

Contents

Page	Section	Title
5	1.	Introduction
5	1.1.	Features
6	1.2.	Application Overview
7	2.	Functional Description of the MAS 3587F
7	2.1.	Overview
7	2.2.	Architecture of the MAS 3587F
7	2.3.	DSP Core
7	2.4.	RAM and Registers
8	2.5.	Firmware and Software
8	2.5.1.	Internal Program ROM and Firmware, MPEG-Encoding/Decoding
9	2.5.2.	Program Download Feature
9	2.6.	Audio Codec
9	2.7.	A/D Converter and Microphone Amplifier
9	2.7.1.	Baseband Processing
9	2.7.1.1.	Bass, Treble, and Loudness
9	2.7.2.	Micronas Dynamic Bass (MDB)
9	2.7.2.1.	Automatic Volume Control (AVC)
10	2.7.2.2.	Balance and Volume
10	2.7.3.	D/A Converters
10	2.7.4.	Output Amplifiers
10	2.8.	Clock Management
11	2.8.1.	DSP Clock
11	2.8.2.	Clock Output at CLKO
11	2.9.	Power Supply Concept
11	2.9.1.	Power Supply Regions
11	2.9.2.	DC/DC Converters
13	2.9.3.	Power Supply Configurations
13	2.10.	Battery Voltage Supervision
14	2.11.	Interfaces
14	2.11.1.	I ² C Control Interface
14	2.11.2.	S/PDIF Input Interface
14	2.11.3.	S/PDIF Output
14	2.11.4.	Multiline Serial Audio Input (SDI, SDIB)
14	2.11.5.	Multiline Serial Output (SDO)
14	2.11.6.	Parallel Input/Output Interface (PIO)
15	2.12.	MPEG Synchronization Output
15	2.13.	Default Operation
15	2.13.1.	Stand-by Functions
15	2.13.2.	Power-Up of the DC/DC Converters and Reset
16	2.13.3.	Control of the Signal Processing
16	2.13.4.	Start-up of the Audio Codec
16	2.13.5.	Power-Down

MAS 3587F

Contents, continued

Page	Section	Title
17	3.	I ² C Interface
17	3.1.	General
17	3.1.1.	Device Address
17	3.1.2.	I ² C Registers and Subaddresses
18	3.1.3.	Naming Convention
19	3.2.	Direct Configuration Registers
19	3.2.1.	Write Direct Configuration Registers
19	3.2.2.	Read Direct Configuration Register
24	3.3.	DSP Core
24	3.3.1.	Access Protocol
25	3.3.1.1.	Run and Freeze
25	3.3.1.2.	Read Register (Code A _{hex})
26	3.3.1.3.	Write Register (Code B _{hex})
26	3.3.1.4.	Read D0 Memory (Code C _{hex})
27	3.3.1.5.	Short Read D0 Memory (Code C4 _{hex})
27	3.3.1.6.	Read D1 Memory (Code D _{hex})
28	3.3.1.7.	Short Read D1 Memory (Code D4 _{hex})
28	3.3.1.8.	Write D0 Memory (Code E _{hex})
29	3.3.1.9.	Short Write D0 Memory (Code E4 _{hex})
29	3.3.1.10.	Write D1 Memory (Code F _{hex})
29	3.3.1.11.	Short Write D1 Memory (Code F4 _{hex})
30	3.3.1.12.	Clear SYNC Signal (Code 5 _{hex})
30	3.3.1.13.	Default Read
31	3.3.1.14.	Fast Program Download
31	3.3.1.15.	Serial Program Download
32	3.3.2.	List of DSP Registers
32	3.3.3.	List of DSP Memory Cells
32	3.3.3.1.	Application Select and Running
32	3.3.3.2.	Application Specific Control
40	3.3.4.	Ancillary Data
41	3.3.5.	DSP Volume Control
42	3.4.	Audio Codec Access Protocol
42 42	3.4.1. 3.4.2.	Write Codec Register
42		Read Codec Register
43 49	3.4.3.	Codec Registers
49	3.4.4.	Basic MDB Configuration
50	4.	Specifications
50	4.1.	Outline Dimensions
50	4.2.	Pin Connections and Short Descriptions
53	4.3.	Pin Descriptions
53	4.3.1.	Power Supply Pins
53	4.3.2.	Analog Reference Pins
53	4.3.3.	DC/DC Converters and Battery Voltage Supervision
53	4.3.4.	Oscillator Pins and Clocking
53	4.3.5.	Control Lines
53	4.3.6.	Parallel Interface Lines

Contents, continued

Page	Section	Title
54	4.3.6.1.	PIO Handshake Lines
54	4.3.7.	Serial Input Interface (SDI)
54	4.3.8.	Serial Input Interface B (SDIB)
54	4.3.9.	Serial Output Interface (SDO)
54	4.3.10.	S/PDIF Input Interface
54	4.3.11.	S/PDIF Output Interface
54	4.3.12.	Analog Input Interfaces
54	4.3.13.	Analog Output Interfaces
55	4.3.14.	Miscellaneous
55	4.4.	Pin Configurations
56	4.5.	Internal Pin Circuits
58	4.6.	Electrical Characteristics
58	4.6.1.	Absolute Maximum Ratings
59	4.6.2.	Recommended Operating Conditions
62	4.6.3.	Digital Characteristics
63	4.6.3.1.	I ² C Characteristics
64	4.6.3.2.	Serial (I ² S) Input Interface Characteristics (SDI, SDIB)
66	4.6.3.3.	Serial Output Interface Characteristics (SDO)
68	4.6.3.4.	S/PDIF Input Characteristics
69	4.6.3.5.	S/PDIF Output Characteristics
70	4.6.3.6.	PIO as Parallel Input Interface: DMA Mode
71	4.6.3.7.	PIO as Parallel Output Interface: DMA Mode
72	4.6.4.	Analog Characteristics
76	4.6.5.	DC/DC Converter Characteristics
77	4.6.6.	Typical Performance Characteristics
79	4.7.	Typical Application in a Portable Player
80	4.8.	Recommended DC/DC Converter Application Circuit
82	5.	Data Sheet History

MPEG Layer 3 Audio Encoder/Decoder

This data sheet applies to MAS 3587F version A1.

1. Introduction

The MAS 3587F is a single-chip MPEG layer 3 audio encoder/decoder designed for use in memory-based recording/playback applications, e.g. MP3 record/playback equipment. The IC contains a DSP engine with embedded RAM and ROM. It provides flexible digital interfaces for serial and S/PDIF audio data input and output. Also integrated are power management functions and two DC/DC converters for single cell power supply. A high-quality stereo D/A converter and a stereo A/D converter on chip provide the analog functions required in an advanced portable audio player.

In encoding mode, audio data is input via the integrated A/D converter, serial PCM, or S/PDIF interface. The compressed digital data stream is sent via the parallel interface. In decoding mode, compressed digital data streams are accepted in the parallel or serial format. The audio data is output via the high quality D/A converter. A digital output in serial PCM format and/or S/PDIF format is also provided.

Thus, the MAS 3587F provides a true 'ALL-IN-ONE' solution that is ideally suited for highly optimized memory based music recorders.

Additional functionality is achieved via download software (e.g. Micronas SC4 encoder/decoder). SC4 is a proprietary Micronas speech codec technology based on ADPCM. The codec can be downloaded to the MAS 3587F to allow high quality speech recording and playing back at various sampling rates. (Please contact your local Micronas Sales Representative about availability of SC4 downloads).

In MPEG 1 (ISO 11172-3), three hierarchical layers of compression have been standardized. The most sophisticated and complex, layer 3, allows compression rates of approximately 12:1 for mono and stereo signals while still maintaining CD audio quality.

1.1. Features

Firmware

- MPEG 1/2 layer 3 encoder
- Encoding with adaptive bit rate up to max. 192 kbit/s
- MPEG 1/2 layer 2 and layer 3 decoder
- Decoder-Extension to MPEG 2 layer 3 for low bit rates ("MPEG 2.5")
- Extraction of MPEG Ancillary Data
- Adaptive bit rates (bit rate switching)
- SDMI-compliant security technology for decoder
- Stereo channel mixer
- Bass, treble and loudness function
- Micronas Dynamic Bass (MDB)
- Automatic Volume Control (AVC)

Interfaces

- 2 serial asynchronous interfaces for bitstreams and uncompressed digital audio
- Parallel handshake bit stream input/output
- Serial audio output via I²S and related formats
- S/PDIF audio input
- S/PDIF audio output
- Controlling via I²C interface

Hardware Features

- Two independent embedded DC/DC converters (e.g. for DSP and flash RAM supply)
- Low DC/DC converter start-up voltage (0.9 V)
- DC converter efficiency up to 95 %
- Battery voltage monitor
- Low supply voltage (down to 2.2 V for decoder, 3.5 V for encoder)
- Low power dissipation (<70 mW for decoder, <400 mW for encoder)
- Hardware power management and power-off functions
- Microphone amplifier
- Stereo A/D converter for FM/AM-radio and speech input
- CD quality stereo D/A converter
- Headphone amplifier
- On-chip crystal oscillator
- External clock or crystal frequency of 13...20 MHz
- Standby current < 10 μA

1.2. Application Overview

The following block diagram shows an example application for the MAS 3587F in a portable audio recorder device. Besides a simple controller and the external flash memories, all required components are integrated in the MAS 3587F. By means of the embedded A/D-Converter, the MAS 3587F supports both speech and FM radio quality audio encoding. CD-quality encoding/decoding is achieved by using digital inputs/embedded D/A-Converter.

Fig. 1–1 depicts a portable audio application that is power optimized. The two embedded DC/DC converters of the MAS 3587F generate optimum power supply voltages for the DSP core and also for state-of-the art flash memories that typically require 2.7 to 3.3 V supply.

The performance of the DC/DC converters reaches efficiencies up to 95%.

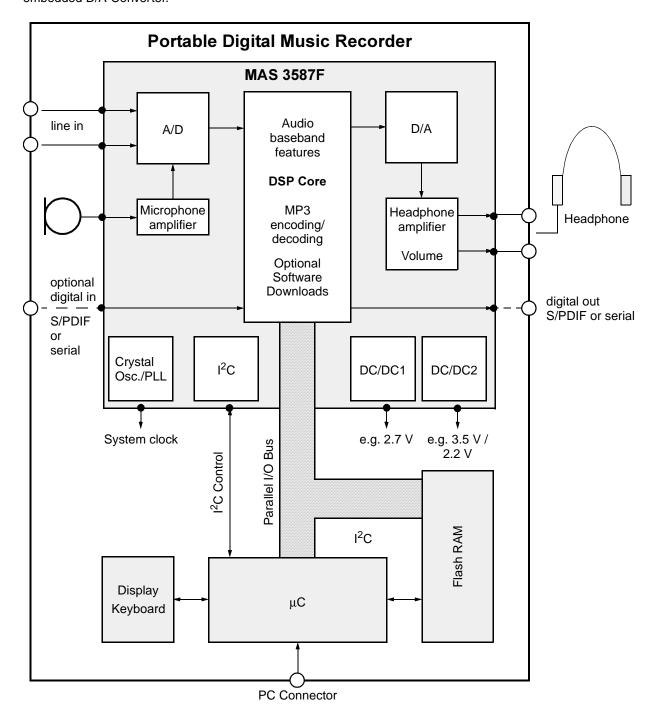


Fig. 1-1: Example application for the MAS 3587F in a portable audio recorder device

2. Functional Description of the MAS 3587F

2.1. Overview

The MAS 3587F is intended for use in consumer audio applications. It encodes analog audio input, PCM data or S/PDIF signals to variable bit rate MPEG 1/2 Layer 3 data streams. The compressed data is stored in an external memory via the parallel port. For playback it receives S/PDIF, parallel or serial data streams and decodes MPEG Layer 2 and 3 (including the low sampling frequency extensions).

2.2. Architecture of the MAS 3587F

The hardware of the MAS 3587F consists of a high-performance RISC Digital Signal Processor (DSP), and appropriate interfaces. A hardware overview of the IC is shown in Fig. 2–1.

2.3. DSP Core

The internal processor is a dedicated DSP for advanced audio applications.

2.4. RAM and Registers

The DSP core has access to two RAM banks denoted D0 and D1. All RAM addresses can be accessed in a 20-bit or a 16-bit mode via I²C bus. For fast access of internal DSP states the processor core has an address space of 256 data registers which can be accessed by I²C bus. For more details please refer to Section 3.3. on page 24.

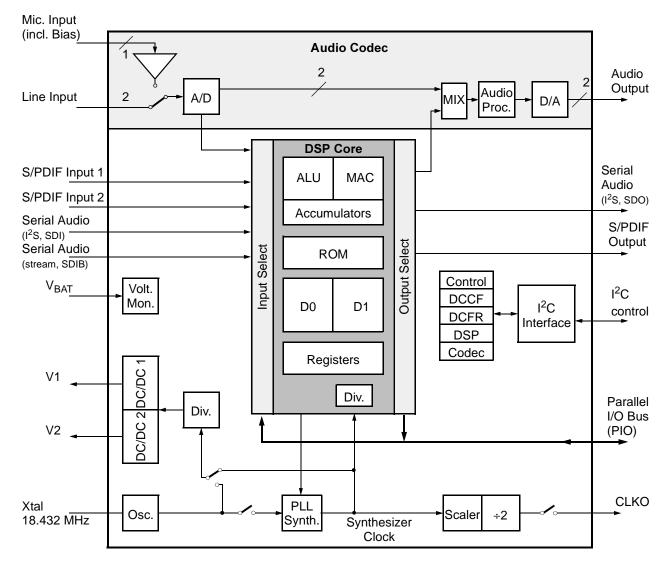


Fig. 2-1: The MAS 3587F architecture

2.5. Firmware and Software

2.5.1. Internal Program ROM and Firmware, MPEG-Encoding/Decoding

The firmware implemented in the program ROM of the MAS 3587F provides MPEG 1/2 Layer 3 encoding and decoding of MPEG 1/2 Layer 2 and MPEG 1/2 Layer 3.

The DSP operating system starts the firmware in the "Application Selection Mode". By setting the appropriate bit in the Application Select memory cell (see Table 3–6 on page 33), the MPEG audio encoder or decoder can be activated.

The MPEG decoder provides an automatic standard detection mode. If all MPEG audio decoders are selected, the Layer 2 or Layer 3 bitstream is recognized and decoded automatically.

For general control purposes, the operation system provides a set of I^2C instructions that give access to internal DSP registers and memory areas.

An auxiliary digital volume control and mixer matrix is applied to the digital stereo audio data. This matrix is capable of performing the balance control and a simple kind of stereo basewidth enhancement. All four factors LL, LR, RL, and RR are adjustable, please refer to Fig. 3–3 on page 41.

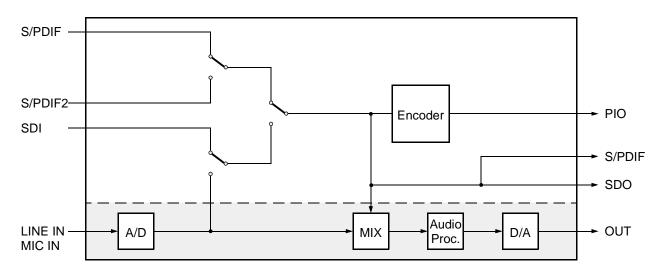


Fig. 2-2: Encoder Signal Flow

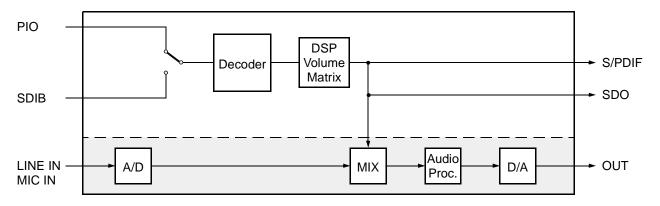


Fig. 2-3: Decoder Signal Flow

Micronas

8

2.5.2. Program Download Feature

The standard functions of the MAS 3587F can be extended or substituted by downloading up to 4kWords (1 Word = 20 bits) of program code and additionally up to 4kWords of coefficients into the internal RAM.

The code must be downloaded by the *Fast Program Download* command (see Section 3.3.1.14. on page 31) into an area of RAM that is switchable from data memory to program memory. A *Run* command (see Section 3.3.1.1. on page 25) starts the operation.

2.6. Audio Codec

A sophisticated set of audio converters and sound features has been implemented to comply with various kinds of operating environments that range up to highend equipment (see Fig. 2–4).

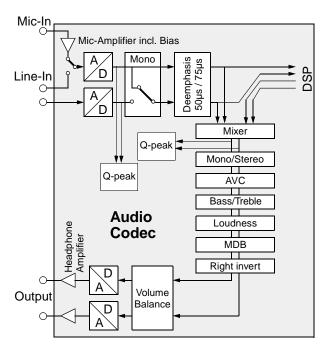


Fig. 2-4: Signal flow block diagram of Audio Codec

2.7. A/D Converter and Microphone Amplifier

A pair of A/D converters is provided for recording or loop-through purposes. In addition, a microphone amplifier including voltage supply function for an electret type microphone has been integrated.

2.7.1. Baseband Processing

The several baseband functions are applied to the digital audio signal immediately before D/A conversion.

2.7.1.1. Bass, Treble, and Loudness

Standard baseband functions such as bass, treble, and loudness are provided (refer to Table 3–12 on page 43 for details).

2.7.2. Micronas Dynamic Bass (MDB)

The Micronas Dynamic Bass system (MDB) was developed to extend the frequency range of loud-speakers or headphones below the cutoff frequency of the speakers. In addition to dynamically amplifying the low frequency bass signals, the MDB exploits the psychoacoustic phenomenon of the 'missing fundamental'. Adding harmonics of the frequency components below the cutoff frequency gives the impression of actually hearing the low frequency fundamental, while at the same time retaining the loudness of the original signal. Due to the parametric implementation of the MDB, it can be customized to create different bass effects and adapted to various loudspeaker characteristics (see Section 3.4.4. on page 49).

2.7.2.1. Automatic Volume Control (AVC)

In a collection of tracks from different sources fairly often the average volume level varies. Especially in a noisy listening environment the user must adjust the volume to achieve a comfortable listening enjoyment. The Automatic Volume Correction (AVC) solves this problem by equalizing the volume level.

