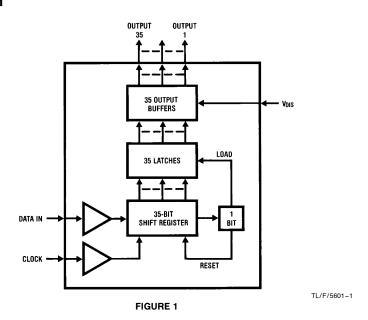
March 1991

MM58348 High Voltage Display Driver

General Description

The MM58348 is a monolithic MOS integrated circuit utilizing CMOS metal gate low threshold P and N-channel devices. It is available both in 40-pin molded dual-in-line packages or as dice. The MM58348 is particularly suited for driving high voltage (35V max) vacuum fluorescent (VF) displays (e.g., a 5 x 7 dot matrix display).


Features

- Direct interface to high voltage display
- Serial data input
- No external resistors required
- Wide display power supply operation
- LSTTL compatible inputs
- Software compatible with NS display driver family
- Compatible with alphanumeric or dot matrix displays
- No load signal required

Applications

- COPSTM or microprocessor-driven displays
- Instrumentation readouts
- Industrial control indicator
- Digital clock, thermostat, counter, voltmeter
- Word processor text displays
- Automotive dashboards

Block Diagram

COPS™ is a trademark of National Semiconductor Corporation

RRD-B30M105/Printed in U. S. A.

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Power Dissipation at 25°C

Derate 21.7 mW°C Above 25°C
**Molded DIP Package, Socket Mount,
Derate 19.6 mW/°C Above 25°C

Junction Temperature 130°C

Lead Temperature

(Soldering, 10 seconds) 260°C

Operating Conditions

Min	Max	Units
4.5	5.5	V
-30	-10	V
-40	+85	°C
	4.5 -30	4.5 5.5 -30 -10

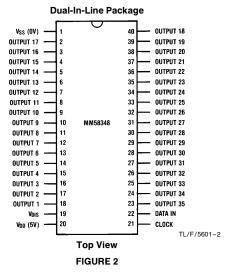
DC Electrical Characteristics

 $T_{A}=\,-40^{\circ}\text{C}$ to $\,+\,85^{\circ}\text{C},\,V_{DD}=\,5\text{V}\,\pm0.5\text{V},\,V_{SS}=\,0\text{V}$ unless otherwise specified.

 $\theta_{\mathsf{JA}} = 51^{\circ}\mathsf{C/W}$

Symbol	Parameter	Conditions	Min	Тур	Max	Units
I _{DD}	Power Supply Currents	$V_{IN} = V_{SS}$ or V_{DD} , $V_{DD} = 5.5V$, $V_{SS} = 0V$, V_{DIS} Disconnected			150	μΑ
I _{DIS}		$V_{DD} = 5.5V, V_{SS} = 0V,$ $V_{DIS} = -30V, All Outputs Low$			10	mA
V _{IL}	Input Logic Levels DATA IN, CLOCK Logic '0'				0.8	V
V _{IH}	Logic '1'		2.4			V
I _{IN}	Input Currents DATA IN, CLOCK	$V_{IN} = 0V \text{ or } V_{DD}$	-10		10	μΑ
C _{IN}	Input Capacitance DATA IN, CLOCK				15	pF
R _{OFF}	Display Output Impedances Output Off (Figure 3a)	$V_{DD} = 5.5V, V_{SS} = 0V$ $V_{DIS} = -10V$ $V_{DIS} = -20V$ $V_{DIS} = -30V$	55 60 65		250 300 400	kΩ kΩ kΩ
R _{ON}	Output On (Figure 3b)	V _{DIS} = -10V V _{DIS} = -20V V _{DIS} = -30V		700 600 500	800 750 680	Ω Ω
V _{DOL}	Display Output Low Voltage	$V_{DD} = 5.5V$, $I_{OUT} = Open Circuit$, $-30V \le V_{DIS} \le -10V$	V _{DIS}		V _{DIS} + 2	V

Note 1: 74LSTTL $V_{OH}=2.7V$ @ $I_{OUT}=-400~\mu A$, TTL $V_{OH}=2.4V$ @ $I_{OUT}=-400~\mu A$.


AC Electrical Characteristic $T_A = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$, $V_{DD} = 5V \pm 0.5V$

Symbol	Parameter	Conditions	Min	Тур	Max	Units
f _C	Clock Input Frequency	(<i>Notes 2</i> and <i>3</i>)			1.0	MHz
t _H	Clock Input High Time		300			ns
tL	Clock Input Low Time		300			ns
t _{DS}	Data Input Set-Up Time		100			ns
t _{DH}	Data Input Hold Time		100			ns

Note 2: AC input waveform specification for test purpose: $t_f \le 20$ ns, $t_f \le 20$ ns, $t_f = 1$ MHz, $50\% \pm 10\%$ duty cycle.

Note 3: Clock input rise and fall times must not exceed 5 μ s.

