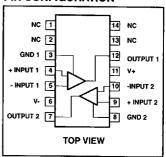
LM119

FEATURES

- Two independent comparators
- Operates from a single 5V supply
- Typically 80ns response time at ±15V
- Minimum fanout of 3 (each side)
- Maximum input current of 1μA over temperature
- Inputs and outputs can be isolated from system ground

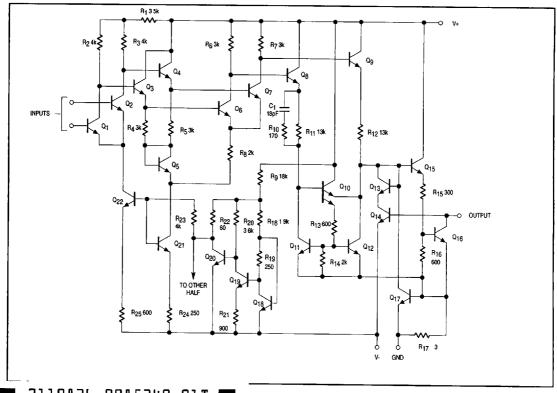

DESCRIPTION

The LM119 is a precision high-speed dual comparator fabricated on a single monolithic chip. It is designed to operate over a wide range of supply voltages down to a single 5V

logic supply and ground. Further, it has higher gain and lower input currents than devices like the μ A710. The uncommitted collector of the output stage makes the LM119 compatible with RTL, DTL, and TTL as well as capable of driving lamps and relays at currents up to 25mA.

Although designed primarily for applications requiring operation from digital logic supplies, the LM119 is fully specified for power supplies up to ± 15 V. It features faster response than the LM111 at the expense of higher power dissipation. However, the high-speed, wide operating voltage range and low package count make the LM119 much more versatile than older devices like the μ A711.

PIN CONFIGURATION



ORDERING INFORMATION

DESCRIPTION	ORDER CODE	PACKAGE DESIGNATOR*		
14-Pin Ceramic DIP	LM119/BCA	GDIP1-T14		

^{*} MIL-STD 1835 or Appendix A of 1995 Military Data Handbook

EQUIVALENT SCHEMATIC

LM119

ABSOLUTE MAXIMUM RATINGS1

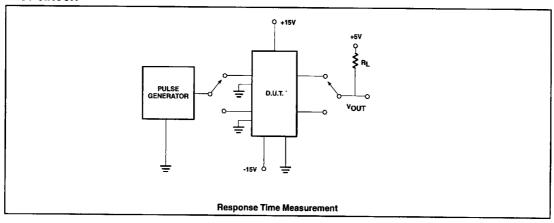
SYMBOL	PARAMETER	RATING	UNIT	
Vs	Total supply voltage	36	٧	
	Output to negative supply voltage	36	V	
	Ground to negative supply voltage	25	V	
	Ground to positive supply voltage	18	٧	
	Differential input voltage	±5	V	
V _{IN}	Input voltage ²	±15	V	
	Maximum power dissipation ³	500	mW	
	Output short-circuit duration	10	s	
T _{amb}	Operating temperature range	-55 to +125	°C	
TSTG	Storage temperature range	-65 to +150	°C	
T _{SOLD}	Lead soldering temperature (10sec max)	300	°C	

DC ELECTRICAL CHARACTERISTICS

 $V_{\odot} = + 15V$. -55° C $< T_{\Delta} < 125^{\circ}$ C, unless otherwise specified