To prevent clipping, the AVC's gain decreases quickly in dynamic boost conditions. To suppress oscillation effects, the gain increases rather slowly for low level inputs. The decay time is programmable by means of the AVC register (see Table 3–12 on page 43).

For input levels of -18 dBr to 0 dBr, the AVC maintains a fixed output level of -9 dBr. Fig. 2–5 shows the AVC output level versus its input level. For volume and baseband registers set to 0 dB, a level of 0 dBr corresponds to full scale input/output.

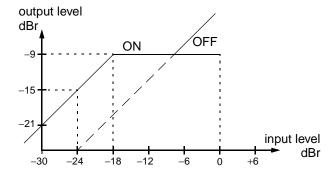


Fig. 2-5: Simplified AVC characteristics

2.7.2.2. Balance and Volume

To minimize quantization noise, the main volume control is automatically split into a digital and an analog part. The volume range is –114...+12 dB with an additional mute position. A balance function is provided (see Table 3–12 on page 43).

2.7.3. D/A Converters

A pair of Micronas' unique multibit sigma-delta D/A converters is used to convert the audio data with high linearity and a superior S/N. In order to attenuate high-frequency noise caused by noise-shaping, internal low-pass filters are included. They require additional external capacitors between pins FILTR and OUTR, and FILTL and OUTL respectively (see Section 4.7. on page 79).

2.7.4. Output Amplifiers

The integrated output amplifiers are capable of driving stereo headphones of 16...32 Ω impedance via 22- Ω series resistors or built-in loudspeakers of 16 Ω impedance directly. If more output power is required, the right output signal can be inverted and a single loudspeaker can be connected as a bridge between pins OUTL and OUTR. In this case the minimum impedance is 32 W, and for optimized power the source should be set to mono.

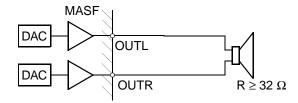


Fig. 2-6: Bridge operation mode

2.8. Clock Management

The MAS 3587F is driven by a single crystal-controlled clock with a frequency of 18.432 MHz. It is possible to drive the MAS 3587F with other reference clocks. In this case, the nominal crystal frequency must be written into memory location D0:7f3. The crystal clock acts as a reference for the embedded synthesizer that generates the internal clock.

For compressed audio data reception, the MAS 3587F may act either as the clock master (Demand Mode) or as a slave (Broadcast Mode) as defined by bit 1 in IOControlMain memory cell (see Table 3–7 on page 34). In both modes, the output of the clock synthesizer depends on the sample rate of the decoded data stream as shown in Table 2–1.

In the BROADCAST MODE (PLL on), the incoming audio data controls the clock synthesizer via a PLL.

In the DEMAND MODE (PLL off) the MAS 3587F acts as the system master clock, the internal clock. The data transfer is triggered by a demand signal at pin EOD. This mode is used in most applications.

In the encoder application, the MAS 3587F is clock master in case of I²S audio input. For S/PDIF input, the MAS 3587F synchronizes the clock to the incomming S/PDIF signal.

Table 2–1: Settings of bits 8 and 17 in OutClkConfig and resulting CLKO output frequencies

	Ou	Output Frequency at CLKO/MHz							
f _s /kHz	Synth. Clock bit 8=1		er On bit 17=0		r Plus Division bit 17=1				
48	24.576	540 £	24.576	0504	12.288				
44.1	22.5792	512⋅f _s	22.5792	256·f _s	11.2896				
32	24.576	768·f _s	24.576	384⋅f _s	12.288				
24	24.576	E40 f	12.288	0501	6.144				
22.05	22.5792	512·f _s	11.2896	256·f _s	5.6448				
16	04.570	768·f _s	12.288	384·f _s	6.144				
12	24.576	E10 f	6.144	OEG f	3.072				
11.025	22.5792	512·f _s	5.6448	256·f _s	2.8224				
8	24.576	768·f _s	6.144	384·f _s	3.072				

2.8.1. DSP Clock

The DSP clock has a separate divider. For power conservation it is set to the lowest acceptable rate of the synthesizer clock which is capable to allow the processor core to perform all tasks.

2.8.2. Clock Output at CLKO

If the DSP or audio codec functions are enabled (bits 11 or 10 in the Control Register at $\rm I^2C$ subaddress $\rm 6a_{hex}$), the reference clock at pin CLKO is derived from the synthesizer clock.

Dependent on the sample rate of the decoded signal a scaler is applied which automatically divides the clock-out by 1, 2, or 4, as shown in Table 2–1. An additional division by 2 may be selected by setting bit 17 of the Output Clock Configuration memory cell, OutClkConfig (see Table 3–7 on page 34). The scaler can be disabled by setting bit 8 of this cell.

The controlling at OutClkConfig is only possible as long as the DSP is operational (bit 10 of the Control Register). Settings remain valid if the DSP is disabled by clearing bit 10.

2.9. Power Supply Concept

The MAS 3587F has been designed for minimal power dissipation. In order to optimize the battery management in portable players, two DC/DC converters have been implemented to supply the complete portable audio player with regulated voltages.

2.9.1. Power Supply Regions

The MAS 3587F has five power supply regions.

The VDD/VSS pin pair supplies all digital parts including the DSP core, the XVDD/XVSS pin pair is connected to the digital signal pin output buffers, the AVDD0/AVSS0 supply is for the analog output amplifiers, AVDD1/AVSS1 for all other analog circuits like clock oscillator, PLL circuits, system clock synthesizer and A/D and D/A converters. The I²C interface has an own supply region via pin I2CVDD. Connecting this to the microcontroller supply assures that the I²C bus always works as long as the microcontroller is alive so that the operating modes can be selected.

Beside these regions, the DC/DC converters have start-up circuits of their own which get their power via pin VSENSx.

2.9.2. DC/DC Converters

The MAS 3587F has two embedded high-performance step-up DC/DC converters with synchronous rectifiers to supply both the DSP core itself and external circuitry such as a controller or flash memory at two different voltage levels. An overview is given in Fig. 2–7 on page 12.

The DC/DC converters are designed to generate an output voltage between 2.0 V and 3.5 V which can be programmed separately for each converter via the I^2C interface (see Table 3–3 on page 20). Both converters are of the bootstrapped type which allow start up from a voltage down to 0.9 V for use with a single battery or NiCd/NiMH cell. The default output voltages are 3.0 V. Both converters are enabled with a high level at pin DCEN and enabled/disabled by the I^2C interface.

The MAS 3587F DC/DC converters feature a constant-frequency, low noise pulse width modulation (PWM) mode and a low quiescent current, pulse frequency modulation (PFM) mode for improved efficiencies at low current loads. Both modes – PWM or PFM – can be selected independently for each converter via I²C interface. The default mode is PWM.

In the PWM mode, the switching frequency of the power-MOSFET-switches is derived from the crystal oscillator. Switching harmonics generated by constant frequency operation are consistent and predictable. When the audio codec is enabled the switching frequency of the converters is synchronised to the audio codec clock to avoid interferences into the audio band. The actual switching frequency can be selected via the I²C-interface between 300 kHz and 580 kHz (for details see DCFR Register in Table 3–3 on page 20).

In the PFM operation mode, the switching frequency is controlled by the converters themself, it will be just high enough to service the output load thus resulting in the best possible efficiency at low current loads. PFM mode does not need a clock signal from the crystal oscillator. If both converters do not use the PWM-mode, the crystal clock will be shut down as long it is not needed from other internal blocks.

The synchronous rectifier bypasses the external Schottky diode to reduce losses caused by the diode forward voltage providing up to 5% efficiency improvement. By default, the P-channel synchronous rectifier switch is turned on when the voltage at pin(s) DCSOn exceeds the converter's output voltage at pin(s) VSENSn and turns off when the inductor current drops below a threshold. If one or both converters are disabled, the corresponding P-channel switch will be turned on, connecting the battery voltage to the DC/DC converters output voltage at pin VSENSn. However, it is possible to individually disable both synchronous rectifier switches by setting the corresponding bits (bit 8 and 0 in DCCF-register).

If both DC/DC-converters are off, a high signal may be applied at pin DCEN. This will start the converters in their default mode (PWM with 3.0 V output voltage). The PUP signal will change from low to high when both converters have reached their nominal output voltage and will return to low when both converters output voltages have dropped 200 mV below their programmed output voltage. The signal at pin PUP can be used to control the reset of an external microcontroller (see Section 2.13.2. on page 15 for details on start up procedure).

If only DC/DC-converter 1 is used, the output of the unused converter 2 (VSENS2) must be connected to the output of converter 1 (VSENS1) to make the PUP signal work properly. Also, if a DC/DC-converter is not used (no inductor connected), the pin DCSO must be left vacant.

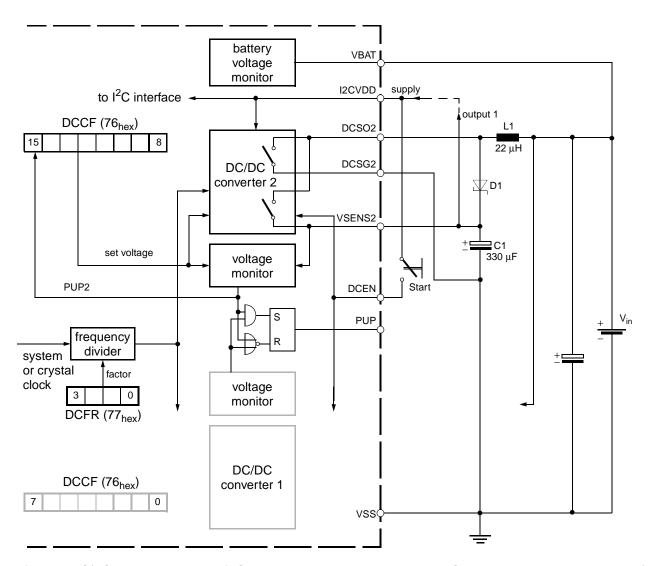


Fig. 2-7: DC/DC converter overview (DCEN input must be connected to pin I2CVDD via the start-up push button)

2.9.3. Power Supply Configurations

One of the following supply configurations may be used:

- Configuration 1: DC/DC 1 (e.g. 2.7 V) supplies controller, flash and MAS 3587F audio parts, DC/DC 2 generates e.g. 2.5 V/3.5 V for the MAS 3587F DSP (see Fig. 2–8).
- Configuration 2: All components are powered by an external source, no DC/DC converter is used (see Fig. 2–9).

If DC/DC converter 1 is used, it must supply the analog circuits (pins AVDD0, AVDD1) of the MAS 3587F.

If the DC/DC converters are not used, pin DCEN must be connected to VSS, DCSOx must be left vacant.

2.10. Battery Voltage Supervision

A battery voltage supervision circuit (at pin VBAT) is provided which is independent of the DC/DC converters. It can be programmed to supervise one or two battery cells. The voltage is measured by subsequently setting a series of voltage thresholds and checking the respective comparison result in register 77_{hex} (see Table 3–3 on page 20).

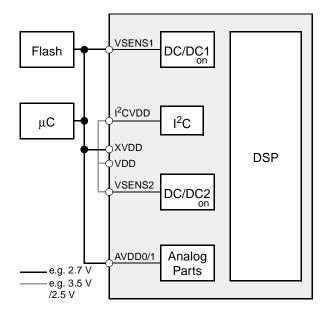


Fig. 2-8: Configuration1: DC/DC-Converter supply

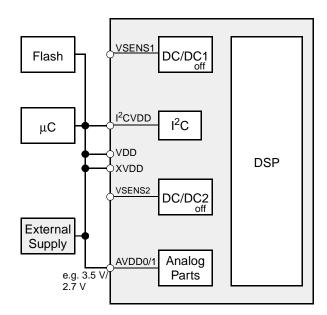


Fig. 2-9: Configuration2: External power supply

2.11. Interfaces

The MAS 3587F uses an I²C control interface, a parallel I/O interface (PIO) for MPEG bit streams and digital audio interfaces for the incomming/outgoing audio data (I²S or similar). Alternatively, SPDIF input and output interfaces can be used. MPEG bit stream input to the decoder is also possible via a second serial input interface.

2.11.1. I²C Control Interface

For controlling and program download purposes, a standard I²C slave interface is implemented. A detailed description of all functions can be found in Section 3.

2.11.2. S/PDIF Input Interface

The S/PDIF interface receives a one-wire serial bus signal. In addition to the signal input pin SPDI1/SPDI2, a reference pin SPDIR is provided to support balanced signal sources or twisted pair transmission lines.

The synchronization time on the input signal is < 50 ms.

The SPDIF input signal can also be switched to the SPDO pin. In this case the analog input circuit of the SPDIF inputs (see Fig. 4–16 on page 57) restores the SPDIF input signal to a full swing signal at SPDO.

For controlling details please refer to Table 3–7 on page 34.

2.11.3. S/PDIF Output

The S/PDIF output of the baseband audio signals is provided at pin SPDO.

Note that the S/PDIF output is available only for MPEG 1 sampling frequencies (32, 44.1, 48 kHz).

2.11.4. Multiline Serial Audio Input (SDI, SDIB)

There are two multiline serial audio input interfaces (SDI, SDIB) each consisting of the three pins SIC, SII, SID, and SIBC, SIBI, SIBD. The firmware supports SDI for audio signals and SDIB for bitstream signals.

The interfaces can be configured as continuous bit stream or word-oriented inputs. For the MPEG bit-streams the word strobe pin SIBI must always be connected to V_{SS} , bits must be sent MSB first as created by the encoder. During enabling the DSP and its interfaces, it is strongly recommended to hold the SIBC Pin low.

In case of the Demand Mode in decoding applications (see Section 2.8.), the signal clock coming from the data source must be higher than the nominal data transmission rate (e.g. 128 kbit/s). Pin EOD is used to interrupt the data flow whenever the input buffer of the MAS 3587F is filled.

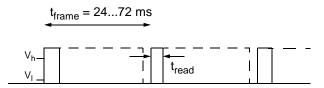
For controlling details please refer to Table 3–7 on page 34.

2.11.5. Multiline Serial Output (SDO)

The serial audio output interface of the MAS 3587F is a standard I²S-like interface consisting of the data lines SOD, the word strobe SOI and the clock signal SOC. It is possible to choose between two standard interface configurations (16-bit data words with word strobe time offset or 32-bit data words with inverted SOI-signal).

If the serial output generates 32 bits per audio sample, only the first 20 bits will carry valid audio data. The 12 trailing bits are set to zero by default.

2.11.6. Parallel Input/Output Interface (PIO)


The parallel interface of the MAS 3587F consists of the 8 data lines PI12...PI19 (MSB) and the control lines PCS, PR, PRTR, PRTW, and EOD. It can be used for data exchange with an external memory and for other special purposes as defined by the DSP software.

The PIO interface is always used for MPEG-data output. For the handshake protocol please refer to Section 4.6.3.7.

For MPEG-data input, the PIO interface is activated by setting bits 9,8 in D0:7f1 to 01. For the handshake protocol please refer to Section 4.6.3.6.

2.12. MPEG Synchronization Output

The signal at pin SYNC is set to '1' after the internal decoding for the MPEG header has been finished for one frame. The rising edge of this signal can be used as an interrupt input for the controller that triggers the read out of the control information and ancillary data. As soon as the MAS 3587F has received the SYNC reset command (see Section 3.3.1.12.), the SYNC signal is cleared. If the controller does not issue a reset command, the SYNC signal returns to '0' as soon as the decoding of the next MPEG frame is started. MPEG status and ancillary data become invalid until the frame is completely decoded and the signal at pin SYNC rises again. The controller must have finished reading all MPEG information before it becomes invalid. The MPEG Layer2/3 frame lengths are given in Table 2-2.

Fig. 2–10: Schematic timing of the signal at pin SYNC. The signal is cleared at t_{read} when the controller has issued a Clear SYNC Signal command (see Section 3.3.1.12.). If no command is issued, the signal returns to '0' just before the decoding of the next MPEG frame.

Table 2–2: Frame length in MPEG Layer 2/3

f _s /kHz	Frame Length Layer 2	Frame Length Layer 3
48	24 ms	24 ms
44.1	26.12 ms	26.12 ms
32	36 ms	36 ms
24	24 ms	24 ms
22.05	26.12 ms	26.12 ms
16	36 ms	36 ms
12	not available	48 ms
11.025	not available	52.24 ms
8	not available	72 ms

2.13. Default Operation

This sections refers to the standard operation mode "power-optimized solution" (see Section 2.9.3.).

2.13.1. Stand-by Functions

After applying the battery voltage, the system will remain stand-by, as long as the DCEN pin level is kept low. Due to the low stand-by current of CMOS circuits, the battery may remain connected to DCSOn/VSENSn at all times.

2.13.2. Power-Up of the DC/DC Converters and Reset

The battery voltage must be applied to pin DCSOn via the 22-µH inductor and, furthermore, to the sense pin VSENSn via a Schottky diode (see Fig. 2–7 on page 12).

For start-up, the pin DCEN must be connected via an external "start" push button to the I2CVDD supply, which is equivalent to the battery supply voltage (> 0.9 V) at start-up.

The supply at DCEN must be applied until the DC/DC converters have started up (signal at pin PUP) and then removed for normal operation.

As soon as the output voltage at VSENSn reaches the default voltage monitor reset level of 3.0 V, the respective internal PUPn bit will be set. When both PUPn bits are set, the signal at pin PUP will go high and can be used to start and reset the microcontroller.

Before transmitting any I^2C commands, the controller must issue a power-on reset to pin \overline{POR} . The separate supply pin I2CVDD assures that the I^2C interface works indepentently of the DSP or the audio codec. Now the desired supply voltage can be programmed at I^2C subaddress 76_{hex} (see Table 3–3 on page 20).

The signal at pin PUP will return to low only when both PUPn flags ($\rm I^2C$ subaddress $\rm 76_{hex}$) have returned to zero. Care must be taken when changing both DC/DC output voltages to higher values. In this case, both output voltages are momentarily insufficient to keep the PUPn flags up; the resulting dip in the signal at the PUP pin may in turn reset the microcontroller. To avoid this condition, only one DC/DC output voltage should be changed at a time. Before modifying the second voltage, the microcontroller must wait for the PUPn flag of the first voltage to be set again.