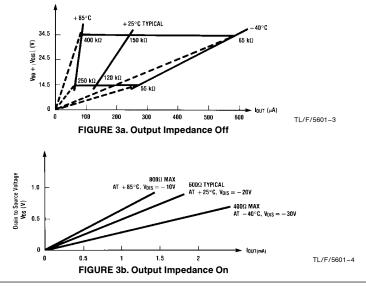
Connection Diagrams

Order Number MM58348N See NS Package Number N40A

OUTPUT OUTPUT OUTPUT OUTPUT 13 OUTPUT 23 OUTPUT 12 OUTPUT 24 OUTPUT 11 OUTPUT 25 OUTPUT 10 OUTPUT 26 OUTPUT 9 **–** OUTPUT 27 MM58348V - N/C N/C OUTPUT 8 OUTPUT 28 OUTPUT 7 -OUTPUT 29 OUTPUT 6 -OUTPUT 30 OUTPUT 5 OUTPUT 31 OUTPUT 4 OUTPUT 32 18 19 20 21 22 23 24 35 33 OUTPUT 3 OUTPUT 3 TL/F/5601-8

Plastic Chip Carrier

Top View Order Number MM58348V See NS Package Number V44A


Functional Description

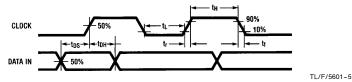
This product is specifically designed to drive multiplexed or non-multiplexed high voltage alphanumeric or dot matrix vacuum fluorescent (VF) displays. Character generation is done externally in the microprocessor, with a serial data path to the display driver. The MM58348 uses two signals, DATA IN and CLOCK, with a format of a leading "1" followed by the 35 data bits, hence allowing data transfer without an additional signal. A block diagram of the MM58348 is shown in *Figure 1*.

Figure 2 shows the pinout of the MM58348 device, where output 1 (pin 18) is equivalent to bit 1, (i.e., the first bit of

data to be loaded into the shift register following the start bit). A logic "1" at the input will turn on the corresponding display digit/segment/dot output.

A significant reduction in discrete board components can be achieved by use of the MM58348, because external pull-down resistors are not required. Due to the nature of the output stage, both its on and off impedance values vary as a function of the display voltage applied. However, *Figure 3a* and *3b* show that this output impedance will remain constant for a fixed value of display voltage.

Functional Description (Continued)


Figure 4 demonstrates the critical timing requirements between CLOCK and DATA IN for the MM58348.

In Figure 5, a start bit of logic "1" precedes the 35 bits of data, each bit being accepted on the rising edge of CLOCK, i.e., a "0"-"1" transition. At the 36th clock, a LOAD signal is generated synchronously with the high state of the clock, thus loading the 35 bits of the shift register into the latches. At the low state of the clock, a RESET signal is generated, clearing all bits of the shift register for the next set of data. Hence, a complete set of 36 clock pulses is needed to clear (reset) the display driver at "power on" or any time, the following flushing routine may be used. Clock in 36 "ze-

roes", followed by a "one" (start bit), followed by 35 "zeroes". This procedure will completely blank the display. It is recommended to clear the driver at power on.

Figure 6 shows a schematic diagram of a microprocessorbased system where the MM58348 is used to provide the anode drive for a 32-digit 5 x 7 dot matrix vacuum fluorescent (VF) display. The grid drive in this example is provided by another member of the high voltage display driver family, namely the MM58341, which has the additional features of a BLANKING CONTROL pin, a DATA OUT pin, and an EN-ABLE (external load signal) pin.

Timing Diagrams

For the purpose of AC measurement, $V_{\text{IH}}\,=\,2.4V,\,V_{\text{IL}}\,=\,0.8V$

FIGURE 4. Clock and Data Timings

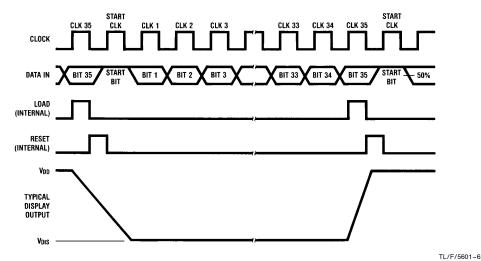
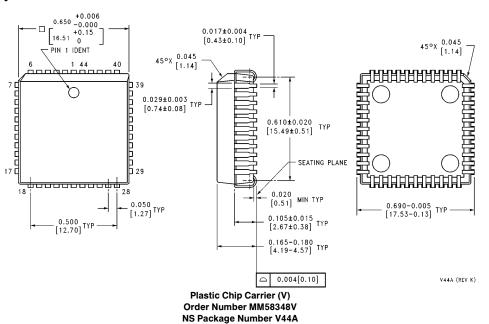



FIGURE 5. MM58348 Timings (Data Format)

Typical Application 32-DIGIT MULTIPLEXED 5×7 DOT MATRIX VACUUM FLUORESCENT (VF) DISPLAY 35 ANODES 32 GRIDS MM58348 DISPLAY DRIVER MM58341 DISPLAY DRIVER DATA 8 DATA 1 CLOCK 8 CLOCK 1 ENABLE 1 BLANK 1 DATA OUT 1 MICROPROCESSOR TL/F/5601-7 FIGURE 6. Microprocessor-Controlled Word Processor Physical Dimensions inches (millimeters) 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 (1.575) RAD 0.550 ±0.005 (13.970 ±0.127) (+)(+)PIN NO. 1 IDENT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 (14.73) MIN 0.030 0.050 (1.270) TYP 0.600-0.620 - 0.125-0.165 (3.175-4.191) (15.240-15.748) 0.009-0.015 (0.229-0.381) 0.625 ^{+0.025} -0.015 0.075 ±0.015 (1.905 ±0.381) (0.508) MIN (0.457 ±0.076) (15.875 +0.635 -0.381) (2.540 ±0.254) Molded Dual-In-Line Package (N) Order Number MM58348N NS Package Number N40A

Physical Dimensions inches (millimeters) (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018 National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tel: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80 National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960 National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications