Raytheon RF Components							ular 2 r	Watt	Line	ear G	БаА	S
	PRODUCT INFORMATION											
Description	The RMBA095 RF Componen as the output s linearity require	ts' pHEN tage for	/T pro Micro	cess. It is - and Pico	s desi o-Cell	gned fo	r use as a c	driver stag	e for Cellu	ular base	station	s, or
Features	 2 Watt Linear output power at 37 dBc ACPR1 for CDMA operation Small Signal Gain of > 30 dB Small outline SMD package 											
Electrical	Parameter		Min	Тур	Max	Unit	Paramete	er	Min	Тур	Мах	Unit
Characteristics ²	Frequency Ran Gain (small sign Gain variation: Over frequency Over temperate Noise Figure Linear output po for CDMA ³ OIP3 ⁵	nal) / range ure range	869	35 +/-1.5 +/-2.5 6 43	894	MHz dB dB dB dB dBm dBm	PAE@33 Input VSV RF Input I Drain Volt Gate Volt Quiescen Thermal F		VG ₂) ⁴ -2 IDQ) ⁴	1.15 25 2:1 +1 7.0 150, 400 11	-0.25	A % dBm Volts Volts mA °C/W
Absolute		Paramete	er			Sym	bol Min	Max	Units			
Ratings		Drain Supply Voltage ¹ Gate Supply Voltage RF Input Power (50 ohm Source Case Operating Temperature Storage Temperature				V _{DD} V _{GS} P _{RF} T _C T _S	-30 -40	+10 -5 +5 +85 +100	V V dBm °C °C			
	offset. Minim 4. VG1 and VG2 IDQTOTAL=5 optimized for other modulat 5. OIP3 specifica	c = 25°C. P rward Link er within the um CDMA 2 must be in 50mA can CDMA ope ion system itions are a ljusted sup	Part mo QPSK e 1.23 output ndividu be use eration. ns. icchieve oply and	unted on ev Source; 1.2 MHz channo power is m ally adjuste d with near IDQ1 and d for power bias condi	aluatio 23 Mbp el at ba et with d to ac ly equir IDQ2 (i output tions of	s modula nd cente ACPR1 > nieve ID0 valent pe or IDQT0 levels of Vdd=6.0	tition rate. CDN r to the average > 37 dBc. Q1 and IDQ2. rformance. Va DTAL) can be a 27 and 30 dB DV and Idqtota	MA ACPR1 is ge power with A single VG alues for IDQ adjusted to o m per tone w =950mA (se	s measured hin a 30 KH: G bias supp 11 and IDQ2 ptimize the vith tone spa se Note 4).	using the ra z bandwidth ly adjusted shown hav linearity of t acing of 1.29	to achiev re been he ampli 5 MHz at	85 KHz ve ifier for t band-

Specifications are based on most current or latest revision.