The operating mode (pulse width modulation or pulse frequency modulation, synchronized rectifier for higher efficiency) are controlled at I^2C subaddress 76_{hex} , the operating frequency at I^2C subaddress 77_{hex} .

2.13.3. Control of the Signal Processing

Before starting the DSP, the controller should check for a sufficient voltage supply (respective flag PUPn at I^2C subaddress 76_{hex}). The DSP is enabled by setting the appropriate bit in the Control register (I^2C subaddress $6a_{hex}$). The nominal frequency of the crystal oscillator must be written into D0:7f3. After an initialization phase of 5 ms, the DSP data registers can be accessed via I^2C (see Table 3–3 on page 20).

Input and output control is performed via memory location D0:7f1 and D0:7f2. The parallel interface (PIO) is the default setting for compressed data. The decoded audio can be routed to either the SPDIF, the SDO and the analog outputs. The output clock signal at pin CLKO is defined in D0:7f4. The specific settings for audio encoding are written to memory location D0:7f0 (continued).

All changes in the D0-memory cells become effective synchronously upon setting the LSB of Main I/O Control (see Table 3–7 on page 34).

The common way to start encoding or decoding is to perform all necessary settings and switch on the application by selecting the desired bit(s) in the Application Selection memory cell (D0:7f6) (see Table 3–6 on page 33).

The digital volume control (see Table 3–7 on page 34) is applied to the output signal of the DSP. The decoded audio data is by default available at the SPDIF 1 output interface (for MPEG 1 sampling frequencies).

The DSP does not have to be started if its functions are not needed, e.g. for routing audio via the A/D and the D/A converters through the codec part of the IC.

2.13.4. Start-up of the Audio Codec (see Table 3–3 on page 20)

Before enabling the audio codec, the controller should check for a sufficient voltage supply (respective flag PUPn at I²C subaddress 76_{hex}).

The audio codec is enabled by setting the appropriate bit at the Control register (I 2 C subaddress 6a_{hex}). After an initialization phase of 5 ms, the DSP data registers can be accessed via I 2 C. The A/D and the D/A converters must be switched on explicitly (00 00_{hex} at I 2 C subaddress 6c_{hex}). The D/A converters may either accept data from the A/D converters or the output of the DSP, or a mix of both (register 00 06_{hex} and 00 07_{hex} at I 2 C subaddress 6c_{hex}). Finally, an appropriate output volume (00 10_{hex} at I 2 C subaddress 6c_{hex}) must be selected.

2.13.5. Power-Down (see Table 3-3 on page 20)

All analog outputs should be muted and the A/D and the D/A converters must be switched off (register 00 10_{hex} and 00 00_{hex} at $\rm I^2C$ subaddress 6c_{hex}). The DSP and the audio codec must be disabled (clear DSP_EN and CODEC_EN bits in the Control register, $\rm I^2C$ subaddress 6a_{hex}). By clearing both DC/DC enable flags in the Control register ($\rm I^2C$ subaddress 6a_{hex}), the microcontroller can power down the complete system.

3. I²C Interface

3.1. General

3.1.1. Device Address

Controlling the MAS 3587F is done via an I^2C slave interface. The device addresses are $3C/3E_{hex}$ (device write) and $3D/3F_{hex}$ (device read) as shown in Table 3–1. The device address pair $3C/3D_{hex}$ applies if the DVS pin is connected to VSS, the device address pair $3E/3F_{hex}$ applies if the DVS pin is connected to VDD.

Table 3-1: I²C device address

A7	A6	A5	A4	А3	A2	A1	W/R
0	0	1	1	1	1	DVS	0/1

I²C clock synchronization is used to slow down the interface if required.

3.1.2. I²C Registers and Subaddresses

The interface uses one level of subaddresses. The MAS 3587F interface has 7 subaddresses allocated for the corresponding I^2C registers. The registers can be divided into three categories as shown in Table 3–2.

The address 6A_{hex} is used for basic control, i.e. reset and task select. The other addresses are used for data transfer from/to the MAS 3587F.

The I²C registers of the MAS 3587F are 16 bits wide, the MSB is denoted as bit[15]. Transmissions via I²C bus have to take place in 16-bit words (two byte transfers, MSB sent first); thus, for each register access, two 8-bit data words must be sent/received via I²C bus.

Table 3-2: I²C Subaddresses

Sub- address (hex)	I ² C- Register Name	Function					
Direct Co	Direct Configuration						
6A	CON- TROL	Controller writes to MAS 3587F control register					
76	DCCF	Controller writes to first DC/DC configuration register					
77	DCFR	Controller writes to second DC/DC config reg.					
DSP Core	e Access						
68	DATA (WRITE)	Controller writes to MAS 3587F DSP					
69	DATA (READ)	Controller reads from MAS 3587F DSP					
Codec Ad	ccess						
6C	CODEC (WRITE)	Controller writes to MAS 3587F codec register					
6D	CODEC (READ)	Controller reads from MAS 3587F codec register					

3.1.3. Naming Convention

The description of the various controller commands uses the following formalism:

- Abbreviations used in the following descriptions:
 - a address
 - d data value
 - n count value
 - o offset value
 - r register number
 - x don't care
- A data value is split into 4-bit nibbles which are numbered beginning with 0 for the least significant nibble
- Data values in nibbles are always shown in hexadecimal notation.
- A hexadecimal 20-bit number **d** is written, e.g. as $\mathbf{d} = 17C63_{\text{hex}}$, its five nibbles are $d0 = 3_{\text{hex}}$, $d1 = 6_{\text{hex}}$, $d2 = C_{\text{hex}}$, $d3 = 7_{\text{hex}}$, and $d4 = 1_{\text{hex}}$.
- Variables used in the following descriptions:

I²C address:

 $\begin{array}{cc} \text{DW} & 3\text{C}/3\text{E}_{\text{hex}} \\ \text{DR} & 3\text{D}/3\text{F}_{\text{hex}} \end{array}$

DSP core:

data_write 68_{hex} data_read 69_{hex}

Codec:

codec_write 6C_{hex} codec_read 6D_{hex}

- Bus signals

S Start P Stop

A ACK = Acknowledge N NAK = Not acknowledge

W Wait = I2C Clockline is held low,

while the MAS 3587F is processing

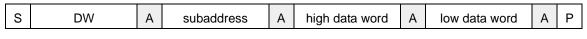
the I2C command

- Symbols in the telegram examples

< Start Condition

> Stop
dd data bytes

xx ignore


All telegram numbers are hexadecimal, data originating from the MAS 3587F are greyed.

Example:

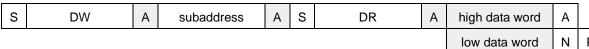

<DW 68 dd dd> write data to DSP
<DW 69 <DR dd dd> read data from DSP and stop with NAK

Fig. 3–1 shows I²C bus protocols for write and read operations of the interface; the read operations require an extra start condition and repetition of the chip address with the device read command (DR). Fields with signals/data originating from the MAS 3587F are marked by a gray background. Note that in some cases the data reading process must be concluded by a NAK condition.

Example: I²C write access

Example: I²C read access

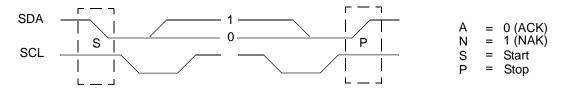


Fig. 3–1: Example of an I²C bus protocol for the MAS 3587F (MSB first; data must be stable while clock is high)

3.2. Direct Configuration Registers

The task selection of the DSP and the DC/DC converters are controlled in the direct configuration registers Control, DCCF, and DCFR.

3.2.1. Write Direct Configuration Registers

The write protocol for the direct configuration registers only consists of device address, subaddress and one 16-bit data word.

3.2.2. Read Direct Configuration Register

1) send subaddress

S DW A subaddress A P

2) get register value

To check the PUP1 and PUP2 power-up flags, it is necessary to read back the content of the direct configuration registers.

Table 3–3: Direct Configuration Registers

I ² C Sub- address (hex)	Function	Name					
6A	Control Re	CONTROL					
	bit[15:14]		Analog Su	pply Voltage Range			
		Code 00 01 10 11	AGNDC 1.1 V 1.3 V 1.6 V reserved	recommended for voltage range of AVDD 2.0 2.4 V (reset) 2.4 3.0 V 3.0 3.6 V reserved			
	Higher volt						
	bit[13] bit[12]			DC/DC 2 (reset=1) DC/DC 1 (reset=1)			
	Both DC/D	C conver	ters are swite	ched on by default.			
	bit[11] bit[10]		enable enable				
	For normal operation (MPEG-decoding and D/A conversion), both, the DSP core and the audio codec have to be enabled after the power-up procedure. The DSP can be left off if an audio signal is routed from the analog inputs to the analog outputs (set bit[15] in codec register 00 0F _{hex}). The audio codec can be left off if the DSP uses digital inputs and outputs only.						
	bit[9] bit[8]						
	bit[7] ¹⁾ bit[6:0]			ed, must be set to zero ed, must be set to zero			
1) usage in	the next vers	sion: enal	ble XTAL inp	ut clock divider (extended crystal range up to 2	28 MHz)		

²⁰ Micronas

Table 3–3: Direct Configuration Registers

I ² C Sub- address (hex)	Function			Name		
76	DCCF Reg	ister (reset :	= 5050 _{hex})			DCCF
	DC/DC Co	nverter 2				
	bit[15]	PUP2: Vol	tage monitor 2	flag (readb	ack)	
	bit[14:11]	Voltage be	tween VSENS	S2 and DCS	G2	
		Code 1111 1110 1101 1100 1011 1000 1011 1000 0111 0110 0101 0101 0010 00011 000011	Nominal output volt. 3.5 V 3.4 V 3.3 V 3.2 V 3.1 V 3.0 V 2.9 V 2.8 V 2.7 V 2.6 V 2.5 V 2.4 V 2.3 V 2.2 V 2.1 V 2.0 V	set level of PUP2 3.4 V 3.3 V 3.2 V 3.1 V 3.0 V 2.9 V 2.8 V 2.7 V 2.6 V 2.5 V 2.4 V 2.3 V 2.2 V 2.1 V 2.0 V 1.9 V	reset level of PUP2 3.3 V 3.2 V 3.1 V 3.0 V 2.9 V 2.8 V (reset) 2.7 V 2.6 V 2.5 V 2.4 V 2.3 V 2.2 V 2.1 V 2.0 V 1.9 V 1.8 V	
	bit[10]	Mode 1 0	Pulse frequ Pulse width		ation (PFM) (PWM) (reset)	
	bit[9]	reserved, i				
	bit[8]	Disable sy 1 0	nchronized red disable synd enable synd			
		the selected			nus, if the battery voltage is put voltage will exceed the	
	1) refer to S	Section 4.6.2	on page 59			

Table 3–3: Direct Configuration Registers

I ² C Sub- address (hex)	Function			Name
76	DC/DC C	onverter 1		
(continued)	bit[7]			
	bit[6:3]	Voltage b	etween VSENS1 and DCSG1 (see table above)	
	bit[2]	Mode 1 0	Pulse frequency modulation (PFM) Pulse width modulation (PWM) (reset)	
	bit[1]	reserved,	must be set to zero	
	bit[0]	Disable sy 1 0	ynchronized rectifier disable synchronized recitifier enable synchronized recitifier (reset)	
	Note, that main refe verter is u			
		an the selecte	s are up-converters only. Thus, if the battery voltage is ed nominal voltage, the output voltage will exceed the	

Table 3–3: Direct Configuration Registers

I ² C Sub- address (hex)	Function		Name				
77	DCFR Reg	jister (reset =	= 00 _{hex})				DCFR
	Battery Vo	ltage Monito	or				_
	bit[15]						
	bit[14]	Number of 0 1	1 cell (ra		.1.5 V) (reset) 3.0 V)		
	bit[13:10]	Voltage thr 1111 1110 0010 0001 0000	1 cell 1.5 1.45 0.85 0.8	2 ce 3.0 \ 2.9 \ 1.7 \ 1.6 \	/ /	eset\	
	bit[9:8]	Reserved,					
	The result is stable after 1 ms after enabling. The setup time for switching between two thresholds is negligibly small.						
	For power management reasons, the battery voltage monitor should be switched off by setting bit[13:10] to zero when the measurement is completed.						
	DC/DC Converter Frequency Control (PWM)						
	bit[7:4]	Reserved, must be set to 0					
	bit[3:0]	Frequency					
		0111 0110 0101 0100 0011 0010 0001 0000 1111 1110 1101 1101 1011 1010 1001	315.1 323.4 332.1 341.3 351.1 361.4 372.4 384.0 396.4 409.6 423.7 438.9 455.1 472.6 491.5 512.0	289.5 297.1 305.1 313.6 322.6 332.0 342.1 352.8 364.2 376.3 389.3 403.2 418.1 434.2 451.6 470.4	18.432 MHz 297.3 kHz 307.2 kHz 317.8 kHz 329.1 kHz 341.3 kHz 354.5 kHz 368.6 kHz 384.0 kHz (re 400.7 kHz 418.9 kHz 438.9 kHz 460.8 kHz 485.1 kHz 512.0 kHz 576.0 kHz		
	dress 6A _{he} from the cr clock is use	_x is zero), the ystal frequen	e clock for cy (nomin	the DC/D al 18.432	C converters is	ster at I ² C-subad- directly derived se, the synthesizer we column in	

3.3. DSP Core

The DSP Core of the MAS 3587F has two RAM banks denoted D0 and D1. The word size is 20 bits. All RAM addresses can be accessed in a 20-bit or a 16-bit mode via I²C bus. For fast access of internal DSP states, the processor core also has an address space of 256 data registers. All register and RAM addresses are given in hexadecimal notation.

3.3.1. Access Protocol

The access of the DSP Core in the MAS 3587F uses a special command syntax. The commands are executed by the DSP during its normal operation without any loss or interruption of the incoming data or outgoing audio data stream. These I²C commands allow the controller accessing the internal DSP registers and RAM cells and thus, monitoring internal states and setting the parameters for the DSP firmware. This access

also provides a download option for alternative software modules.

The MAS 3587F firmware scans the I²C interface periodically and checks for pending or new commands. However, due to some time critical firmware parts, a certain latency time for the response has to be expected. The theoretical worst case response time does not exceed 4 ms. However, the typical response time is less than 0.5 ms.

Table 3–4 gives an overview over the different commands which the DSP Core receives via the I²C data register. The "Code" is always the first data nibble transmitted after the "data_write" subaddress byte. A second auxiliary code nibble is used for the short memory (16-bit) access commands.

Due to the 16-bit width of the I^2C data register, all actions transmit telegrams with multiples of 16 data bits.

S	DW	W	Α	\$68	W	Α	code,	Α	,	Α	,
---	----	---	---	------	---	---	-------	---	---	---	---

Fig. 3-2: General core access protocol

Table 3-4: Basic controller command codes

Code (hex)	Command	Function
03	Run	Start execution of an internal program. <i>Run</i> with start address 0 means freeze the operating system.
5	Read Ancillary Data	The controller reads a block of MPEG Ancillary Data from the MAS 3587F
6	Fast Program Download	The controller downloads custom software via the PIO interface
Α	Read from Register	The controller reads an internal register of the MAS 3587F
В	Write to Register	The controller writes an internal register of the MAS 3587F
С	Read D0 Memory	The controller reads a block of the DSP memory
D	Read D1 Memory	The controller reads a block of the DSP memory
Е	Write D0 Memory	The controller writes a block of the DSP memory
F	Write D1 Memory	The controller writes a block of the DSP memory

3.3.1.1. Run and Freeze

The *Run* command causes the start of a program part at address $\mathbf{a} = (a3,a2,a1,a0)$. Since nibble a3 is also the command code (see Table 3–4), it is restricted to values between 0 and 3.

If the start address is $1000_{\text{hex}} \le \mathbf{a} < 3\text{FFF}_{\text{hex}}$ and the respective RAM area has been configured as program RAM (see Table 3–5 on page 32), the MAS 3587F continues execution with a custom program already downloaded to this area.

Example 1: Start program execution at address 345_{hex}:

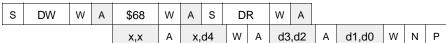
<DW 68 03 45>

Example 2: Start execution of a downloaded code at address 3000_{hex}:

<DW 68 30 00>

Freeze is a special run command with start address 0. It suspends all normal program execution. The operating system will enter an idle loop so that all registers and memory cells can be watched. This state is useful for operations like downloading code or contents of memory cells because the internal program cannot overwrite these values. This freezing will be required if alternative software is downloaded into the internal RAM of the MAS 3587F.

Freeze has the following I²C protocol:


<DW 68 00 00>

3.3.1.2. Read Register (Code Ahex)

1) send command

2) get register value

Some registers (r = r1, r0 in the figure above) are direct control inputs for various hardware blocks, others control the internal program flow. In contrast to memory cells, registers cannot be accessed as a block but must always be addressed individually.

Example:

Read the content of the PIO data register (C8_{hex}):

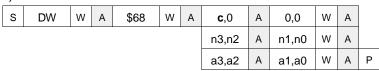
<DW 68 ac 80> define register cpw 69 <DR xx xd dd dd> and read

3.3.1.3. Write Register (Code Bhex)

S	DW	W	Α	\$68	W	Α	b ,r1	Α	r0,d4	W	Α	
							d3,d2	Α	d1,d0	W	Α	Р

The controller writes the 20-bit value ($\mathbf{d} = d4, d3, d2, d1, d0$) into the MAS 3587F register ($\mathbf{r} = r1, r0$).

Example: Writing the value 81234_{hex} into the register with the number AA_{hex}:


<DW 68 ba a8 12 34>

In Table 3-5 on page 32 the registers of interest with respect to the firmware are described in detail.

3.3.1.4. Read D0 Memory (Code Chex)

The MAS 3587F has 2 memory areas of 2048 words called D0 and D1 memory. Both memory areas have different read and write commands. All D0/D1 memory addresses are given in hexadecimal notation.

1) send command

2) get memory value

...repeat for n data values...