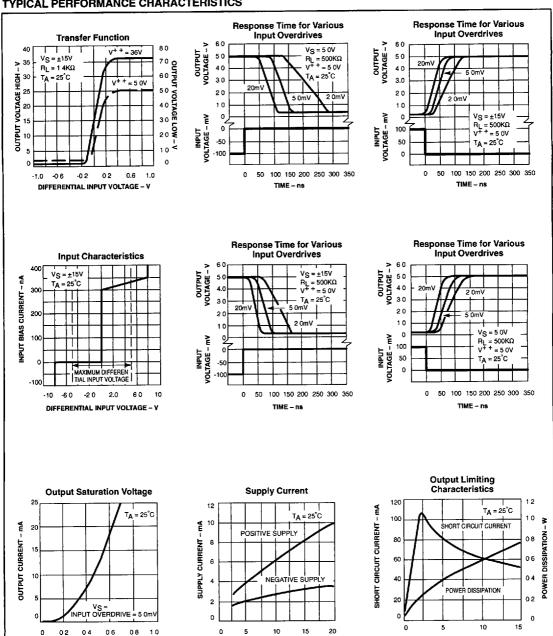
SYMBOL	PARAMETER	TEST CONDITIONS	T _{amb} = +25°C		T _{amb} = -55°C-+125°C		UNIT	
			MIN	TYP	MAX	MIN	MAX	
Vos	Input offset voltage4, 5	R _S ≤5kΩ		0.7	4.0		7.0	mV
los	Input offset current4, 5			30	75		100	nΑ
l _B	Input bias current ⁵			150	500		1000	nA
A _V	Voltage gain ⁶		10	40				V/mV
V _{OL}	Saturation voltage	$V+ \ge 4.5V, V- = 0$ $V_{IN}^7 \le -5mV, I_{OUT} = 25mA$		0.75	1.5			٧
		$V+ \ge 4.5V, V- = 0$ $V_{IN}^7 \le -6mV, I_{OUT} = 3.2mA$		0.23	0.4			٧
		T _A = 125°C					0.4	٧
		T _A = -55°C					0.6	٧
I _{OH}	Output leakage current	V- = 0V, V _{IN} ≥ 5mV, V _{OUT} = 35V		0.2	2		10	μА
V _{IN}	Input voltage range	V _S = ± 15V	<u>+</u> 12	<u>±</u> 13		<u>+</u> 12		٧
		V+ = 5V, V- = 0V	1		3	11	3	٧
V _{ID}	Differential input voltage				±5		±5	٧
l+	Positive supply current	V+ = 5V, V- = 0V		4.3				mA
l+	Positive supply current	V _S = ± 15V		8.0	11.5			mA
-	Negative supply current	V _S = ± 15V		3.0	-4.5			mA

LM119


AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS		UNIT	
			MIN	TYP	MAX	
t _R	Response time ⁸	$V_S = \pm 15V$, $T_A = 25^{\circ}C$ $R_L = 500\Omega$ (see test figure)		80		ns

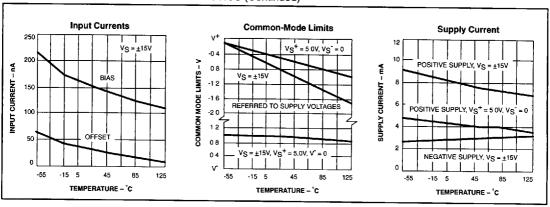
NOTES:


- Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation at these
 or any other conditions above those indicated in the operational specifications is not implied.
- 2. For supply voltages less than ± 15 V, the absolute maximum rating is equal to the supply voltage.
- 3. The absolute maximum junction temperature is 150°C. Device dissipation must be derated as 9.5mW/°C.
- 4. V_{OS} , I_{OS} and I_{B} specifications apply for a supply voltage range of $V_{S} = \pm 15V$ down to a single 5V supply.
- 5. The offset voltages and offset currents given are the maximum values required to drive the output to within 1V of either supply with a 1mA load. Thus these parameters define an error band and take into account the worst case effects of voltage gain and input impedance.
- 6. This parameter is guaranteed, but not tested.
- V_{IN} value specified is the overdrive applied in addition to the specified V_{OS} value.
- 8. The response time specified is for a 100mV step with 5mV overdrive.

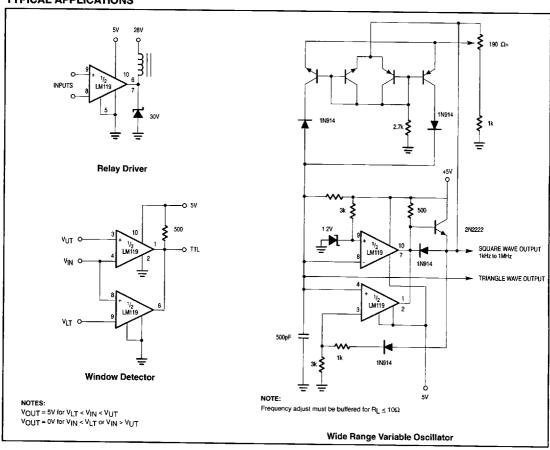
TEST CIRCUIT

OUTPUT VOLTAGE - V

TYPICAL PERFORMANCE CHARACTERISTICS



OUTPUT VOLTAGE - V


SUPPLY VOLTAGE - V

LM119

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

TYPICAL APPLICATIONS

7110826 0085244 765