National Semiconductor

MM58341 High Voltage Display Driver

General Description

The MM58341 is a monolithic MOS integrated circuit utilizing CMOS metal gate low threshold P and N-channel devices. It is available both in 40-pin molded dual-in-line packages or as dice. The MM58341 is particularly suited for driving high voltage (35V max) vacuum fluorescent (VF) displays, (e.g., a 32-digit alphanumeric or dot matrix display).

Applications

- COPSTM or microprocessor-driven displays
- Instrumentation readouts
- Industrial control indicator
- Digital clock, thermostat, counter, voltmeter
- Word processor text displays
- Automotive dashboards

Features

- Direct interface to high voltage display
- Serial data input
- No external resistors required
- Wide display power supply operation
- LSTTL compatible inputs
- Software compatible with NS display driver family
- Compatible with alphanumeric or dot matrix displays
- Display blanking control input
- Simple to cascade

Block Diagram OUTPUT OUTPUT BLANKING 32 OUTPUT Vois CONTROL BUFFERS 32 LATCHES DATA 32-BIT SHIFT REGISTER CLOCK ENABLE TL/F/5603-1 FIGURE 1 COPS™ is a trademark of National Semiconductor Corp.

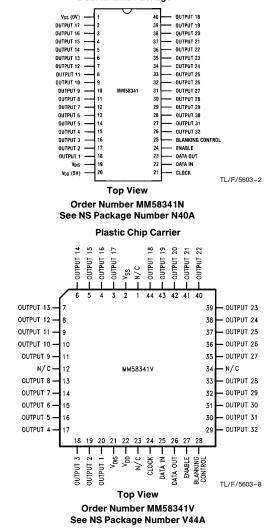
© 1995 National Semiconductor Corporation TL/F/5603

RRD-B30M105/Printed in U. S. A.

