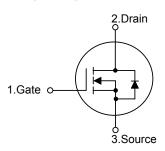


2N40 Preliminary Power MOSFET

2 Amps, 400 Volts N-CHANNEL POWER MOSFET

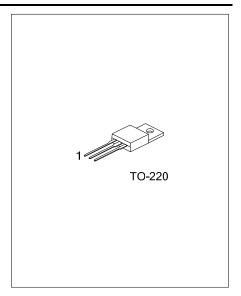
DESCRIPTION


The UTC **2N40** is an N-channel mode power MOSFET using UTC's advanced technology to provide customers with a minimum on-state resistance, stable off-state characteristics and superior switching performance. It also can withstand high energy pulse in the avalanche.

The UTC **2N40** is usually used in general purpose switching applications, motor control circuits and switched mode power supply.

■ FEATURES

- * High switching speed
- * 2A, 400V, $R_{DS(ON)}$ =3.5 Ω @ V_{GS} =10V
- * 100% avalanche tested



■ ORDERING INFORMATION

Ordering		Number	Dookogo	Pin Assignment			Dooking	
	Lead Free	Halogen Free	Package	1	2	3	Packing	
	2N40L-TA3-T	2N40G-TA3-T	TO-220	G	D	S	Tube	
Note: Pin Assignment: G: Gate D: Drain S: Source								

2N40L-TA3-T (1)Packing Type (1) T: Tube (2)Package Type (2) TA3: TO-220 (3) G: Halogen Free, L: Lead Free

www.unisonic.com.tw 1 of 6

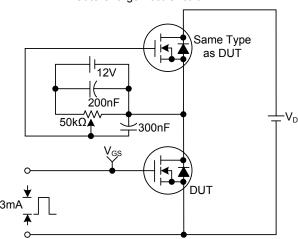
Downloaded from Elcodis.com electronic components distributor

■ **ABSOLUTE MAXIMUM RATINGS** (T_C=25°C, unless otherwise noted)

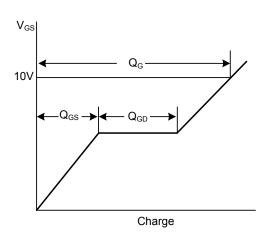
PARAMETER		SYMBOL	RATINGS	UNIT	
Drain-Source Voltage		V_{DSS}	400	V	
Gate-Source Voltage		V_{GSS}	±30	V	
Drain Current	Continuous	I_D	2	Α	
Dialii Cullelli	Pulsed	I _{DM}	7	Α	
Avalanche Current		I _{AR}	2.5	Α	
Single Pulsed Avalanche Energy		E _{AS}	100	mJ	
Power Dissipation		P_{D}	25	W	
Linear Derating Factor		$\triangle P_D / \triangle T_{mb}$	0.2	W/°C	
Junction Temperature		TJ	150	°C	
Storage Temperature Range		T _{STG}	-55~150	°C	

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

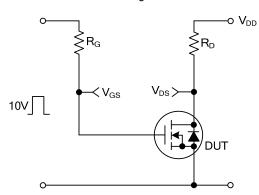
■ THERMAL CHARACTERISTICS

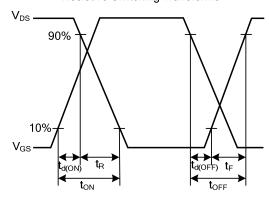

PARAMETER	SYMBOL	RATINGS	UNIT	
Junction to Ambient	θ_{JA}	62.5	°C/W	
Junction to Case	$\theta_{ m JC}$	5	°C/W	

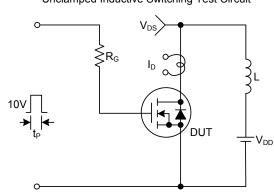
■ **ELECTRICAL CHARACTERISTICS** (T_J=25°C, unless otherwise specified)