The *Read D0 Memory* command gives the controller access to all 20 bits of D0 memory cells of the MAS 3587F. The telegram to read 3 words starting at location D0:100 is

<DW 68 c0 00 00 03 01 00> <DW 69 <DR xx xd dd dd xx xd dd dd xx xd dd dd>

3.3.1.5. Short Read D0 Memory (Code C4_{hex})

Because most cells in the user interface are only 16 bits wide, it is faster and more convenient to access the memory locations with a special 16 bit mode for reading:

1) send command

S	DW	W	Α	\$68	W	Α	c ,4	Α	0,0	W	Α	
							n3,n2	Α	n1,n0	W	Α	
							a3,a2	Α	a1,a0	W	Α	Р

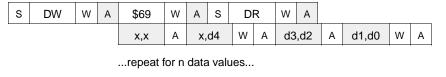
2) get memory value

...repeat for n data values...

d3,d2 A d1,d0 W N P

This command is similar to the normal 20 bit read command and uses the same command code C_{hex} , however it is followed by a 4_{hex} rather than a 0_{hex} .

3.3.1.6. Read D1 Memory (Code Dhex)


1) send command

S	DW	W	Α	\$68	W	Α	d ,0	Α	0,0	W	Α	
							n3,n2	Α	n1,n0	W	Α	
							a3,a2	Α	a1,a0	W	Α	Р

Α

X,X

2) get memory value

WA

x,d4

The Read D1 Memory command is provided to get information from D1 memory cells of the MAS 3587F.

d3,d2

Α

d1,d0

WNP

Micronas

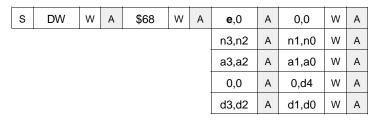
3.3.1.7. Short Read D1 Memory (Code D4hex)

1) send command

S	DW	W	Α	\$68	W	Α	d ,4	Α	0,0	W	Α	
			n3,n2	Α	n1,n0	W	Α					
						a3,a2	Α	a1,a0	W	Α	Р	

2) get memory value

...repeat for n data values...


d3,d2 A	d1,d0	W	N	Р
---------	-------	---	---	---

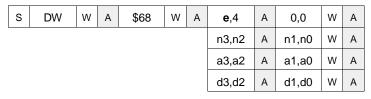
The Short Read D1 Memory command works similar to the Read D1 Memory command but with the code D_{hex} followed by a 4_{hex} .

Example: Read 16 bits of D1:123 has the following I²C protocol:

<DW 68 d4 00 read 16 bits from D1
 00 01 1 word to be read
 01 23 start address
 <DW 69 DR dd dd> start reading

3.3.1.8. Write D0 Memory (Code E_{hex})

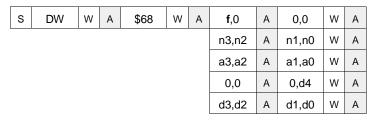
...repeat for n data values...


0,0	Α	0,d4	W	Α	
d3,d2	Α	d1,d0	W	Α	Р

With the Write D0 Memory command n 20-bit memory cells in D0 can be initialized with new data.

Example: Write 80234_{hex} to D0:456 has the following I²C protocol:

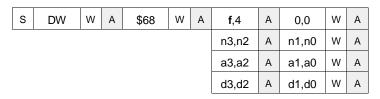
<DW 68 e0 00 write D1 memory 00 01 1 word to write 04 56 start address 00 08 value = 80234_{hex}


3.3.1.9. Short Write D0 Memory (Code E4hex)

...repeat for n data values...

For faster access only the lower 16 bits of each memory cell are accessed. The 4 MSBs of the cell are cleared.

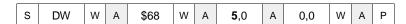
3.3.1.10. Write D1 Memory (Code Fhex)



...repeat for n data values...

0,0	Α	0,d4	W	Α	
d3,d2	Α	d1,d0	W	Α	Р

For further details, see the Write D0 Memory command.


3.3.1.11. Short Write D1 Memory (Code F4_{hex})

...repeat for n data values...

Only the 16 lower bits of each memory cell are written, the upper 4 bits are cleared.

3.3.1.12. Clear SYNC Signal (Code 5_{hex})

After the successful decoding of an MPEG frame the signal at pin SYNC rises and thus generates an interrupt event for the microcontroller. Issuing this command lets the signal at pin SYNC return to '0'.

3.3.1.13. Default Read

The *Default Read* command is the fastest way to get information from the MAS 3587F. Executing the *Default Read* in a polling loop can be used to detect a special state during decoding.

The *Default Read* command immediately returns the lower 16 bit content of a specific RAM location as defined by the pointer D0:ffb. The pointer must be loaded before the first *Default Read* action occurs. If the MSB of the pointer is set, the pointer refers to a memory location in D1 rather than to one in D0.

Example: For watching D1:123 the pointer D0:ffb must be loaded with 8123_{hex}:

<dw< th=""><th>68</th><th>e0</th><th>00</th><th>write to D0 memory</th></dw<>	68	e0	00	write to D0 memory
	00	01		1 word to write
	0f	fb		start address ffb
	00	80		value = 8
	01	23	>	0123 _{hex}

Now Default Read commands can be issued as often as desired:

3.3.1.14. Fast Program Download

The Fast Program Download command introduces a data transfer via the parallel port. $\mathbf{n} = \text{n2,n1,n0}$ denotes the number of 20-bit data words to be transferred, $\mathbf{a} = \text{a3,a2,a1,a0}$ gives the start address. The data at the PIO port must be padded with three 0-nibbles to get multiples of 16 bits.

The download must be initiated in the following sequence:

- Issue Freeze command
- Stop all DMA transfers
- Issue Fast Program Download command
- Download code via PIO interface
- Switch appropriate memory area to act as program RAM (register ED_{hex})
- Issue Run command to start program execution at entry point of downloaded code

Example for *Fast Program Download* command: Download 4 words starting at D0:1400:

(stop all data transfers)

<dw< th=""><th>68</th><th>00</th><th>00></th><th>Freeze</th></dw<>	68	00	00>	Freeze
<dw< th=""><th></th><th>60 00:</th><th></th><th>initiate download of 4 words start at address D0:1000</th></dw<>		60 00:		initiate download of 4 words start at address D0:1000

Now transfer 8-bit words via the parallel PIO port:

```
0,0 0,d4 d3,d2 d1,d0

0,0 0,d4 d3,d2 d1,d0

0,0 0,d4 d3,d2 d1,d0

0,0 0,d4 d3,d2 d1,d0

<DW 68 be d0 00 03> reconfigure memory from D0:1000 to D0:17ff

<DW 68 10 00> start program execution at address D0:1000
```

3.3.1.15. Serial Program Download

Program downloads may also be performed via the I²C interface by using the Write D0/1 Memory commands. A similar command sequence as in the Fast Program Download (stop transfers, *Freeze...*) applies.

31

3.3.2. List of DSP Registers

Table 3–5 lists the registers used in the standard firmware (MPEG) and for the download option (Download). **Note:** Registers not given in the tables must not be written.

Table 3-5: DSP Register Table

Address (hex)	R/W	FunctionMode	Default (hex)	Name	
6B	R/W	Configuration of Variable RAM Areas Download	0000	PSelect_Shadow	
		Affected RAM area bit[19]			
		This register is used to switch four RAM areas from data to program usage and thus enabling the DSP's program counter to access downloaded program code stored at these locations. For normal operation (firmware in ROM) this register must be kept to zero.			
		For details of program code download please refer to Section 3.3.1.14.			
56	R	S/PDIF ¹⁾ Input Channel Status Bits MPEG bit[15:0] channel status bits of incoming signal.	0000	SPIChannelStatus	
1) IEC 958 Amendment1, "Digital Audio Interface"					

3.3.3. List of DSP Memory Cells

Among the user interface control memory cells there are some which have a global meaning and some which control application specific parts of the DSP core. In the tables below this is reflected by the keywords All, Encoder and Decoder.

3.3.3.1. Application Select and Running

The AppSelect cell is a global user interface configuration cell, which has to be written in order to start a specific application.

The AppRunning cell is a global user interface status cell, which indicates, which application loop is actually running.

The meaning of the bits in both cells is given in Table 3-6

Following steps have to be performed to switch between applications:

write "0" to AppSelect

- check AppRunning for "0"
- apply necessary/wanted Control settings
- write value to AppSelect according to Table 3–6

3.3.3.2. Application Specific Control

The configuration of the MPEG Encoder and Decoder firmware is done via the control memory cells described in Table 3–7. The changes applied to any of the control memory cells have to be validated by setting bit[0] of memory cell Main I/O Control except when the application is started by writing the AppSelect memory cell. The validate bit will be reset automatically after the changes have been taken over by the DSP

The status memory cells are used to read the encoder/ decoder status and to get additional MPEG bitstream information.

Note: Memory cells not given in the tables must not be written.

Table 3–6: Application Control and Status

Memory Address (hex)	Function	Name
D0:7f6	Application Selection All	AppSelect
	AppSelect is used for selecting an application. This is done by setting the appropriate bit to one. It is principally allowed to set more than one bit to one e.g. setting AppSelect to 0xc will select all MPEG audio decoders. The auto-detection feature will automatically detect the Layer 2 or Layer 3 data. When bit[0]/bit[1] are asserted, the DSP begins to loop inside the OS loop/Top Leve loop respectively.	
	It is recomended to perform the necessary settings for the firmware before the application is started by writing this memory cell.	•
	bit[6] MPEG Layer 3 Encoder bit[3] MPEG Layer 3 Decoder bit[2] MPEG Layer 2 Decoder bit[1] Top Level bit[0] Operating System	
D0:7f7	Application Running All	AppRunning
	The AppRunning cell is a global user interface status cell, that indicates which application loop is actually running. After writing AppSelect, it has to be checked whether the appropriate bit(s) in the AppRunning cell is set, prior to any changes in the configuration registers or memory cells	
	bit[6] MPEG Layer 3 Encoder bit[3] MPEG Layer 3 Decoder bit[2] MPEG Layer 2 Decoder bit[1] Top Level bit[0] Operating System	
D0:7f0	Encoder Control (reset = a0264 _{hex}) Encoder	EncoderControl
	EncoderControl is used for selecting the quality level, sample frequency and other options for encoding.	
	bit[19:17] Quality Setting 000 0 lowest bitrate / quality 001 1 010 2 011 3 100 4 101 (reset) 5 recommended quality The maximum bitrate is limited to 192 kbit/s, whereas the average bitrate highly depends on the audio source. At the recommanded quality setting and a sampling rate of 44.1 kHz, the averag bitrate is typically found in the range from 130 to 140 kBit/s. 110 6 111 7 highest bitrate / quality bit[16:12] Reserved, must be set to zero	e

Table 3-7: D0 Control Memory Cells

Memory Address (hex)	Function					Name
D0:7f0 (continued)	bit[11:10]	Sampling F 00 (reset) 01 10 11	requency (kHz)	MPEG 1 44.1 48 32 reserved	MPEG 2 22.05 24 16	
	bit[9]	MPEG Sele 0 1 (reset)	ection MPEG 2 MPEG 1			
	Bit[11:9] are case of S/F auto detect					
	bit[8]	CRC proted 0 (reset) 1	etion enable CRC protection disable CRC protection			
	bit[7:6]	Channel Mo 00 01 (reset) 10 11	ode reserved joint stereo reserved single channel			
	bit[5]	Channel Mo 0 1 (reset)	ode Extension (for joint sto disable MS-Stereo enco enable MS-Stereo enco	ding		
	bit[4]	Reserved, must be set to zero				
	bit[3]	Copyright 0 (reset) 1	bit stream is not copyrig bit stream is copyright p			
	bit[2]	Copy / Orig 0 1 (reset)	inal bit stream is a copy bit stream is an original			
	bit[1:0]	Emphasis 00 (reset) 01 10 11	none 50/15 μs reserved CCITT J.17			

MAS 3587F

Table 3-7: D0 Control Memory Cells

Memory Address (hex)	dress			Name	
D0:7f1	Main I/O C IOControlM interface ar mode the c interface SI are used.	IOControlMain			
	bit[15]	Reserved. i	must be set to zero		
	bit[14]		I output clock (SOC) do not invert SOC invert SOC		
	bit[13:12]	Reserved, i	must be set to zero		
	bit[11]	Serial data 0 (reset) 1	output delay no additional delay (reset) additional delay of data related to word strobe		
	bit[10]	Reserved, ı	must be set to zero		
	bit[9:8]	Encoder: A 00 01 (reset) 10 11	Audio Input Select SDI input with PLL SDI input without PLL S/PDIF input reserved		
		Decoder: E 00 01 (reset) 10 11	Data Input Select serial input at interface B parallel input at PIO pins PI[1912] reserved reserved		
	bit[7]	Encoder: In 0 (reset)	nvert serial input clock (SIC) do not invert SIC invert SIC		
	bit[6]	Encoder: S 0 (reset) 1	Serial data input delay no additional delay (reset) additional delay of data related to word strobe		
	bit[5]	SDO Word 0 1 (reset)	Strobe Invert do not invert invert outgoing word strobe signal		
	bit[4]	Bits per Sar 0 (reset) 1	mple at SDO 32 bits/sample 16 bits/sample		
	bit[3]	Encoder: 0 0 (reset) 1	Clock setting MPEG 1 MPEG 2		
	bit[3]	May only b	e set for MPEG 2 encoding.		
	bit[2]	Serial data 0 1 (reset)	input interface B clock invert (pin SIBC) not inverted (data latched at rising clock edge) incoming clock signal is inverted (data latched at falling clock edge)		

Table 3-7: D0 Control Memory Cells

Memory Address (hex)	Function			Name		
D0:7f1 (continued)	Main I/O					
	bit[1]	Decoder:				
		0 (reset) 1	DEMAND MODE (PLL off, MAS 3587F is clock master) BROADCAST MODE (PLL on, clock of MAS 3587F			
			locks on data stream)			
		Encoder: S 0 (reset) 1	SDI Word Strobe Invert do not invert invert incoming word strobe signal			
	Note: L/R for encode versions.					
	bit[0]	Validate 0 (reset) 1	changes in control memory will be ignored changes in control memory will become effective			
	Bit[0] is re should se with the d					
D0:7f2	Interface	InterfaceControl				
	This conti the clock impedance					
	bit[6]	S/PDIF inp 0 (reset) 1	ut selection select S/PDIF input 1 select S/PDIF input 2			
	bit[5]	Enable/disa 0 (reset) 1	able S/PDIF output enable S/PDIF output S/PDIF output off (tristate)			
	Note that quencies					
	bit[4]	Reserved,	must be set to zero			
	bit[3]	Enable/disa 0 1 (reset)	able serial data output SDO SDO on SDO off			
	bit[2]	Output clod 0 1 (reset)	ck characteristic (SDO and S/PDIF outputs) low impedance high impedance			
	bit[1]	reserved, r	nust be set to zero			
	bit[0]	Enable/disa 0 1 (reset)	able external serial data input SDI use external audio source (SDI) use internal A/D converter as audio source			
	Both digit outgoing					
	Changes					

Table 3-7: D0 Control Memory Cells

Memory Address (hex)	Function	Name
D0:7f3	Oscillator Frequency (reset = 18432 _{dec}) All	OfreqControl
	bit[19:0] oscillator frequency in kHz	
	In order to achieve a correct internal operating frequency of the DSP, the nominal crystal frequency has to be deposited into this memory cell.	
	Changes at this memory address must be validated by setting bit 0 of D0:7f1.	
D0:7f4	Output Clock Configuration (pin CLKO) (reset = 80000 _{hex}) All	OutClkConfig
	bit[19] CLKO configuration 0 output clock signal at CLKO 1 (reset) CLKO is tristate	
	The CLKO output pin of the MAS 3587F can be disabled via bit [19].	
	bit[18] Reserved, must be set to zero	
	bit[17] Additional division by 2 if scaler is on (bit[8] cleared) 0 (reset) oversampling factor 512/768 1 oversampling factor 256/384	
	bit[16:9] Reserved, must be set to zero	
	bit[8] Output clock scaler 0 (reset) set output clock according to audio sample rate (see Table 2–1) 1 output clock fixed at 24.576 or 22.5792 MHz	
	For a list of output frequencies at pin CLKO please refer to Table 2–1.	
	bit[7:0] reserved, must be set to zero	
	Changes at this memory address must be validated by setting bit[0] of D0:7f1.	
D0:7f8	S/PDIF ¹⁾ channel status bits category code setting (reset = 8004_{hex}) All	SpdOutBits
D0:7f9	Soft Mute (reset = 0 _{hex}) Decoder	SoftMute
	bit[19:0] 0 (reset) mute off 1 mute on	
D0:7fc	Volume output control: left \rightarrow left gain (reset = 80000_{hex}) Decoder	out_LL
D0:7fd	Volume output control: left \rightarrow right gain (reset = 0_{hex}) Decoder	out_LR
D0:7fe	$\label{eq:Volume output control: right one output control: right of left gain (reset = 0_{hex}) \qquad \qquad \textbf{Decoder}$	out_RL
D0:7ff	Volume control: right → right gain (reset = 80000 _{hex}) Decoder	out_RR
1) IEC 958	Amendment1, "Digital Audio Interface"	

Table 3-8: D0 Status Memory Cells

Memory Address	Function			Name
D0:FD0	MPEG Fra	me Counter	All	MPEGFrameCount
	bit[19:0]	number of MPEG frames after synchronization		
	decoded. V invalid head '0'. In enco	er will be incremented with every new frame that is encoded/ Vith an invalid MPEG bit stream at its input while decoding (e.g der is detected), the MAS 3587F resets the MPEGFrameCour ding mode, the counter is reset on audio data timeouts and af he encoder.	it to	
D0:FD1	MPEG Hea	ader and Status Information	All	MPEGStatus1
	bit[15]	reserved, must be set to zero		
	bit[14:13]	MPEG ID, Bits 12, 11 of the MPEG header 00 MPEG 2.5 (decoding only) 01 reserved 10 MPEG 2 11 MPEG 1		
	bit[12:11]	Bits 14 and 13 of the MPEG header 00 reserved 01 Layer 3 10 Layer 2 (decoding only) 11 Layer 1 (decoding only)		
	bit[10]	CRC Protection 0 bitstream protected by CRC 1 bitstream not protected by CRC		
	bit[9:2]	Reserved		
	bit[1]	CRC error (decoding only) 0 no CRC error 1 CRC error		
	bit[0]	Invalid frame (decoding only) 0 no invalid frame 1 invalid frame		
	tus bits. It v	on contains bits 1511 of the original MPEG header and other will be set each frame directly after the header has been encoron the bit stream.		

