

DA1017.002 29 May, 2002

MAS1017

AM Receiver IC

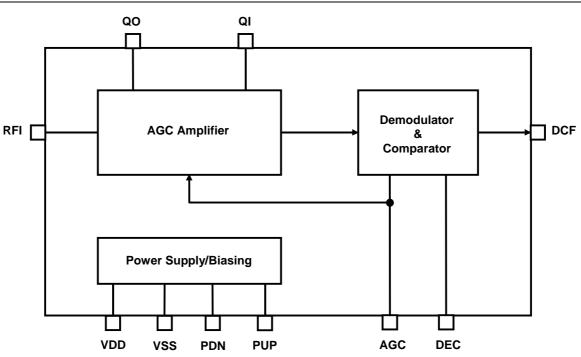
- High Sensitivity
- Very Low Power Consumption
- Wide Supply Voltage Range

APPLICATIONS

- Power Down and Power Up Control
- High Selectivity by Crystal Filter

DESCRIPTION

The MAS1017 AM-Receiver chip is a highly sensitive, simple to use AM receiver specially intended to receive time signals in the frequency range from 40 kHz to 100 kHz. There are only a few external components needed. The circuit has a preamplifier,


wide range automatic gain control, demodulator and output comparator built in. The output signal can be processed directly with an additional digital circuitry to extract the data from the received signal.

Time Signal Receiver for DCF77 (Germany)

FEATURES

- Highly Sensitive AM Receiver
- Wide Supply Voltage Range
- Very Low Power Consumption
- Power Down and Power Up Control
 DataSheet4U.com
- Only a Few External Components Needed
- Wide Frequency Range from 40 kHz to 100 kHz
- High Selectivity by Quartz Crystal Filter

BLOCK DIAGRAM

DataSheet4U.com

www.DataSheet4U.com

DataShe

PAD LAYOUT

1588 µm	_
U D D D D VSS RFI PDN QO QI ☐←──MAS1017	2094 µm

DIE size = $2.09 \times 1.59 \text{ mm}$; PAD size = $100 \times 100 \mu \text{m}$ Substrate is connected to VDD. Please make sure that VDD is bonded first. Note: Coordinates are calculated using VDD as a centre point.

Pad Identification	Name	X-coordinate	Y-coordinate	Note	DataSh
Power Supply Voltage	VDD	0 µm	0 µm		
Demodulator Capacitor	DEC	244 μm	8 µm		
AGC Capacitor	AGC	520 µm	8 µm		
Power Up Input	PUP	759 μm	8 µm	1	
DCF Signal Output	DCF	1075 µm	8 µm	2	
Quarz Filter Input	QI	1038 µm	1625 μm		
Quarz Filter Output	QO	760 µm	1625 µm		
Power Down Input	PDN	483 µm	1625 μm	3	
Receiver Input	RFI	243 µm	1625 µm		
Power Supply Ground	VSS	-15 µm	1605 µm		

Notes:

- 1) See power down control table below.
 - Internal pull-down resistor > 1 M Ω to VSS
- 2) DCF = VSS when carrier amplitude at maximum; DCF = VDD when carrier amplitude is reduced (25% modulated)
 - the output is a current source/sink with $|I_{OUT}| > 5 \ \mu A$
 - at power down the output is high impedance
- 3) See power down control logic table below.
 - Internal pull-up resistor > $1M\Omega$ to VDD

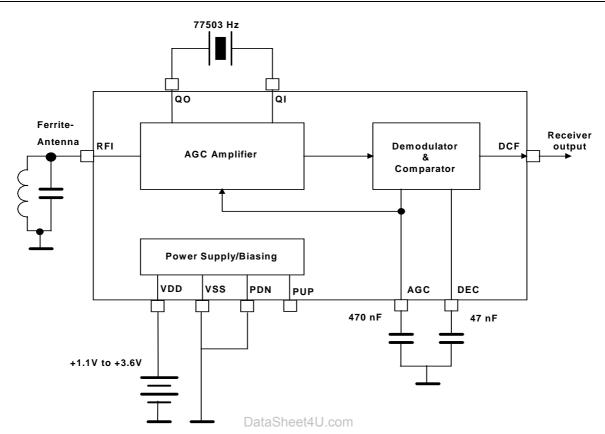
PDN	PUP	Power Down
VSS	VSS	NO
VSS	VDD	NO
VDD	VSS	YES (In power down if both PDN and PUP are left unconnected)
VDD	VDD	NO

DataSheet4U.com

www.DataSheet4U.com

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Conditions	Min	Max	Unit
Supply Voltage	V_{DD} - V_{SS}		-0.3	5.0	V
Input Voltage	V _{IN}		V _{SS} -0.3	V _{DD} +0.3	V
Power Dissipation	P _{MAX}			100	mW
Operating Temperature	T _{OP}		-20	70	°C
Storage Temperature	T _{ST}		-40	120	°C