Page 1

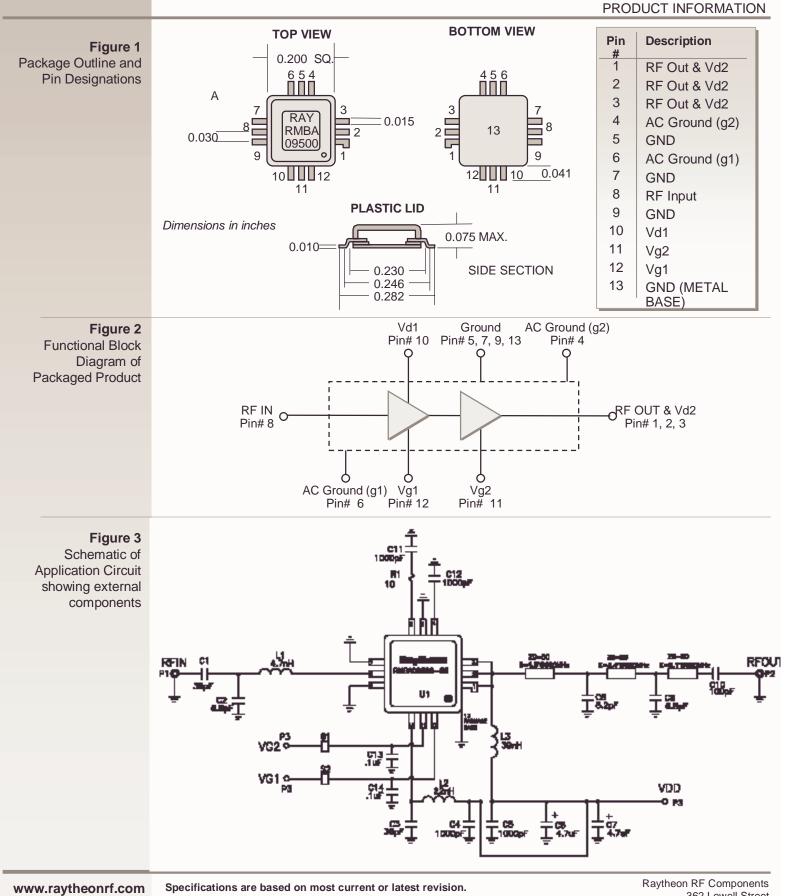
Raytheon

RF Components

RMBA09500-58 - Cellular 2 Watt Linear GaAs MMIC Power Amplifier

PRODUCT INFORMATION

Application Information	power amplifier, in a surface mount package, des stations, or as the final output stage for Micro- and I outline and the pin designations. Figure 2 shows th The RMBA09500-58 requires external passive co matching circuits as shown in Figure 3 and the Part Figure 3. The gate biases for the two stages of th	g the RMBA09500-58, a monolithic high efficiency signed for use as a driver stage for Cellular base Pico-Cell base stations. Figure 1 shows the package the functional block diagram of the packaged product. components for DC bias and RF input and output s List. A recommended schematic circuit is shown in the amplifier may be set by simple resistive voltage uation board, corresponding to the schematic circuits
	 Pin designations are as shown in figure 2. Vg1 and Vg2 are the Gate Voltages (negative) applied at the pins of the package Vgg1 and Vgg2 are the negative supply voltages at the evaluation board terminals Vd1 and Vd2 are the Drain Voltages (positive) applied at the pins of the package 	(5) Vdd1 and Vdd2 are the positive supply voltages at the evaluation board terminalsNote: The 2 terminals of Vdd1 and Vdd2 may be tied together.The base of the package must be soldered on to a heat sink for proper operation.
Test Procedure for the evaluation board (RMBA09500-58-TB)	 CAUTION: LOSS OF GATE VOLTAGES (VG1, VG (Vdd) ARE PRESENT CAN DAMAGE THE AMPLI The following sequence must be followed to properl provide air cooling across the heat sink of RMBA09. Step 1: Turn off RF input power. Step 2: Use GND terminal of the evaluation board for the ground of the DC supplies. Slowly apply gate supply voltages as specified on results sheet supplied with test board to the board terminals Vgg1 and Vgg2. Step 3: Slowly apply drain supply voltages of +7.0 V to the board terminals Vdd1, 2. Adjust Vgg to set the total quiescent current (with no RF applied) Idq as per supplied result sheet. [Gate supply voltages (Vgg i.e., Vgg1, Vgg2) may be adjusted, only if quiescent current (Idq1 and Idq2) values desired are different from those noted on the data summary supplied with product samples]. 	y test the amplifier. (It is necessary to add a fan to


Downloaded from Elcodis.com electronic components distributor

Specifications are based on most current or latest revision.