Table 3-8: D0 Status Memory Cells

Memory Address	Function								Name
D0:FD2	MPEG Hea	ader Informat	ion				Α	AII	MPEGStatus2
	bit[15:12]	MPEG Laye	er 2/3 Bitrate	!					
			MPEG1	, L2	MPE	G1, L3	MPEG2, L2/3	3	
		0000 0001 0010 0011 0100 0101 0110 0111 1000	free 32 48 56 64 80 96 112 128		free 32 40 48 56 64 80 96 112		free 8 16 24 32 40 48 56 64		
		1001 1010 1011 1100 1101 1110 1111	160 192 224 256 320 384 forbidde		128 160 192 224 256 320 forbid	dden	80 96 112 128 144 160 forbidden		
	bit[11:10]	Sampling fr	equencies ir	n Hz					
			MPEG1	MPE	G2	MPEG2	2.5		
		00 01 10 11	44100 48000 32000 reserved	2205 2400 1600 reser	0 0	11025 12000 8000 reserve	d		
	bit[9]	Padding Bit							
	bit[8]	reserved							
	bit[7:6]	Mode 00 01 10	stereo joint_stereo dual chann single char	iel	sity st	ereo / m/s	s stereo)		
	bit[5:4]	Mode exten	sion (applies	s to joir	nt stere	eo only)			
		00 01 10 11	intensity sto off on off on	ereo		m/s ster off off on on	reo		
	bit[3]	Copyright P 0/1	rotect Bit not copyrig	ht prot	ected/	copyright	protected		
	bit[2]	Copy/Origin 0/1							

Table 3-8: D0 Status Memory Cells

Memory Address	Function	Name
D0:FD2	MPEG Header Information, continued	MPEGStatus2
(continued)	bit[1:0] Emphasis, indicates the type of emphasis 00 none 01 50/15 μs 10 reserved 11 CCITT J.17	
	This memory cell contains the 16 LSBs of the MPEG header. It will be set directly after synchronizing to the bit stream.	
D0:FD3	MPEG CRC Error Counter Decoder	CRCErrorCount
	The counter will be increased by each CRC error detected in the MPEG bisstream. It will not be reset when losing the synchronization.	
D0:FD4	Number of Bits in Ancillary Data Decoder	NumberOfAncillary-
	Number of valid ancillary bits in the current MPEG frame.	Bits
D0:FD5	Ancillary Data Decoder	AncillaryData
 D0:FF1	(see Section 3.3.4. on page 40).	

3.3.4. Ancillary Data

The memory fields D0:FD5...D0:ff1 contain the ancillary data. It is organized in 28 words of 16 bit each. The last ancillary bit of a frame is placed at bit 0 in D0:FD5. The position of the first ancillary data bit received can be located via the content of NumberO-fAncillaryBits because

int[(NumberOfAncillaryBits-1)/16] + 1

of memory words are used.

Example:

First get the content of 'NumberOfAncillaryBits'

```
<DW 68 c4 00 00 01 0f d4> <DW 69 <DR dd dd>
```

Assume that the MAS 3587F has received 19 ancillary data bits. Therefore, it is necessary to read two 16-bit words:

```
<DW 68 c4 00 Short Read from D0
00 02 0f d5> read 2 words starting at D0:fd5
<DW 69 <DR dd dd
dd dd>
receive the 2 16-bit words
```

The first bit received from the MPEG source is at position 2 of D0:FD6; the last bit received is at the LSB of D0:fd5.

3.3.5. DSP Volume Control

The digital baseband volume matrix is used for controlling the digital gain of the decoder as shown in Fig. 3–3. This volume control is effective on both, the digital audio output and the data stream to the D/A converters. The values are in 20-bit 2's complement notation.

Table 3–9 shows the proposed settings for the 4 volume matrix coefficients for stereo, left and right mono. The gain factors are given in fixed point notation $(-1.0\times2^{19}=80000_{hex})$.

The DSP volume control is available in Decoder Mode only.

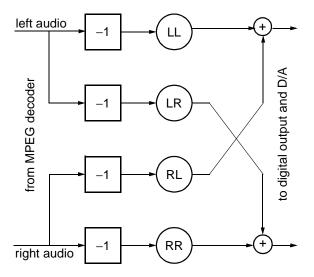


Fig. 3-3: Digital volume matrix

Table 3–9: Settings for the digital volume matrix

Memory	D0:354	D0:355	D0:356	D0:357
Name	LL	LR	RL	RR
Stereo (default)	-1.0	0	0	-1.0
Mono left	-1.0	-1.0	0	0
Mono right	0	0	-1.0	-1.0

If channels are mixed, care must be taken to prevent clipping at high amplitudes. Therefore the sum of the absolute values of coefficients for one output channel should be less than 1.0.

For normal operating conditions it is recommended to use the main volume control of the audio codec instead (register $00\ 10_{hex}$ of the audio codec).

Table 3–10: Content of D0:fd5 after reception of 19 ancillary bits.

D0:fd5	MSB	14	13	12	11	10	9	8	7	6	5	4	3	2	1	LSB
Ancillary Data	4th bit	5th bit	6th bit											17th bit	18th bit	last bit

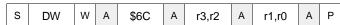

Table 3-11: Content of D0:fd6 after reception of 19 ancillary bits.

D0:fd6	MSB	14	13	12	11	10	9	8	7	6	5	4	3	2	1	LSB
Ancillary Data	х	х	х	x	x	х	х	х	x	x	х	х	х	first bit	2nd bit	3rd bit

3.4. Audio Codec Access Protocol

The MAS 3587F has 16-bit wide registers for the control of the audio codec. These registers are accessed via the I^2C subaddresses codec_write ($6C_{hex}$) and codec_read ($6D_{hex}$).

3.4.1. Write Codec Register


The controller writes the 16-bit value ($\mathbf{d} = d3,d2,d1,d0$) into the MAS 3587F codec register ($\mathbf{r} = r3,r2,r1,r0$). A list of registers is given in Table 3–12.

Example: Writing the value 1234_{hex} into the codec register with the number 00 1B_{hex}:

<DW 6c 00 1b 12 34>

3.4.2. Read Codec Register

1) send command

2) get register value

Reading the codec registers also needs a set-up for the register address and an additional start condition during the actual read cycle. A list of registers is given in Table 3–13.

3.4.3. Codec Registers

Table 3–12: Codec control registers on I²C subaddress 6C_{hex}

Register Address (hex)	Function		Name
CONVERT	ER CONFIG	URATION	
00 00	Audio Cod	dec Configuration	CONV_CONF
		ated to the D/A full-scale output voltage fer to Section 4.6.4. on page 72)	
	bit[15:12]	A/D converter left amplifier gain = n*1.5–3 [dB]	
	bit[11:8]	A/D converter right amplifier gain = n*1.5–3 [dB] 1111 +19.5 dB 1110 +18.0 dB	
		 0011 +1.5 dB 0010 0.0 dB 0001 -1.5 dB 0000 - 3.0 dB	
	bit[7:4]	Microphone amplifier gain = n*1.5+21 [dB] 1111 +43.5 dB 1110 +42.0 dB	
		 0001 +22.5 dB 0000 +21.0 dB	
	bit[3]	Input selection for left A/D converter channel 0 line-in 1 microphone	
	bit[2]	Enable left A/D converter ¹⁾	
	bit[1]	Enable right A/D converter ¹⁾	
	bit[0]	Enable D/A converter ¹⁾	
	also contro at pin AGN	eration of the internal DC reference voltage for the D/A converter is olled with this bit. In order to avoid click noise, the reference voltage IDC should have reached a near ground potential before repower-to converter after a short down phase.	
	set during	ly at least one of the A/D converters (bits [2] or [1]) should remain short power-down phases of the D/A. Then the DC reference voltation for the D/A converter will not be interrupted.	
INPUT MO	DE SELECT		
80 00	Input Mod	e Setting	ADC_IN_MODE
	bit[15]	Mono switch 0 stereo input mode 1 left channel is copied into the right channel	
	bit[14:2]	Reserved, must be set to 0	
	bit[1:0]	Deemphasis select 0 deemphasis off 1 deemphasis 50 μs 2 deemphasis 75 μs	

Table 3–12: Codec control registers on I²C subaddress 6C_{hex}

Register Address (hex)	Function	Name
OUTPUT I	MODE SELECT	
	D/A Converter Source Mixer	
00 06	MIX ADC scale	DAC_IN_ADC
00 07	MIX DSP scale	DAC_IN_DSP
	bit[15:8] 00 _{hex} 7F _{hex} Linear scaling factor (hex)	
	for example: 00 _{hex} off 20 _{hex} 50 % (-6 dB gain) 40 _{hex} 100 % (0 dB gain) 7F _{hex} 200 % (+6 dB gain)	
	In the sum of both mixing inputs exceeds 100 %, clipping may occur in the successive audio processing.	
00 0E	D/A Converter Output Mode	DAC_OUT_MODE
	bit[15] Mono switch 0 stereo through 1 mono matrix applied	
	bit[14] Invert right channel 0 through 1 right channel is inverted	
	bit[1:0] Reserved, must be set to 0	
	In order to achieve more output power a single loudspeaker can be connected as a bridge between pins OUTL and OUTR. In this mode bit[15] and bit[14] must be set.	
BASEBAN	D FEATURES	
00 14	Bass	BASS
	bit[15:8] Bass range 60 _{hex} +12 dB 58 _{hex} +11 dB 08 _{hex} +1 dB 00 _{hex} 0 dB F8 _{hex} -1 dB	
	A8 _{hex} –11 dB A0 _{hex} –12 dB	
	Higher resolution is possible, one LSB step results in a gain step of about 1/8 dB.	
	With positive bass settings clipping of the output signal may occur. Therefore, it is not recommended to set bass to a value that, in conjunction with volume, would result in an overall positive gain.	
	The settings require: max (bass, treble) + loudness + volume \leq 0 dB	
	bit[7:0] Not used, must be set to 0	

Table 3–12: Codec control registers on I²C subaddress 6C_{hex}

Register Address (hex)	Function	Name
00 15	Treble bit[15:8] Treble range 60hex +12 dB 58hex +11 dB 08hex +1 dB 00hex 0 dB F8hex -1 dB A8hex -1 dB A8hex -12 dB Higher resolution is possible, one LSB step results in a gain step of about 1/8 dB. With positive treble settings, clipping of the output signal may occur. Therefore, it is not recommended to set treble to a value that, in conjunction with loudness and volume, would result in an overall positive gain.	TREBLE
	The settings require: max (bass, treble) + loudness + volume ≤ 0 dB	
	bit[7:0] Not used, must be set to 0	
00 1E	bit[15:8] Loudness Gain 44 _{hex} +17 dB 40 _{hex} +16 dB 04 _{hex} +1 dB 00 _{hex} 0 dB bit[7:0] Loudness Mode 00 _{hex} normal (constant volume at 1 kHz) 04 _{hex} Super Bass (constant volume at 2 kHz) Higher resolution of Loudness Gain is possible: An LSB step results in a gain step of about 1/4 dB. Loudness increases the volume of low- and high-frequency signals, while	LDNESS
	keeping the amplitude of the 1-kHz reference frequency constant. The intended loudness has to be set according to the actual volume setting. Because loudness introduces gain, it is not recommended to set loudness to a value that, in conjunction with volume, would result in an overall positive gain. The settings should be: max (bass, treble) + loudness + volume ≤ 0 dB The corner frequency for bass amplification can be set to two different values. In Super Bass mode, the corner frequency is shifted up. The point of constant volume is shifted from 1 kHz to 2 kHz.	

Table 3–12: Codec control registers on I²C subaddress 6C_{hex}

Register Address (hex)	Function			Name
Micronas	Dynamic Ba	ss (MDB)		
00 22	MDB Effec	t Strength		MDB_STR
	bit[15:8]	00 _{hex} 7F _{hex}	MDB off (default) maximum MDB	
		effect strengtl dium MDB ef	h can be adjusted in 1dB steps. A value of 40 _{hex} will fect.	
00 23	MDB Harm	nonics		MDB_HAR
	bit[15:8]	00 _{hex} 64 _{hex} 7F _{hex}	no harmonics are added (default) 50% fundamentals + 50% harmonics 100% harmonics	
	tal by creat bandpass f that are bel	ing harmonic ilter (MDB_F ow its cutoff	sychoacoustic phenomenon of the 'missing fundaments of the frequencies below the center frequency of the C). This enables a loudspeaker to display frequencies frequency. The Variable MDB_HAR describes the ratio distribution to the transfer of the original signal.	
00 24	MDB Cent	MDB_FC		
	bit[15:8]	2 3	20 Hz 30 Hz	
		30	300 Hz	
	pass filter (mately mat	see Fig. 3–4 ch the cutoff	ency defines the center frequency of the MDB band- on page 49). The center frequency should approxi- frequency of the loudspeakers. For high end lency is around 50 Hz, for low end speakers around	
00 21	MDB Shap	е		MDB_SHAPE
	bit[15:8]	530	corner frequency in 10-Hz steps (range: 50300 Hz)	
	bandpass of frequency of (MDB_FC)	can be increated this filter of this filter of the results in a rather bass south	filter the steepness of the falling slope of the MDB ased (see Fig. 3–4 on page 49). Choosing the corner lose to the center frequency of the bandpass filter narrow MDB frequency range. The smaller this range, ands. The recommended value is around	
	MDB Swite	ch		MDB_SWITCH
	bit[7:2]		reserved, must be set to zero	
	bit[1]	0 1	MDB switch MDB off MDB on	
	bit [0]		reserved, must be set to zero	

Table 3–12: Codec control registers on I²C subaddress 6C_{hex}

Register Address (hex)	Function	Name
VOLUME		
00 10	Volume Control	VOLUME
	bit[15:8] Volume table with 1 dB step size 7F _{hex} +12 dB (maximum volume) 7E _{hex} +11 dB	
	74 _{hex} +1 dB 73 _{hex} 0 dB 72 _{hex} -1 dB	
	02 _{hex} -113 dB 01 _{hex} -114 dB 00 _{hex} mute (reset)	
	bit[7:0] Not used, must be set to 0	
	This main volume control is applied to the analog outputs only. It is split between a digital and an analog function. In order to avoid noise due to large changes of the setting, the actual setting is internally low-pass filtered.	
	With large scale input signals, positive volume settings may lead to signal clipping.	
00 11	Balance	BALANCE
	bit[15:8] Balance range 7F _{hex} left –127 dB, right 0 dB 7E _{hex} left –126 dB, right 0 dB	
	01 _{hex} left -1 dB, right 0 dB 00 _{hex} left 0 dB, right 0 dB FF _{hex} left 0 dB, right -1 dB	
	81 _{hex} left 0 dB, right –127 dB 80 _{hex} left 0 dB, right –128 dB	
	Positive balance settings reduce the left channel without affecting the right channel; negative settings reduce the right channel leaving the left channel unaffected.	
00 12	Automatic Volume Correction (AVC) Loudspeaker Channel	AVC
	bit[15:12] 0 _{hex} AVC off (and reset internal variables) 8 _{hex} AVC on	
	bit[11:8] 8 _{hex} 8 s decay time 4 s decay time 2 _{hex} 2 s decay time 1 _{hex} 20 ms decay time (intended for quick adaptation to the average volume level after track or source change)	
	Note: To reset the internal variables, the AVC should be switched off and then on again during any track or source change. For standard applications, the recommended decay time is 4 s.	

Table 3–13: Codec status registers on I²C subaddress 6D_{hex}

Register Address (hex)	Function		Name
INPUT QU	ASI-PEAK		
00 0A	A/D Converter Quas	si-Peak Detector Readout Left	QPEAK_L
	bit[14:0] 0000 2000 4000 7FFF	positive 15-bit value, linear scale 0% 25% (–12 dBFS) 50% (–6 dBFS) 100% (0 dBFS)	
00 0B	A/D Converter Quas	si-Peak Detector Readout Right	QPEAK_R
	bit[14:0] 0000 2000 4000 7FFF	positive 15-bit value, linear scale 0% 25% (–12 dBFS) 50% (–6 dBFS) 100% (0 dBFS)	
OUTPUT (QUASI-PEAK		
00 0C	Audio Processing II	nput Quasi-Peak Detector Readout Left	DQPEAK_L
	bit[14:0]	positive 15-bit value, linear scale	
00 0D	Audio Processing II	nput Quasi-Peak Detector Readout Right	DQPEAK_R
	bit[14:0]	positive 15-bit value, linear scale	

3.4.4. Basic MDB Configuration

With the parameters described in Table 3–12, the Micronas Dynamic Bass system (MDB) can be customized to create different bass effects as well as to fit the MDB to various loudspeaker characteristics. The easiest way to find a good set of parameter is by selecting one of the settings below, listening to music with strong bass content and adjusting the MDB parameters:

- MDB_STR: Increase/decrease the strength of the MDB effect
- MDB_HAR: Increase/decrease the content of low frequency harmonics
- MDB_FC: Shift the MDB effect to lower/higher frequencies
- MDB_SHAPE: Widen/narrow MDB frequency range (which results in a softer/harder bass sound), turn on/off the MDB

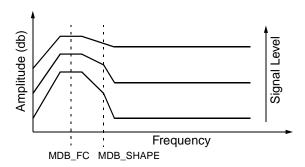


Fig. 3–4: Micronas Dynamic Bass (MDB): Bass boost in relation to input signal leve

Table 3-14: Suggested MDB settings

Function	MDB_STR (22 _{hex})	MDB_HAR (23 _{hex})	MDB_FC (24 _{hex})	MDB_SHAPE (21 _{hex})
MDB off	xxxx _{hex}	xxxx _{hex}	xxxx _{hex}	0000 _{hex}
Low end headphones, medium effect	5000 _{hex}	3000 _{hex}	0600 _{hex}	0902 _{hex}

4. Specifications

4.1. Outline Dimensions

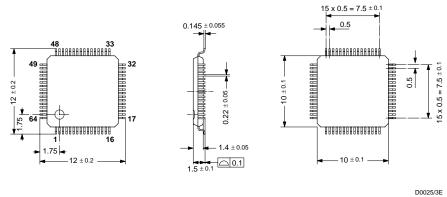


Fig. 4–1: 64-Pin Plastic Low-Profile Quad Flat Pack (PLQFP64) Weight approximately 0.35 g Dimensions in mm

