mathrm{MHz}, 5 \mathrm{MHz}$ spacing	dBm	-	83	-
Input IP3	2-Tone $900 \mathrm{MHz}, 5 \mathrm{MHz}$ spacing	dBm	-	43	-
$\mathrm{T}_{\text {RISE }}, \mathrm{T}_{\text {FALL }}$	10\% to 90\% RF \& 90\% to 10\% RF	nS	-	24	-
$\mathrm{T}_{\text {ON }}, \mathrm{T}_{\text {OFF }}$	50% of V_{C} to $10 \% / 90 \% \mathrm{RF}$	nS	-	15	-
Transients	$\mathrm{V}_{\mathrm{C}}=5.0 \mathrm{~V}$ square wave, in-band	mV	-	12	-

2. External DC blocking capacitors are required on all RF ports (47 pF capacitors are recommended).

Absolute Maximum Ratings ${ }^{3,4}$

Parameter	Absolute Maximum
Input Power $(0.5-3.0 \mathrm{GHz})$	+30 dBm
3 V Control	+33 dBm
5 V Control	+8.5 volts
Operating Voltage	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Operating Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature	

3. Exceeding any one or combination of these limits may cause permanent damage to this device.
4. $\mathrm{M} / \mathrm{A}-\mathrm{COM}$ does not recommend sustained operation near these survivability limits.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

Typical Performance Curves

Return Loss

Isolation Over Temperature

Insertion Loss Over Temperature

Lead-Free 4 mm 16-Lead PQFN ${ }^{\dagger}$

1. REFERENCE JEDEC MO-220. VAR. VGGC FOR ADDITIONAL DIMENSIONAL AND

TOLERANCE INFORMATION.
2. REFERENCE S2083 APPLICATION NOTE FOR PCB FOOTPRINT INFORMATION
3. ALL DIMENSIONS SHOWN AS INCHES/MM

[^1]- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

Visit www.macom.com for additional data sheets and product information.

[^0]: * Restrictions on Hazardous Substances, European Union Directive 2002/95/EC.

[^1]: ${ }^{\dagger}$ Reference Application Note M538 for lead-free solder reflow recommendations.