Page 2

RMBA09500-58 - Cellular 2 Watt Linear GaAs MMIC Power Amplifier

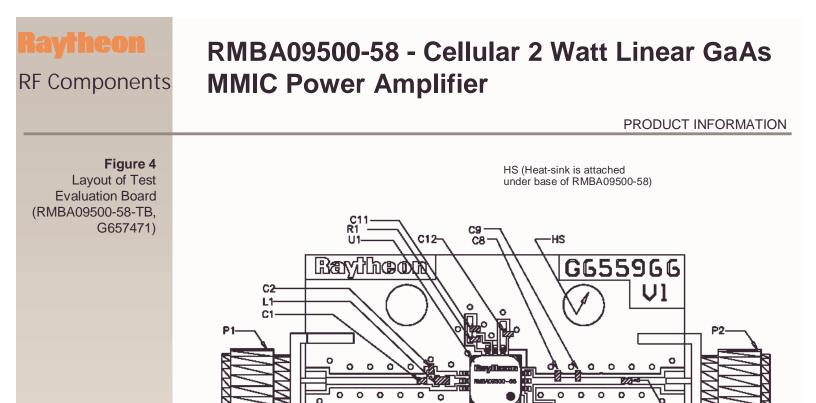
Revised June 27, 2003

Page 3

362 Lowell Street Andover, MA 01810

RF Components

RMBA09500-58 - Cellular 2 Watt Linear GaAs MMIC Power Amplifier


PRODUCT INFORMATION

Parts List	Part	Value	EIA Size	Vendor(s)
r Test Evaluation Board	C1,C3	39 pF	0402	Murata, GRM36COG390J050
(RMBA09500-58-TB,	C2,C9	6.8 pF	0402	Murata, GRM36COG6R8B050
G654188/G654942)	C8	8.2 pF	0402	Murata, GRM36COG8R2B50
	C4,C5,C11,C12	1000 pF	0402	Murata, GRM36X7R102K050
	C6,C7	4.7 uF	3528	TDK, C3216X7R102K050
	L1	4.7 nH	0603	Toko, LL1608-FH4N7S
	L2	22 nH	0603	Toko, LL1608-FH22NK
	L3	39 nH	1008	Coilcraft, 1008HQ-39NTKBC
	R1	10 Ohm	0402	IMS, RCI-0402-10R0J
	S1, S2			Bar or Ni Ribbon Short
	W1	26AWG (0.015" dia) Wire		Alpha, 2853/1
	U1	RMBA09500-58 PA		Raytheon
	P3	Right angle Pin Header		3M 2340-5211TN
	P1,P2	Brass SMA Connectors		Johnson Components 142-0701-841
	Board	FR4		Raytheon Dwg# G654626, V1
	C10	100 pF	0603	Murata, GRM36COG101J50
	C13, C14	1.0 uF	0805	Murata, GRM39Y5V104Z50

Thermal Considerations

for Heat-Sinking the RMBA09500-58 The PWB must be prepared with either an embedded copper slug in the board where the package is to be mounted or a heat sink should be attached to the backside of the PWB where the package is to be mounted on the front side. The slug or the heat sink should be made of a highly electrically and thermally conductive material such as copper or aluminum. The slug should be at least the same thickness as the PWB. In the case of the heat sink, a small pedestal should protrude through a hole in the PWB where the package bottom is directly soldered. In either configuration, the top surface of the slug or the pedestal should be made coplanar with the package lead mounting plane i.e., the top surface of the PWB. Use Sn96 solder (96.5% Sn and 3.5% Ag) at 220°C for 20 seconds or less to attach the heat sink to the backside of the PWB. Then, using Sn63, the package bottom should be firmly soldered to the slug or the pedestal while the pins are soldered to the respective pads on the front side of the PWB without causing any stress on the pins. Remove flux completely if used for soldering.

Downloaded from Elcodis.com electronic components distributor

C

0/I C

S2

C14

Specifications are based on most current or latest revision.

C10

L3 C5

C6 W1

C7

P3

001

RŁ

0 0

D

C3

C4

RI

C13

51

Downloaded from <u>Elcodis.com</u> electronic components distributor

Page 5