4.2. Pin Connections and Short Descriptions

NC not connected, leave vacantLV If not used, leave vacantX obligatory, pin must be connected as described

obligatory, pin must be connected as described in application information (see Fig. 4–30 on page 79)

VDD connect to positive supply VSS connect to ground

Pin No. PLQFP 64-pin	Pin Name	Туре	Default Connection (if not used)	Short Description	
1	AGNDC		Х	Analog reference voltage	
2	MICIN	IN	LV	Input for internal microphone amplifier	
3	MICBI	IN	LV	Bias for internal microphone	
4	INL	IN	LV	Left A/D input	
5	INR	IN	LV	Right A/D input	
6	TE	IN	Х	Test enable	
7	XTI	IN	Х	Crystal oscillator (ext. clock) input	
8	XTO	OUT	LV	Crystal oscillator output	
9	POR	IN	Х	Power on reset, active low	
10	VSS	SUPPLY	Х	DSP supply ground	
11	XVSS	SUPPLY	Х	Digital output supply ground	
12	VDD	SUPPLY	X	DSP supply	

MAS 3587F

Pin No. PLQFP 64-pin	Pin Name	Туре	Default Connection (if not used)	Short Description	
13	XVDD	SUPPLY	Х	Digital output supply	
14	I2CVDD	SUPPLY	Х	I ² C supply	
15	DVS	IN	Х	I ² C device address selector	
16	VSENS1	IN/OUT	VDD	Sense input and power output of DC/DC 1 converter	
17	DCSO1	SUPPLY	LV	DC/DC 1 switch output	
18	DCSG1	SUPPLY	VSS	DC/DC 1 switch ground	
19	DCSG2	SUPPLY	VSS	DC/DC 2 switch ground	
20	DCSO2	SUPPLY	LV	DC/DC 2 switch output	
21	VSENS2	IN/OUT	VDD	Sense input and power output of DC/DC 2converter	
22	DCEN	IN	VSS	DC/DC enable (both converters)	
23	CLKO	OUT	LV	Clock output	
24	I2CC	IN/OUT	Х	I ² C clock	
25	I2CD	IN/OUT	Х	I ² C data	
26	SYNC	OUT	LV	Sync output	
27	VBAT	IN	LV	Battery voltage monitor input	
28	PUP	OUT	LV	DC Converter Power-Up Signal	
29	EOD	OUT	LV	PIO end of DMA, active low	
30	PRTR	OUT	LV	PIO ready to read, active low	
31	PRTW	OUT	LV	PIO ready to write, active low	
32	PR	IN	VDD	PIO DMA request, active high	
33	PCS	IN	VSS	PIO chip select, active low	
34	PI19	IN/OUT	LV	PIO data bit 7 (MSB)	
35	PI18	IN/OUT	LV	PIO data bit 6	
36	PI17	IN/OUT	LV	PIO data bit 5	
37	PI16	IN/OUT	LV	PIO data bit 4	
38	PI15	IN/OUT	LV	PIO data bit 3	
39	PI14	IN/OUT	LV	PIO data bit 2	
40	PI13	IN/OUT	LV	PIO data bit 1	
41	PI12	IN/OUT	LV	PIO data bit 0 (LSB)	
42	SOD	OUT	LV	Serial output data	

Pin No. PLQFP 64-pin	Pin Name	Туре	Default Connection (if not used)	Short Description	
43	SOI	OUT	LV	Serial output frame identification	
44	soc	OUT	LV	Serial output clock	
45	SID	IN	VSS	Serial input data, interface A	
46	SII	IN	VSS	Serial input frame identification, interface A	
47	SIC	IN	VSS	Serial input clock, interface A	
48	SPDO	OUT	LV	S/PDIF output interface	
49	SIBD	IN	vss	Serial input data, interface B	
50	SIBC	IN	VSS	Serial input clock, interface B	
51	SIBI	IN	VSS	Serial input frame identification, interface B	
52	SPDI2	IN	LV	Active differential S/PDIF input 2	
53	SPDI1	IN	LV	Active differential S/PDIF input 1	
54	SPDIR	IN	LV	Reference differential S/PDIF input 1 and 2	
55	FILTL	IN	Х	Feedback input for left amplifier	
56	AVDD0	SUPPLY	Х	Analog supply for output amplifiers	
57	OUTL	OUT	LV	Left analog output	
58	OUTR	OUT	LV	Right analog output	
59	AVSS0	SUPPLY	Х	Analog ground for output amplifiers	
60	FILTR	IN	Х	Feedback for right output amplifier	
61	AVSS1	SUPPLY	Х	Analog ground	
62	VREF		Х	Analog reference ground	
63	PVDD	SUPPLY	Х	Internal power supply	
64	AVDD1	SUPPLY	Х	Analog Supply	

4.3. Pin Descriptions

4.3.1. Power Supply Pins

The use of all power supply pins is mandatory to achieve correct function of the MAS 3587F.

VDD, VSS SUPPLY

Digital supply pins.

XVDD, XVSS SUPPLY

Supply for digital output pins.

I2CVDD SUPPLY

Supply for I^2C interface circuitry. This net uses VSS or XVSS as the ground return line.

PVDD SUPPLY

Auxiliary pin for analog circuitry. This pin has to be connected via a 3-nF capacitor to AVDD1. Extra care should be taken to achieve a low inductance PCB line.

AVDD0/AVSS0 SUPPLY

Supply for analog output amplifier (output stage).

AVDD1/AVSS1 SUPPLY

Supply for internal analog circuits (A/D, D/A converters, clock, PLL, S/PDIF input).

AVDD0/AVSS0 and AVDD1/AVSS1 should receive the same supply voltages.

4.3.2. Analog Reference Pins

AGNDC

Internal analog reference voltage. This pin serves as the internal ground connection for the analog circuitry.

VREF

Analog reference ground. All analog inputs and outputs should drive their return currents using separate traces to a ground starpoint close to this pin. Connect to AVSS1. This reference pin should be as noise free as possible.

4.3.3. DC/DC Converters and Battery Voltage Supervision

DCSG1/DCSG2 SUPPLY

DC/DC converters switch ground. Connect using separate wide trace to negative pole of battery cell. Connect also to AVSS0/1 and VSS/XVSS.

DCSO1/DCSO2 SUPPLY

DC/DC converter switch connection. If the respective DC/DC converter is not used, this pin must be left vacant.

VSENS1/VSENS2

IN

Sense input and power output of DC/DC converters. If the respective DC/DC converter is not used, this pin should be connected to a supply.

DCEN IN

Enable signal for both DC/DC converters. If none of the DC/DC converters is used, this pin must be connected to VSS.

PUP OUT

Power-up. This signal is set when the required voltages are available at both DC/DC converter output pins VSENS1 and VSENS2. The signal is cleared when both voltages have dropped below the reset level in the DCCF Register.

VBAT IN

Analog input for battery voltage supervision.

4.3.4. Oscillator Pins and Clocking

XTI IN XTO OUT

The XTI pin is connected to the input of the internal crystal oscillator, the XTO pin to its output. Each pin should be directly connected to the crystal and to a ground-connected capacitor (see application diagram).

CLKO OUT

The CLKO can drive an output clock line.

4.3.5. Control Lines

I2CC SCL IN/OUT I2CD SDA IN/OUT

Standard I²C control lines.

DVS

I²C device address selector. Connect this pin either to VDD (I²C device address: 3E/3F_{hex}) or VSS (I²C device address: 3C/3D_{hex}) to select a proper I²C device address (see also Table 3–1 on page 17).

4.3.6. Parallel Interface Lines

PI12..PI19 IN/OUT

The PIO input pins PI12..PI19 are used as 8-bit I/O interface to a microcontroller in order to transfer compressed and uncompressed data. PI12 is the LSB, PI19 the MSB.

4.3.6.1. PIO Handshake Lines

PCS IN

The PIO chip select \overline{PCS} must be set to '0' to activate the PIO in operation mode.

PR IN

Pin PR must be set to '1' when ready to send/receive data to/from MAS 3587F PIO pins.

PRTR OUT

Ready to read. This signal indicates that the MAS 3587F is able to receive data in PIO input mode.

PRTW OUT

Ready to write. This pin indicates that MAS 3587F has data available in PIO output mode.

EOD OUT

EOD indicates the end of an DMA cycle in the IC's PIO input/output mode. In 'serial' input mode it is used as Demand signal, that indicates that new input data are required.

4.3.7. Serial Input Interface (SDI)

SID	DATA	IN
SII	WORD STROBE	IN
SIC	CLOCK	IN

I²S compatible serial interface A for digital audio data. This interface can be used for audio input in the encoder.

4.3.8. Serial Input Interface B (SDIB)

SIBD	DATA	IN
SIBI	WORD STROBE	IN
SIBC	CLOCK	IN

The serial interface B is used as bitstream input interface. The SIBI line must be connected to VSS in the serial decoder application.

4.3.9. Serial Output Interface (SDO)

SOD	DATA	OUT
SOI	WORD STROBE	OUT
SOC	CLOCK	IN/OUT

Data, Frame Indication, and Clock line of the serial output interface. The SDO is reconfigurable and can be adapted to several I²S compliant modes.

4.3.10. S/PDIF Input Interface

SPDI1	IN
SPDI2	IN
SPDIR	IN

SPDIF1 and SPDIF2 are alternative input pins for S/PDIF sources according to the IEC 958 consumer specification. A switch at D0:7f2 selects one of these pins at a time. The SPDIR pin is a common reference for both input lines (see Fig. 4–31 on page 80).

4.3.11. S/PDIF Output Interface

SPDO OUT

The SPDO pin provides an digital output with standard CMOS level that is compliant to the IEC 958 consumer specification.

4.3.12. Analog Input Interfaces

The analog inputs are used in the standard MPEG encoding DSP firmware. They can also be selected as a source for the D/A converters (refer to audio codec register 00.07_{hex} (see Table 3–12 on page 43)).

MICIN	IN
MICBI	IN

The MICIN input may be directly used as electret microphone input, which should be connected as described in application information. The MICBI signal provides the supply voltage for these microphones.

INL IN IN IN

INL and INR are analog line-in input lines. They are connected to the embedded stereo A/D converter of the MAS 3587F. The sources should be AC coupled. The reference ground for these analog input pins is the VREF pin.

4.3.13. Analog Output Interfaces

OUTL OUT OUT

OUTL and OUTR are left and right analog outputs, that may be directly connected to built-in 16 Ω loudspeakers via 22 Ω series resistance to the headphones as described in the application information (see Fig. 4–30 on page 79).

FILTL IN FILTR IN

Connection to input terminal of output amplifier. Can be used to connect a capacitance from OUTL respectively OUTR to FILTL respectively FILTR in parallel to feedback resistor and thus implement a low pass filter to reduce the out-of-band noise of the DAC.

4.3.14. Miscellaneous

SYNC OUT

The SYNC signal indicates the detection of a frame start in the input data of MAS 3587F. Usually this signal generates an interrupt in the controller.

POR IN

The Power-On Reset pin is used to reset the whole MAS 3587F, except for the DC/DC converter circuitry. POR is an active-low signal.

TE II

The TE pin is for production test only and must be connected with VSS in all applications.

4.4. Pin Configurations

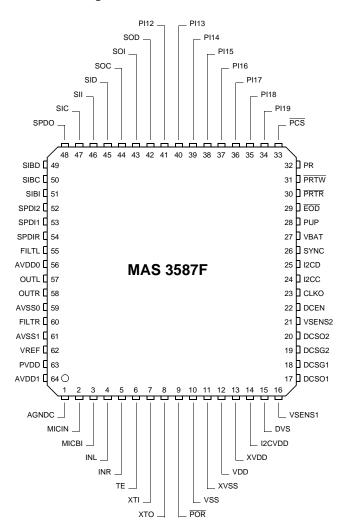


Fig. 4-2: PLQFP64 package (Top view)

4.5. Internal Pin Circuits

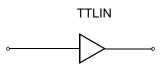


Fig. 4–3: Input pins PCS, PR

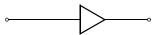


Fig. 4-4: Input pin TE, DVS, POR

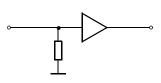
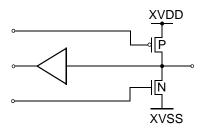



Fig. 4-5: Input pin DCEN

Fig. 4–6: Input/output pins SOC, SOI, SOD, PI12...PI19, SPDO

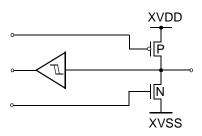


Fig. 4-7: Input pins SI(B)C, SI(B)I, SI(B)D

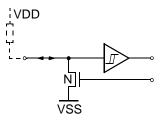


Fig. 4-8: Input/output pins I2CC, I2CD

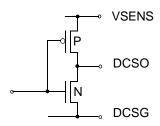


Fig. 4–9: Input/output pins DCSO1/2, DCSG1/2, VSENS1/2

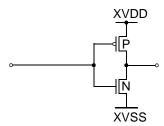


Fig. 4–10: Output pins $\overline{\text{PRTW}}$, $\overline{\text{EOD}}$, $\overline{\text{PRTR}}$, CLKO, SYNC, PUP

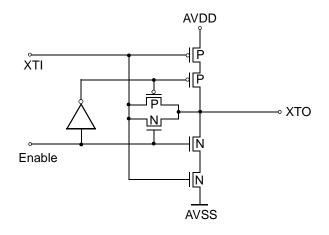


Fig. 4-11: Clock oscillator XTI, XTO

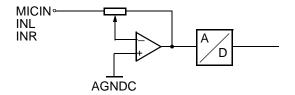


Fig. 4–12: Analog input pins MICIN, INL, INR

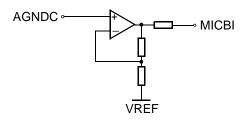


Fig. 4–13: Microphone bias pin (MICBI)

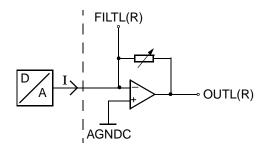
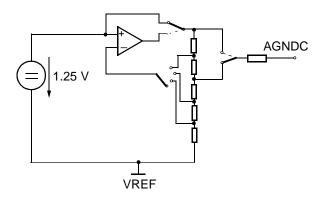



Fig. 4–14: Analog outputs OUTL(R) and connections for filter capacitors FILTL(R)

Fig. 4–15: Analog ground generation with pin to connect external capacitor

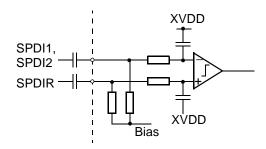


Fig. 4-16: S/PDIF inputs

Fig. 4–17: Battery voltage monitor VBAT

4.6. Electrical Characteristics

4.6.1. Absolute Maximum Ratings

Symbol	Parameter	Pin Name	Min.	Max.	Unit
T _A	Ambient operating temperature		-40	85	°C
T _S	Storage Temperature		-40	125	°C
P _{TOT}	Power dissipation	VDD, XVDD, AVDD0/1, I2CVDD		650	mW
V _{SUPA}	Analog supply voltages ¹⁾	AVDD0/1	-0.3	6	V
V _{SUP}	Digital supply voltage	VDD, XVDD, I2CVDD	-0.3	6	V
V _{II2C}	Input voltage, I ² C-Pins	12CC, 12CD	-0.3	6	V
V _{Idig}	Input voltage, all digital inputs		-0.3	V _{SUP} +0.3	V
I _{ldig}	Input current, all digital inputs		-20	+20	mA
V _{lana}	Input voltage, all analog inputs		-0.3	V _{SUP} + 0.3	V
I _{lana}	Input current, all analog inputs		-5	+5	mA
I _{Oaudio}	Output current, audio output ²⁾	OUTL/R	-0.2	0.2	Α
l _{Odig}	Output current, all digital outputs ³⁾		-50	+50	mA
I _{Odcdc1}	Output current DCDC converter 1	DCSO1		1.5	Α
I _{Odcdc2}	Output current DCDC converter 2	DCSO2		1.5	А

¹⁾ Both AVDD0 and AVDD1 have to be connected together!

Stresses beyond those listed in the "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only. Functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions/Characteristics" of this specification is not implied. Exposure to absolute maximum ratings conditions for extended periods may affect device reliability.

²⁾ These pins are not short-circuit proof!