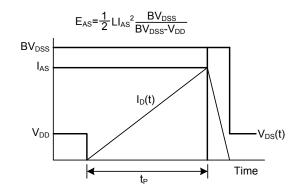

2.2	0) (1.17.0)	TEOT 001/0/17/01/2	:				
PARAMETER	SYMBOL	TEST CONDITIONS		ГҮР	MAX	UNIT	
OFF CHARACTERISTICS		I	400	r			
Drain-Source Breakdown Voltage	BV _{DSS}	I _D =250μA, V _{GS} =0V			\vdash	V	
Breakdown Voltage Temperature Coefficient	△BV _{DSS} /△T _J	V _{DS} =V _{GS} , I _D =250μA		0.45		V/°C	
Drain-Source Leakage Current	I _{DSS}	V _{DS} =400V, V _{GS} =0V		1	25	μΑ	
Gate Source Leakage Current Forward	1-	V _{GS} =+30V, V _{DS} =0V		+10	+200	nA	
Gate- Source Leakage Current Reverse	I _{GSS}	V _{GS} =-30V, V _{DS} =0V		-10	-200	nA	
ON CHARACTERISTICS							
Gate Threshold Voltage	V _{GS(TH)}	$V_{DS}=V_{GS}, I_{D}=250\mu A$ 2.		3.0	4.0	V	
Static Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =1.25A		2.0	3.5	Ω	
DYNAMIC PARAMETERS							
Input Capacitance	C _{ISS}			240		pF	
Output Capacitance	Coss	V _{GS} =0V, V _{DS} =25V, f=1.0MHz		44		pF	
Reverse Transfer Capacitance	C _{RSS}			26		pF	
SWITCHING PARAMETERS	_ _						
Total Gate Charge	$Q_{G(TOT)}$			20	25	nC	
Gate to Source Charge	Q _{GS}	V _{GS} =10V, V _{DS} =320V, I _D =2.5A		2	3	nC	
Gate to Drain Charge	Q _{GD}	, ,		8	12	nC	
Turn-ON Delay Time	t _{D(ON)}			10		ns	
Rise Time	t _R	V_{DD} =200V, I_{D} =2.5A, R_{G} =24 Ω ,		25		ns	
Turn-OFF Delay Time	t _{D(OFF)}	R _D =78 Ω		46		ns	
Fall-Time	t _F			25		ns	
Internal Drain Inductance		Measured from drain lead 6 mm from package to centre of die		4.5		nH	
Internal Source Inductance	Ls	Measured from source lead 6 mm from package to source bond pad		7.5		nH	
SOURCE- DRAIN DIODE RATINGS AND (CHARACTERIS	STICS					
Maximum Body-Diode Continuous Current	Is	T _C =25°C	\sqsubseteq		2.5	Α	
Maximum Body-Diode Pulsed Current	I _{SM}	1C-25 C			10	Α	
Drain-Source Diode Forward Voltage	V_{SD}	I _S =2.5A, V _{GS} =0V			1.2	V	
Body Diode Reverse Recovery Time	t _{RR}	I _S =2.5A, V _{GS} =0V, dI/dt=100A/μs		200		ns	
Body Diode Reverse Recovery Charge	Q _{RR}			2.0		μC	

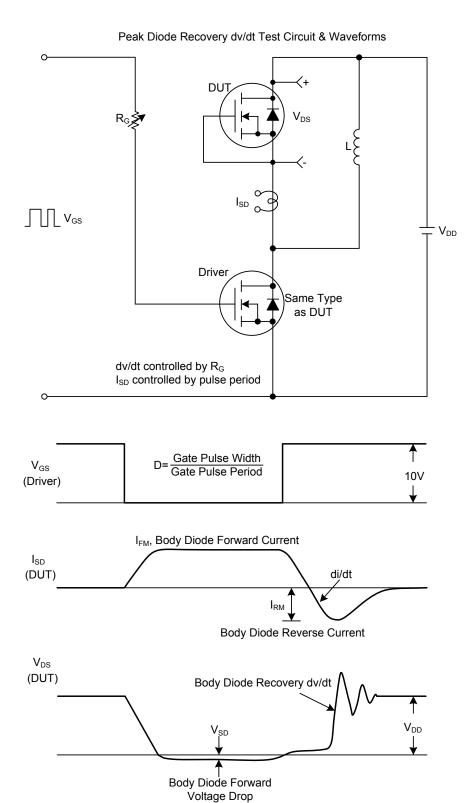
■ TEST CIRCUITS AND WAVEFORMS


Gate Charge Test Circuit


Gate Charge Waveforms


Resistive Switching Test Circuit


Resistive Switching Waveforms


Unclamped Inductive Switching Test Circuit

Unclamped Inductive Switching Waveforms

■ TEST CIRCUITS AND WAVEFORMS(Cont.)

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