ELECTRICAL CHARACTERISTICS

Operating Conditions: VDD = 1.4V, Temperature = 25°C						
Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Operating Voltage	V _{DD}		1.10		3.60	V
Current Consumption	I _{DD}			40	100	μΑ
Stand-By Current	I _{DDoff}				0.1	μΑ
Input Range	f _{IN}		40		100	kHz
Sensitivity	V _{IN}		0.001		20	mVrms
Input Levels I _{IN} <0.5 μA	V _{IL} V _{IH}		V _{DD} -0.3		0.3	V
Output Current V _{OL} <0.2 V _{DD} ;V _{OH} >0.8 V _{DD}	I _{OUT}		5			μΑ
Output Pulse	T ₀		50		140	ms
	T ₁	DataSheet4U.com	150		230	ms
Startup Time	T _{Start}			8		S
Output Delay Time	T _{Delay}			50		ms

et4U.com

DataShee

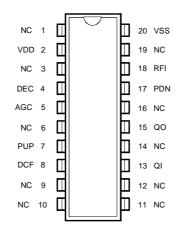
TYPICAL APPLICATION

et4U.com

Note 1: Ferrite Antenna and Crystal

The crystal as well as ferrite antenna frequencies are chosen according to the time signal system frequency. DCF-77 transmitter frequency is 77.5 kHz. The ferrite antenna center frequency has to be tuned to 77.5 kHz. The optimal crystal frequency is 77503 Hz but also 77500 Hz crystal can be used. The shunt capacitance of the crystal should be as close as possible to internal shunt capacitance compensation capacitor of 0.75 pF for optimal noise filtering.

Note 2: AGC and DEC Capacitors


The AGC and DEC capacitors should have low leakage currents due to very small 40 nA signal currents through the capacitors. The insulation resistance of these capacitors should be higher than 70 M Ω . Also probes with at least 100 M Ω impedance should be used for voltage probing of AGC and DEC pins.

DataShe

DA1017.002 29 May, 2002

SAMPLES IN SBDIL 20 PACKAGE

PIN DESCRIPTION

Pin Name	Pin	Туре	Function	Note
NC	1			
VDD	2	Р	Positive power supply	
NC	3			
DEC	4	AO	Demodulator capacitor	
AGC	5	AO	AGC capacitor	
NC	6		000000000000000000000000000000000000000	
PUP	7	AI	Power up input	1
DCF	8	DO	Demodulator output	2
NC	9			
NC	10			
NC	11			
NC	12			
QI	13	AI	Quartz filter input	
NC	14			3
QO	15	AO	Quartz filter output	
NC	16			
PDN	17	AI	Power down input	4
RFI	18	AI	Receiver input	
NC	19			
VSS	20	G	Power supply ground	

Notes:

et4U.com

- 1) See power down control table on page 2.
 - Internal pull-down resistor > 1 MΩ to VSS
- 2) DCF = VSS when carrier amplitude at maximum; DCF = VDD when carrier amplitude is reduced (25% modulated)
 - the output is a current source/sink with $|I_{OUT}| > 5 \,\mu A$
 - at power down the output is high impedance
- 3) Pin 14 between quartz crystal filter pins must be connected to VSS to eliminate package leadframe parasitic capacitances disturbing the crystal filter performance. All other NC (Not Connected) pins are also recommended to be connected to VSS to minimize noise coupling.
- 4) See power down control logic table on page 2.
 - Internal pull-up resistor > $1M\Omega$ to VDD

DataSheet4U.com

www.DataSheet4U.com

DataShe

ORDERING INFORMATION

Product Code	Product	Package	Comments
MAS1017ATC1	AM-Receiver IC	Wafer, EWS-tested	wafer thickness 400 µm
MAS1017ATC1-1	AM-Receiver IC	Dice on sticky tape	wafer thickness 400 µm, sawn wafer, tape ring 6", non UV tape, tape not expanded

Please contact Micro Analog Systems Oy for other wafer thickness, sawn wafer delivery as well as SMD package options.

LOCAL DISTRIBUTOR

et4U.com

DataSheet4U.com

MICRO ANALOG SYSTEMS OY CONTACTS

Micro Analog Systems Oy Kamreerintie 2, P.O. Box 51 FIN-02771 Espoo, FINLAND http://www.mas-oy.com Tel. (09) 80 521 Tel. Int. +358 9 80 521 Telefax +358 9 805 3213 E-mail: info@mas-oy.com

NOTICE

Micro Analog Systems Oy reserves the right to make changes to the products contained in this data sheet in order to improve the design or performance and to supply the best possible products. Micro Analog Systems Oy assumes no responsibility for the use of any circuits shown in this data sheet, conveys no license under any patent or other rights unless otherwise specified in this data sheet, and makes no claim that the circuits are free from patent infringement. Applications for any devices shown in this data sheet are for illustration only and Micro Analog Systems Oy makes no claim or warranty that such applications will be suitable for the use specified without further testing or modification.