³⁾ Total chip power dissipation must not exceed absolute maximum rating

4.6.2. Recommended Operating Conditions

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit		
Temperature	Temperature Range 1 and Supply Voltages							
T _{A1}	Ambient temperature range 1		-40		85	°C		
V _{SUPD1}	Digital supply voltage (MPEG decoder)	VDD, XVDD	2.2	2.5	3.9	V		
V _{SUPD2}	Digital supply voltage (MPEG 1 encoder)			3.5	3.9			
	Digital supply voltage (MPEG 2 encoder)			2.7	3.9			
V _{SUPI2C}	I ² C bus supply voltage	I2CVDD	V _{SUPDn} 1) at VDD		3.9	V		
V _{SUPA}	Analog audio supply voltage	AVDD0/1	2.2	2.7	3.9	V		
	Analog audio supply voltage in relation to the digital supply voltage		0.62		1.6	V _{SUPD}		
V _{SUPx}	PIN supply voltage in relation to digital supply voltage	XVDD	0.62		1.6	V _{SUPD}		
¹⁾ n = 1,2					,	•		

Table 4–1: Reference Frequency Generation and Crystal Recommendation

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit				
External Clo	External Clock Input Recommendations									
f _{CLK}	Clock frequency	XTI, XTO	13.00	18.432	20.00	MHz				
V _{CLKI}	Clockamplitude of external clock fed into XTI at V _{AVDD} = 2.2 V	XTI	0.7		1.05	V_{PP}				
	Clockamplitude of external clock fed into XTI at V _{AVDD} = 2.7 V		0.55		1.5					
	Clockamplitude of external clock fed into XTI at V _{AVDD} = 3.3 V		0.45		1.75					
	Clockamplitude of external clock fed into XTO at V _{AVDD} = 2.2 V	хто	1.25		2.2					
	Clockamplitude of external clock fed into XTO at V _{AVDD} = 2.7 V		0.75		2.7					
	Clockamplitude of external clock fed into XTO at V _{AVDD} = 3.3 V		0.55		3.3					
	Duty cycle	XTI, XTO	45	50	55	%				

Table 4–1: Reference Frequency Generation and Crystal Recommendation

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit			
Crystal Recommendations									
f _P	Load resonance frequency at C _I = 20 pF	XTI, XTO		18.432		MHz			
Δf/f _S	Accuracy of frequency adjust- ment		-50		50	ppm			
Δf/f _S	Frequency variation vs. temperature		-50		50	ppm			
R _{EQ}	Equivalent series resistance			12	30	Ω			
C ₀	Shunt (parallel) capacitance			3	5	pF			

Table 4-2: Input Levels

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit
I _{IL}	Input low voltage at V _{DD} = 2.53.9 V	12CC, 12CD			0.3	V
I _{IH}	Input high voltage at V _{DD} = 2.53.9 V		1.4			V
I _{IL}	Input low voltage at V _{DD} = 2.53.9 V	POR, DCEN			0.2	V
I _{IH}	Input high voltage at V _{DD} = 2.53.9 V		0.9			V
I _{ILD}	Input low voltage	PI <i>,</i>			0.3	V
I _{IHD}	Input high voltage	SI(B)I, SI(B)C, SI(B)D, PR, PCS, TE, DVS	V _{SUP} -0.5			V

Table 4–3: Analog Input and Output Recommendations

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit			
Analog Refe	rence								
C _{AGNDC1}	Analog filter capacitor	AGNDC	1.0	3.3		μF			
C _{AGNDC2}	Ceramic capacitor in parallel			10		nF			
C _{PVDD}	Capacitor for analog circuitry	PVDD	3			nF			
Analog Audi	Analog Audio Inputs								
C _{inAD}	DC-decoupling capacitor at A/D-converter inputs	INL/R		390		nF			
C _{inMI}	DC-decoupling capacitor at microphone-input	MICIN		390		nF			
C _{LMICBI}	Minimum-Capacitance at micro- phone bias	MICBI	3.3			nF			
Analog Audi	Analog Audio Filter Outputs								
C _{FILT}	Filter capacitor for headphone amplifier high-Q type, NP0 or C0G material	FILTL/R OUTL/R	-20 %	470	+20 %	pF			
Analog Audi	io Output		•	•	•				
Z _{AOL_HP}	Analog output load with stereo	OUTL/R	16			Ω			
	headphones			100		pF			
DC/DC-Conv	verter External Circuitry (please re	fer to application	example)						
C ₁	VSENS blocking (<100 mΩ ESR)	VSENS1/2		330		μF			
V _{TH}	Schottky diode threshold voltage	DCSO1/2 VSENS1/2			0.35	V			
L	Ferrite ring core coil inductance	DCSO1/2		22		μH			
S/PDIF Inter	face Analog Input								
C _{SPI}	S/PDIF coupling capacitor	SPDI1/2 SPDIR		100		nF			

4.6.3. Digital Characteristics

at T_A = T_{A2} , V_{SUPDn} , V_{SUPA} = 2.5 ... 3.6 V, $f_{Crystal}$ = 18.432 MHz, Typ. values for T_A = 25 °C

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Conditions
Digital Sup	ply Voltage						
I _{SUPD1}	Current consumption (MPEG decoding)	VDD, XVDD,		39		mA	2.5 V, sampling frequency ≥ 32 kHz
		I2CVDD		20			2.5 V, sampling frequency ≤ 24 kHz
				11			2.5 V, sampling frequency ≤ 12 kHz
I _{SUPD2}	Current consumption (MPEG encoding)			145			3.5 V, sampling frequency ≥ 32 kHz
				70			2.7 V, sampling frequency ≤ 24 kHz
I _{STANDBY}	Total current at stand-by				10	μА	DSP off, Codec off, DC /DC off, A/D and D/AC off, no I ² C access
Digital Out	outs and Inputs						
O _{DigL}	Output low voltage	Pl <i>,</i>			0.3	V	I _{load} = 2 mA
O _{DigH}	Output low voltage	SOI, SOC, SOD, EOD, PRTR, PRTW, CLKO, SYNC, PUP, SPDO	V _{SUPD} -0.3			V	I _{load} = -2 mA
Z _{Digl}	Input impedance	all digital Inputs			7	pF	
I _{DLeak}	Digital input leakage current		-1		1	μΑ	0 V < V _{pin} < V _{SUPD}

4.6.3.1. I²C Characteristics

at $T_A=25$ °C, $V_{SUPI2C}=2.5...3.6$ V

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Conditions
I ² C Input S	pecifications						
f _{I2C}	Upper limit I ² C bus frequency operation	I2CC	400			kHz	
t _{I2C1}	I ² C START condition setup time	I2CC, I2CD	300			ns	
t _{I2C2}	I ² C STOP condition setup time	I2CC, I2CD	300			ns	
t _{I2C3}	I ² C clock low pulse time	I2CC	1250			ns	
t _{I2C4}	I ² C clock high pulse time	I2CC	1250			ns	
t _{I2C5}	I ² C data setup time before rising edge of clock	I2CC	80			ns	
t _{I2C6}	I ² C data hold time after falling edge of clock	I2CC	80			ns	
V _{I2COL}	I ² C output low voltage	I2CC, I2CD			0.4	V	I _{load} = 3 mA
I _{I2COH}	I ² C output high leakage current	I2CC, I2CD			1	μА	
t _{I2COL1}	I ² C data output hold time after falling edge of clock	I2CC, I2CD	20			ns	
t _{I2COL2}	I ² C data output setup time before rising edge of clock	I2CC, I2CD	250			ns	f _{I2C} = 400 kHz
V _{I2CIL}	I ² C input low voltage	I2CC; I2CD			0.3	V _{SUPI2C}	
V _{I2CIH}	I ² C input high voltage	I2CC, I2CD	0.6			V _{SUPI2C}	
t _W	Wait time	I2CC, I2CD	0	0.5	4	ms	

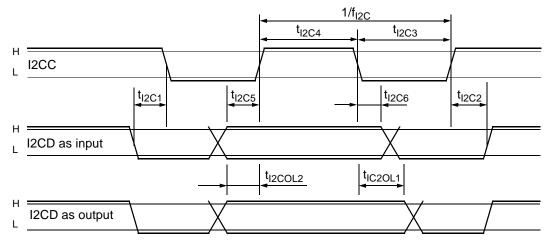
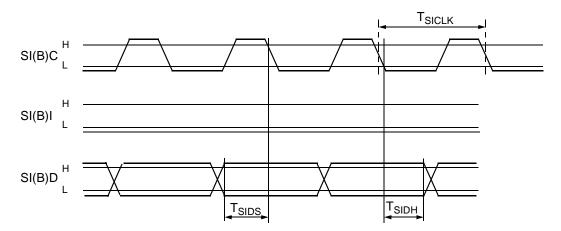


Fig. 4–18: I²C timing diagram


4.6.3.2. Serial (I²S) Input Interface Characteristics (SDI, SDIB)

at T_A = T_{A2} , V_{SUPD} , V_{SUPA} = 2.5 ... 3.6 V, $f_{Crystal}$ = 18.432 MHz, Typ. values for T_A = 25 °C

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Conditions
^t siclk	I ² S clock input clock period	SI(B)C		325		ns	f _S = 48 kHz Stereo, 32 bits per sample (for demand mode see Table 4–4)
tsids	I ² S data setup time before rising edge of clock (for continuous data stream: falling edge)	SI(B)C, SI(B)D	50			ns	
t _{SIDH}	I ² S data hold time	SI(B)D	50			ns	
t _{SIIS}	I ² S ident setup time before rising edge of clock (for continuous data stream: falling edge)	SI(B)C, SI(B)I	50			ns	
t _{SIIH}	I ² S ident hold time	SI(B)I	50			ns	
t _{bw}	Burst wait time	SI(B)C, SI(B)D	480				

Table 4-4: Maximum demand clock frequency

f _{Sample} (kHz)	f _C (MHz)	min. t _{SICLK}
48, 32	6.144	162
44.1	5.6448	177
24, 16	3.072	325
22.05	2.8224	354
12, 8	1.536	651
11.025	1.4112	708

Fig. 4–19: Continuous data stream at serial input A or B. In this mode, the word strobe SI(B)I is not used and the data are read at the falling edge of the clock (bit 2 in D0:7f1 is set).

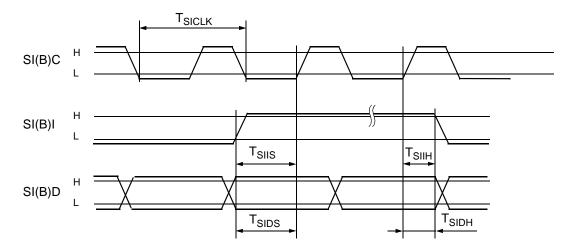


Fig. 4–20: Serial input of I²S signal

4.6.3.3. Serial Output Interface Characteristics (SDO)

at T_A = T_{A2} , V_{SUPD} , V_{SUPA} = 2.5 ... 3.6 V, $f_{Crystal}$ = 18.432 MHz, Typ. values for T_A = 25 °C

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Conditions
t _{SOCLK}	I ² S clock output frequency	soc		325		ns	f _S = 48 kHz Stereo 32 bits per sample
t _{SOISS}	I ² S word strobe delay time after falling edge of clock	SOC, SOI	0			ns	
t _{SOODC}	I ² S data delay time after falling edge of clock	SOC, SOD	0			ns	

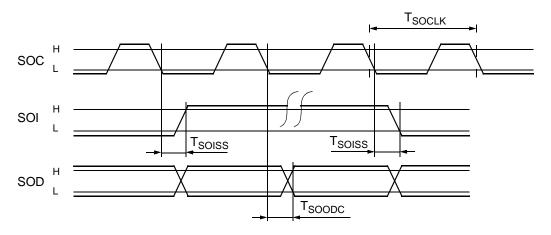
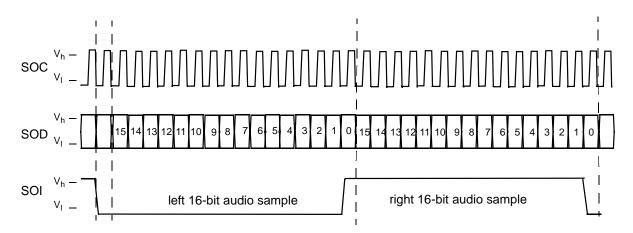
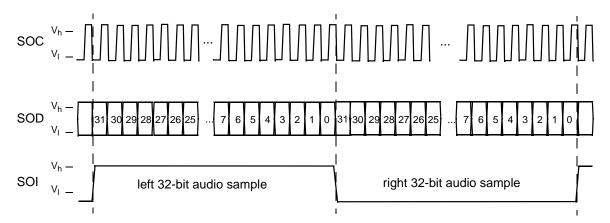




Fig. 4–21: Serial output interface timing.

Fig. 4–22: Sample timing of the SDO interface in 16 bit/sample mode. D0:7f1 settings are: Bit 14 = 0 (SOC not inverted), bit 11 = 1 (SOI delay), bit 5 = 0 (word strobe not inverted), bit 4 = 1 (16 bits/sample).

Fig. 4–23: Sample timing of the SDO interface in 32 bit/sample mode. D0:7f1 settings are: Bit 14 = 0 (SOC not inverted), bit 11 = 0 (no SOI delay), bit 5 = 1 (word strobe inverted), bit 4 = 0 (32 bits/sample).

4.6.3.4. S/PDIF Input Characteristics

at T_A = T_{A2} , V_{SUPD} , V_{SUPA} = 2.5 ... 3.6 V, $f_{Crystal}$ = 18.432 MHz, Typ. values for T_A = 25 °C.

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Conditions
Vs	Signal amplitude	SPDI1, SPDI2, SPDIR	200	500	1000	mV_{pp}	
f _{s1}	Bi-phase frequency	SPDI1, SPDI2, SPDIR		2.048		MHz	±1000 ppm, f _s = 48 kHz
f _{s2}	Bi-phase frequency	SPDI1, SPDI2, SPDIR		2.822		MHz	±1000 ppm, f _s = 44.1 kHz
f _{s3}	Bi-phase frequency	SPDI1, SPDI2, SPDIR		3.072		MHz	±1000 ppm, f _s = 32 kHz
t _P	Bi-phase period	SPDI1, SPDI2, SPDIR		326		ns	at f _s = 48 kHz, (highest sampling rate)
t _R	Rise time	SPDI1, SPDI2, SPDIR	0		65	ns	at f _s = 48 kHz, (highest sampling rate)
t _F	Fall time	SPDI1, SPDI2, SPDIR	0		65	ns	at f _s = 48 kHz, (highest sampling rate)
	Duty cycle	SPDI	40	50	60	%	at bit value=1 and f _s = 48 kHz
t _{H1,L1}		SPDI	81		163	ns	minimum/maximum pulse duration with a level above 90 % or below 10 % and at f _s = 48 kHz
t _{HO,LO}		SPDI	163		244	ns	minimum/maximum pulse duration with a level above 90 % or below 10 % and at f _s = 48 kHz

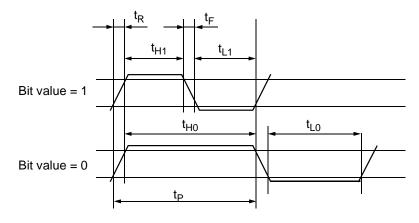


Fig. 4-24: Timing of the S/PDIF input

4.6.3.5. S/PDIF Output Characteristics

at T_A = T_{A2}, V_{SUPD}, V_{SUPA} = 2.5 ... 3.6 V, f_{Crystal} = 18.432 MHz, Typ. values for T_A = 25 $^{\circ}$ C.

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Conditions
f _{s1}	Bi-phase frequency	SPDO		3.072		MHz	f _S = 48 kHz
f _{s2}	Bi-phase frequency	SPDO		2.822		MHz	f _S = 44.1 kHz
f _{s3}	Bi-phase frequency	SPDO		2.048		MHz	f _s = 32 kHz
t _P	Bi-phase period	SPDO		326		ns	at f _s = 48 kHz, (highest sampling rate)
t _R	Rise time	SPDO	0		2	ns	C _{load} = 10 pF
t _F	Fall time	SPDO	0		2	ns	C _{load} = 10 pF
	Duty cycle	SPDO		50		%	
t _{H1,L1}		SPDO		163		ns	minimum/maximum pulse duration with a level above 90 % or below 10 % and at f _s = 48 kHz
t _{H0,L0}		SPDO		326		ns	minimum/maximum pulse duration with a level above 90 % or below 10 % and at f _s = 48 kHz
V _S	Signal amplitude	SPDO		V _{SUPD}			

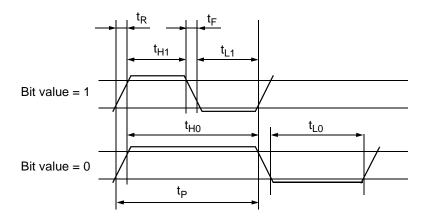


Fig. 4-25: Timing of the S/PDIF output

4.6.3.6. PIO as Parallel Input Interface: DMA Mode

In decoding mode, the data transfer can be started after the EOD pin of the MAS 3587F is set to "high". After verifying this, the controller signalizes the sending of data by activating the PR line. The MAS 3587F responds by setting the RTR line to the "low" level. The MAS 3587F reads the data PI[19:12] and sets RTR to low after rising edge of PR. After RTR is set to high, the mC sets PR to low. The next data word write operation will be initialized again by setting the PR line via the controller. Please refer to Figure 4–26 for the exact timing

The procedure above will be repeated until the MAS 3587F sets the $\overline{\text{EOD}}$ signal to "0" which indicates that the transfer of one data block has been executed. Subsequently, the controller should set PR to "0", wait until $\overline{\text{EOD}}$ rises again and then repeat the procedure to send the next block of data. The DMA buffer is 15 bytes long.

The buffer size is subject to change in the next version.

Symbol	Pin Name	Min.	Max.	Unit
t _{st}	PR, \overline{EOD}	0.010	2000	μs
t _r	PR, \overline{RTR}	40	160	ns
t _{pd}	PR, PI[19:12]	120	480	ns
t _{set}	PI[19:12]	160		ns
t _h	PI[19:12]	160		ns
t _{rtrq}	RTR	200	30000	ns
t _{pr}	PR	480		ns
t _{rpr}	PR, \overline{RTR}	160		ns
t _{eod}	PR, \overline{EOD}	40	160	ns
t _{eodq}	EOD	2.5	500	μs

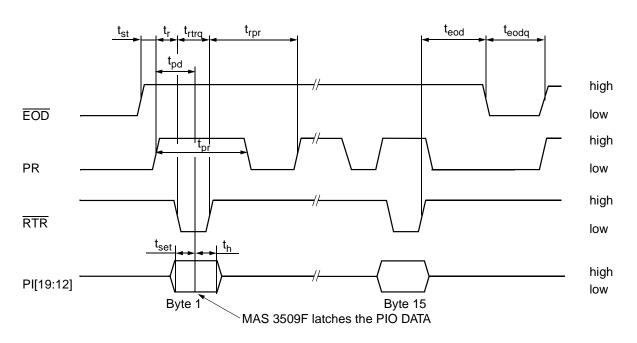


Fig. 4-26: Handshake protocol for writing MPEG data to the PIO-DMA

4.6.3.7. PIO as Parallel Output Interface: DMA Mode

In encoding mode, the MAS 3587F signals available data by setting the $\overline{\text{EOD}}$ pin to "high". After verifying this, the controller signalizes its capability to receive one byte of data by activating the $\overline{\text{PR}}$ line. The MAS 3587F responds by setting the $\overline{\text{RTW}}$ line to the "low" level when the actual byte is set on the data lines PI[19:12]. After PR is set to "low" level, the $\overline{\text{RTW}}$ line is set to "high" again. The next data word write operation will be initialized again by setting the PR line via the controller. Please refer to Fig. 4–27 on page 71 for the exact timing.

The procedure above will be repeated until the MAS 3587F sets the $\overline{\text{EOD}}$ signal to "0" which indicates that the transfer of one data block has been executed. Subsequently, the controller should set PR to "0", wait until $\overline{\text{EOD}}$ rises again and then repeat the procedure to receive the next block of data. The DMA buffer is 15 bytes long.

The buffer size is subject to change in the next version.

In order to transfer the worst case data rate of 192 kbit/s, the controller must react sufficiently fast. The mean response times (t0, t3, t5) must be faster than 10 ms. Due to internal buffering in the MAS 3587F, this time can be expanded up to 4.8 ms once within each frame (see Table 2–2 on page 15) in any case.

Table 4-5: PIO output mode timing

Symbol	Pin	Min.	Max.	Unit
		0.040	0000	
t ₀	EOD, PR	0.010	2000	μs
t ₁	PR, PI	110	310	ns
t ₂	PI, RTW	18	55	ns
t ₃	RTW, PR	18		ns
t ₄	PR, \overline{RTW}	90	260	ns
t ₅	RTW, PR	35		ns
t _{eod}		tbd	tbd	ns
t _{eodq}	_	2.5		ns

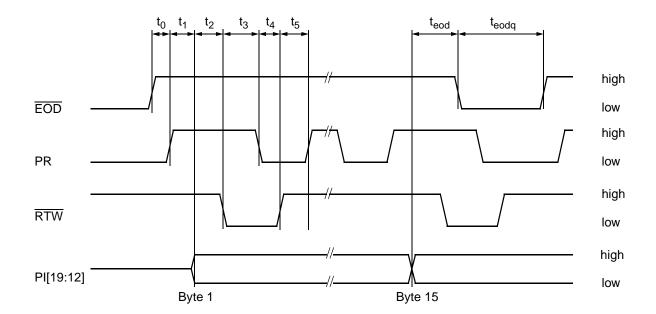


Fig. 4-27: Handshake protocol for reading MPEG data from the PIO-DMA

4.6.4. Analog Characteristics

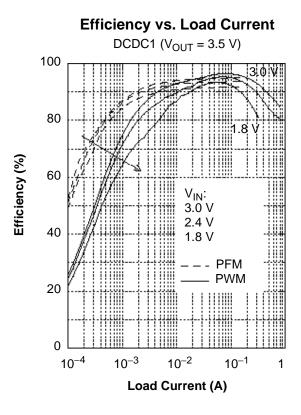
at T_A = T_{A2}, V_{SUPD} = 2.5...3.6 V, V_{SUPA} = 2.2 ... 3.6 V, f_{Crystal} = 13...20 MHz, typical values at T_A = 25 °C and f_{CRYSTAL} = 18.432 MHz

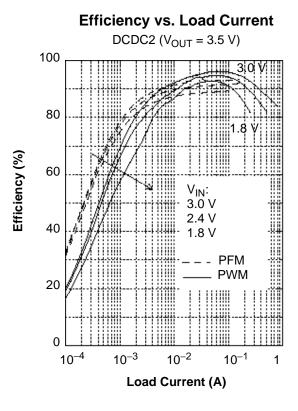
Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Cor	nditions
Analog Su	pply							
I _{AVDD}	Current consumption analog audio	AVDD0/1		5		mA	V _{SUPA} =	2.2 V, Mute
I _{QOSC}	Current consumption crystal oscillator	AVDD0/1		200		μΑ	Codec = off DSP = off DC/DC = on	
I _{STANDBY}					10		Codec = DSP = of DC/DC =	ff
Crystal Os	cillator							
V _{DCCLK}	DC voltage at oscillator pins	XTI, XTO		0.5		V _{SUPA}		
V _{ACLK}	Clock amplitude		0.5		V _{SUPA} -0.5	V _{PP}	if crystal	is used
C_{IN}	Input capacitance			3		pF		
R _{OUT}	Output resistance	ХТО		220		Ω	V _{SUPA} = 2.2 V	
				125			V _{SUPA} =	2.7 V
				94			V _{SUPA} =	3.3 V
Analog Au	dio							
V _{AI}	Analog line input clipping level (at minimum analog input gain,i.e. –3 dB)	INL/R				V _{pp}	V _{SUPA}	Bits 15, 14 in Reg. 6A _{hex}
				2.2			>2.2 V	00
				2.6			>2.4 V	01
				3.2			>3.0 V	10
V _{MI}	Microphone input clipping level (at minimum analog input gain, i.e. +21 dB)	MICIN				mV _{pp}	V _{SUPA}	Bits 15,14 in Reg. 6A _{hex}
				141			>2.0 V	00
				167			>2.4 V	01
				282			>3.0 V	10

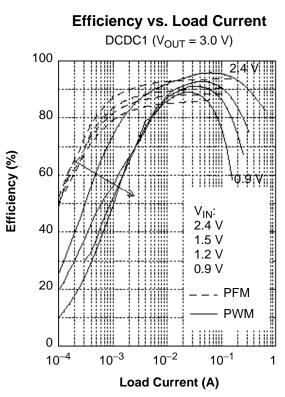
Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Conditions
V _{AO1}	Analog Output Voltage AC	OUTL/R					R _L ≥1 kΩ Input=0 dBFS digital
							V _{SUPA} Bits 15, 14 in Reg 6A _{hex}
	at 0 dB output gain			1.56		V_{pp}	>2.2 V 00
				1.84			>2.4 V 01
				2.27			>3.0 V 10
	at +3 dB output gain			2.20		V_{pp}	>2.2 V 00
				2.60			>2.6 V 01
				3.20			>3.2 V 10
dV _{AO1}	Deviation of DC-Level at Analog Output for AGNDC- Voltage	OUTL/R	-20		20	mV	
V _{AO2}	Analog Output Voltage AC	OUTL/R		1	1	1	R _L is 16 Ω Headphone and 22 Ω seriesresistor Input=0 dBFS digital
							(see Fig. 4–31 on page 80)
							V _{SUPA} Bits 15, 14 in Reg 6A _{hex}
	at 0 dB output gain			1.56		V_{pp}	>2.2 V 00
				1.84			>2.4 V 01
				2.27			>3.0 V 10
	at +3 dB output gain			2.00		V _{pp}	>2.2 V 00
				2.40			>2.6 V 01
				3.00			>3.2 V 10
R _{inAl}	Analog line input resistance	INL/R		97		kΩ	at minimum analog input gain, i.e. –3 dB
				20			at maximum analog input gain, i.e. +19.5 dB
				67			not selected
R _{inMI}	Microphone input resistance	MICIN		94		kΩ	at minimum analog input gain, i.e. –21 dB
				8			at maximum analog input gain, i.e. +43.5 dB
				94			not selected
R _{inAO}	Analog output resistance	OUTL/R			6	Ω	analog gain=+3 dB, Input=0 dBFS digital
SNR _{AI}	Signal-to-noise ratio of line input	INL/R		74		dB(A)	BW = 20 Hz20 kHz, analog gain=0 dB, input 1 kHz at V _{AI} -20 dB

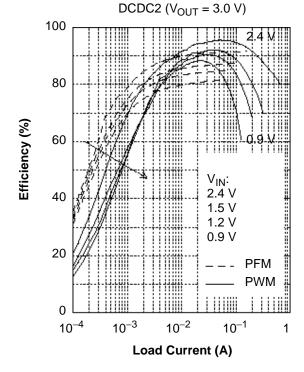
Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Conditions
SNR _{MI}	Signal-to-noise ratio of microphone input	MICIN		73		dB(A)	BW = 20 Hz20 kHz, analog gain=+21 dB, input 1 kHz at V _{MI} -20 dB
THD _{AI}	Total harmonic distortion of analog inputs	INL/R MICIN		0,01	0.02	%	BW = 20 Hz20 kHz, analog gain = 0 dB, resp. 24 dB, input 1 kHz at -3 dBFS= V_{Al} -6 dB resp. V_{Ml} -6 dB
XTALK _{AI}	Crosstalk attenuation left/right channel (analog inputs)	INL/R MICIN		80		dB	f = 1 kHz, sine wave, analog gain = 0 dB, input = -3 dBFS
PSRR _{AI}	Power supply rejection ratio	AVDD0/1,		45		dB	1 kHz sine at 100 mV _{rms}
Al	for analog audio inputs	INL/R MICIN		20		dB	≤100 kHz sine at 100 mV _{rms}
Audio Outp	ut						<u> </u>
SNR _{AO}	Signal-to-noise ratio of analog output	OUTL/R		94		dB(A)	R _L ≥16 Ω BW = 20 Hz20 kHz, analog gain = 0 dB input = -20 dBFS
THD _{AO}	Total harmonic distortion (headphone)	OUTL/R					
	for R _L ≥16Ω plus 22Ω series resistor (see Fig. 4–31 on page 80)			0.03	0.05	%	
	for R _L ≥1kΩ			0.003	0.01	%	
Lev _{MuteAO}	Mute level	OUTL/R		-113		dBV	A-weighted BW=20 Hz22kHz , no digital input signal, analog gain=mute
XTALK _{AO}	Crosstalk attenuation left/right channel (headphone)	OUTLR		80		dB	f=1 kHz, sine wave, OUTL/R: R _L ≥16 Ω (see Fig. 4–31 on page 80) analog gain=0 dB input=-3 dBFS
PSRR _{AO}	Power supply rejection ratio for analog audio outputs	AVDD0/1 OUTL/R		70		dB	1 kHz sine at 100 mV _{rms}
				35		dB	≤100 kHz sine at 100mV _{rms}
V _{AGNDC}	Analog Reference Voltage	AGNDC				V	$R_L >> 10 \text{ M}\Omega,$ referred to VREF
							V _{SUPA} Bits 15, 14 in Reg. 6A _{hex}
				1.1			>2.2 V 00
				1.3			>2.4 V 01
				1.6			>3.0 V 10

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Co	nditions
V _{MICBI}	Bias voltage for microphone	MICBI					V _{SUPA}	Bits 15, 14 in Reg. 6A _{hex}
				1.8			>2.2 V	00
				2.13			>2.4 V	01
				2.62			>3.0 V	10
R _{MICBI}	Source resistance	MICBI		180		Ω		
I _{MAX}	Maximum current microphone bias	MICBI				μΑ	V _{SUPA}	Bits 15, 14 in Reg. 6A _{hex}
				300			>2.2 V	00

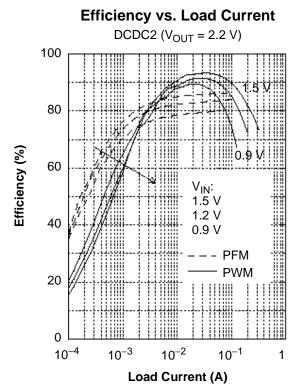

4.6.5. DC/DC Converter Characteristics

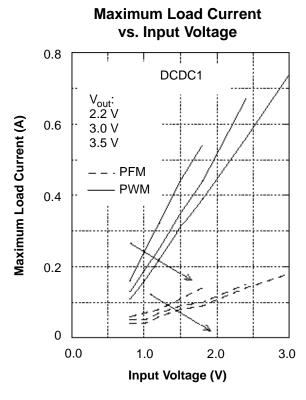

at T_A = T_{A2}, V_{in} = 1.2 V (unless otherwise noted), V_{outn} = 3.0 V, f_{Clk} = 18.432 MHz, f_{sw} = 384 kHz, Typ. values for T_A = 25 $^{\circ}$ C


Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Conditions
V _{IN}	Minimum start-up input voltage	*		0.9		V	I _{LOAD} ≤1 mA, DCCF = 5050 _{hex} (reset)
V _{IN}	Minimum operating input voltage						
	DC1* DC2*			0.7 0.8		V	I _{LOAD} = 50 mA, DCCF = 5050 _{hex} (reset)
	DC1* DC2*			1.1 1.2		V	I _{LOAD} = 200 mA, DCCF = 5050 _{hex} (reset)
V _{OUT}	Programmable output voltage range	VSENSN	2.0		3.5	V	Voltage settings in DCCF register (I ² C subaddress 76 _{hex})
V _{OTOL}	Output voltage tolerance	VSENSN	2.88		3.12	V	I _{LOAD} = 20 mA T _A = 25 °C
I _{LOAD1}	Output current 1 battery cell	VSENSN			200	mA	V _{IN} = 0.91.5 V, 330 μF
I _{LOAD2}	Output current 2 battery cells				600	mA	V _{IN} = 1.83.0 V, 330 μF
dV _{OUT} / dV _{IN} /V _{OUT}	Line regulation	VSENSN		0.8		%/V	
dV _{OUT} /	Load regulation						
V_{OUT}	DC1	VSENS1		-1.7		%	I _{LOAD} = 20200 mA,
	DC2	VSENS2		-1.8			
h _{max}	Maximum efficiency	_			95	%	V _{IN} = 2.4 V, V _{OUT} = 3.5 V
f _{switch}	Switching frequency	DCSOn	297	384	576	kHz	(see Section 2.9.2. on page 11)
f _{startup}	Switching frequency during start-up	DCSOn		250		kHz	VSENSn < 1.9 V
I _{supPFM1}	Supply current in PFM mode	VSENS1		75		μΑ	1)
I _{supPFM2}		VSENS2		135			
I _{supPWM1}	Supply current in PWM mode	VSENS1		265		μΑ	VSENSn
I _{supPWM2}		VSENS2		325			1) 2)
I _{Inmax}	NMOS switch current limit (low side switch)	DCSOn, DCSGn		1		А	
I _{lptoff}	PMOS switch turnoff current (rectifier switch)	DCSOn, VSENSn		70		mA	
I _{LEAK}	leakage current	DCSOn, DCSGn		0.1		μΑ	$T_j = 25$ °C, converter off, $I_{LOAD} = 0 \mu A$


 $^{^{1)}}$ Current into VSENSn. VIN > VOUT+ ΔV ; ($\Delta V \approx 0.4$ V); no DC/DC-Converter regulation switching action present $^{2)}$ Add. current of oscillator at PIN AVDD0/1, (see Section 4.6.4. on page 72)

4.6.6. Typical Performance Characteristics

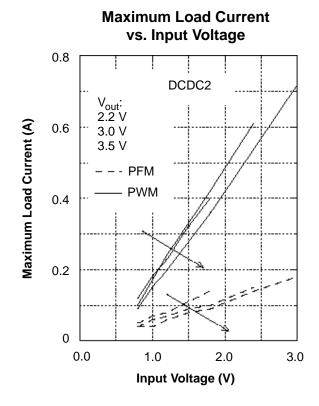


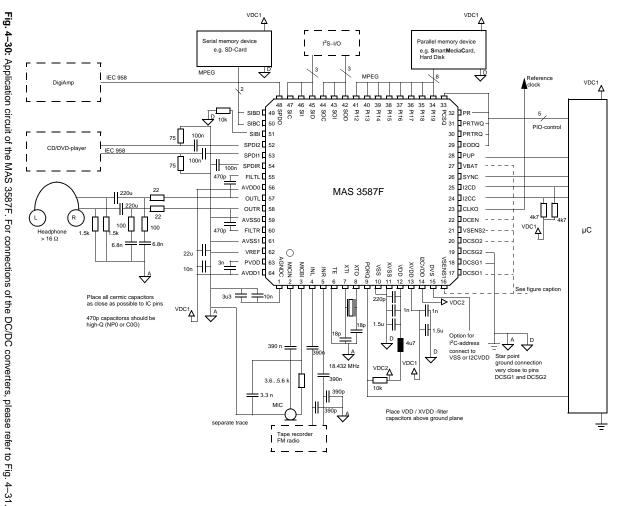


Efficiency vs. Load Current

Fig. 4-28: Efficiency vs. Load Current

Efficiency vs. Load Current DCDC1 (V_{OUT} = 2.2 V) 100 80 Efficiency (%) 60 V_{IN} : 1.5 V 1.2 V 40 0.9 V **PFM PWM** 20 0 10^{-4} 10^{-3} 10^{-2} 10^{-1} Load Current (A)




Fig. 4-29: Maximum Load Current vs. Input Voltage

Note: Efficiency is measured as $V_{SENSn} \times I_{LOAD} / (V_{in} \times I_{in})$. I_{AVDD} is not included (Oscillator current)

79

4.7. Typical Application in a Portable Player

MMC/SDI-Card or SMC/CF2+ used as storage media
 Dashed lines show optional (external) devices

4.8. Recommended DC/DC Converter Application Circuit

Configuration 1 (see Fig. 2-8 on page 13)

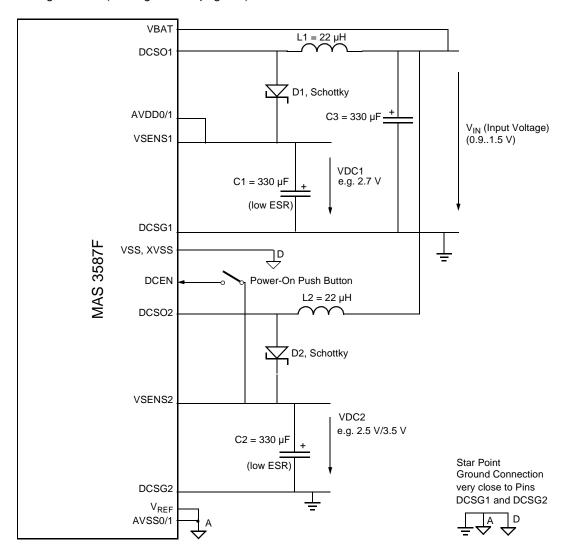


Fig. 4-31: External circuitry for the DC/DC converters

5. Data Sheet History

1. Advance Information: "MAS 3587F MPEG Layer 3 Audio Encoder/Decoder", March 2, 2001, 6251-542-1AI. First release of the advance information.

Micronas GmbH
Hans-Bunte-Strasse 19
D-79108 Freiburg (Germany)
P.O. Box 840
D-79008 Freiburg (Germany)
Tel. +49-761-517-0
Fax +49-761-517-2174
E-mail: docservice@micronas.com
Internet: www.micronas.com

Printed in Germany Order No. 6251-542-1AI All information and data contained in this data sheet are without any commitment, are not to be considered as an offer for conclusion of a contract, nor shall they be construed as to create any liability. Any new issue of this data sheet invalidates previous issues. Product availability and delivery are exclusively subject to our respective order confirmation form; the same applies to orders based on development samples delivered. By this publication, Micronas GmbH does not assume responsibility for patent infringements or other rights of third parties which may result from its use.

Further, Micronas GmbH reserves the right to revise this publication and to make changes to its content, at any time, without obligation to notify any person or entity of such revisions or changes.

No part of this publication may be reproduced, photocopied, stored on a

No part of this publication may be reproduced, photocopied, stored on a retrieval system, or transmitted without the express written consent of Micronas GmbH.

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.