MM58341 High Voltage Display Driver

March 1991

lf Milita please	Iute Maximum Ratings ry/Aerospace specified devices an contact the National Semicondu Distributors for availability and spec	Ictor Sales Supply Voltage (∣ / _{DD})	DNS Min 4.5	Max 5.5	Units V
	at Any Input Pin V _{DD} + 0.3V to	Disalar Malta as (V _{DIS}) -	-30	-10	V
•		V _{DD} – 36.5V Temperature Rar	nge -	-40	+85	°C
$V_{DD} + $		36.5V				
		C to +150°C				
Power D	issipation at 25°C					
Molde *Mol Dera ** Mol	ate 21.7 mW°C Above 25°C	2.28W* 2.05W** $_{A} = 46^{\circ}C/W$ $_{A} = 51^{\circ}C/W$				
	Temperature	130°C				
	mperature (Soldering, 10 seconds)	260°C				
$T_A = -4$	lectrical Characteristics 40° C to $+85^{\circ}$ C, $V_{DD} = 5V \pm 0.5V$, V_{SS}	s = 0V unless otherwise specified				
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{DD}	Power Supply Currents	$\label{eq:VIN} \begin{array}{l} V_{IN} = V_{SS} \text{ or } V_{DD}, V_{SS} = 0V, \\ V_{DIS} \text{ Disconnected} \end{array}$			150	μΑ
I _{DIS}		$\label{eq:VDD} \begin{array}{l} V_{DD} = 5.5 \text{V}, V_{SS} = 0 \text{V}, \\ V_{DIS} = -30 \text{V}, \text{All Outputs Low} \end{array}$			10	mA
V _{IL}	Input Logic Levels DATA IN, CLOCK ENABLE, BLANK Logic '0'				0.8	v
V_{IH}	Input Logic Levels DATA IN, CLOCK ENABLE, BLANK Logic '1'	(Note 1)	2.4			v
V _{OH}	Data Output Logic Levels Logic '0'	$I_{OUT} = 400 \ \mu A$			0.4	v
14	Data Output Logic Levels Logic '1'	$I_{OUT} = -10 \ \mu A$	V _{DD} - 0.5			v
V _{OH}						v
v _{он} V _{он}	Data Output Logic Levels Logic '1'	$I_{OUT} = -500 \ \mu A$	2.8			
		$I_{OUT} = -500 \ \mu A$ $V_{IN} = 0V \text{ or } V_{DD}$	2.8 - 10		10	μΑ
V _{OH}	Logic '1' Input Currents DATA IN,				10 15	μA pF
V _{OH}	Logic '1' Input Currents DATA IN, CLOCK ENABLE, BLANK Input Capacitance DATA IN, CLOCK ENABLE, BLANK Display Output Impedances	$V_{IN} = 0V \text{ or } V_{DD}$ $V_{DD} = 5.5V, V_{SS} = 0V$				
V _{OH} I _{IN} C _{IN}	Logic '1' Input Currents DATA IN, CLOCK ENABLE, BLANK Input Capacitance DATA IN, CLOCK ENABLE, BLANK	$V_{IN} = 0V \text{ or } V_{DD}$ $V_{DD} = 5.5V, V_{SS} = 0V$ $V_{DIS} = -10V$	- 10		15 250	pF kΩ
V _{OH} I _{IN} C _{IN}	Logic '1' Input Currents DATA IN, CLOCK ENABLE, BLANK Input Capacitance DATA IN, CLOCK ENABLE, BLANK Display Output Impedances	$V_{IN} = 0V \text{ or } V_{DD}$ $V_{DD} = 5.5V, V_{SS} = 0V$ $V_{DIS} = -10V$ $V_{DIS} = -20V$	- 10 55 60		15 250 300	pF kΩ kΩ
V _{OH} I _{IN} C _{IN} R _{OFF}	Logic '1' Input Currents DATA IN, CLOCK ENABLE, BLANK Input Capacitance DATA IN, CLOCK ENABLE, BLANK Display Output Impedances Output Off <i>(Figure 3a)</i>	$V_{IN} = 0V \text{ or } V_{DD}$ $V_{DD} = 5.5V, V_{SS} = 0V$ $V_{DIS} = -10V$	- 10		15 250	pF kΩ kΩ
V _{OH} I _{IN} C _{IN}	Logic '1' Input Currents DATA IN, CLOCK ENABLE, BLANK Input Capacitance DATA IN, CLOCK ENABLE, BLANK Display Output Impedances Output Off <i>(Figure 3a)</i> Display Output Impedances	$V_{IN} = 0V \text{ or } V_{DD}$ $V_{DD} = 5.5V, V_{SS} = 0V$ $V_{DIS} = -10V$ $V_{DIS} = -20V$ $V_{DIS} = -30V$	- 10 55 60	700	15 250 300 400	kΩ kΩ kΩ
V _{OH} I _{IN} C _{IN} R _{OFF}	Logic '1' Input Currents DATA IN, CLOCK ENABLE, BLANK Input Capacitance DATA IN, CLOCK ENABLE, BLANK Display Output Impedances Output Off <i>(Figure 3a)</i>	$V_{IN} = 0V \text{ or } V_{DD}$ $V_{DD} = 5.5V, V_{SS} = 0V$ $V_{DIS} = -10V$ $V_{DIS} = -20V$ $V_{DIS} = -30V$ $V_{DIS} = -10V$	- 10 55 60	700	15 250 300 400 800	pF kΩ kΩ kΩ
V _{OH} I _{IN} C _{IN} R _{OFF}	Logic '1' Input Currents DATA IN, CLOCK ENABLE, BLANK Input Capacitance DATA IN, CLOCK ENABLE, BLANK Display Output Impedances Output Off <i>(Figure 3a)</i> Display Output Impedances	$V_{IN} = 0V \text{ or } V_{DD}$ $V_{DD} = 5.5V, V_{SS} = 0V$ $V_{DIS} = -10V$ $V_{DIS} = -20V$ $V_{DIS} = -30V$	- 10 55 60	700 600 500	15 250 300 400	pF kΩ kΩ kΩ


Symbol	Parameter	Conditions	Min	Тур	Max	Units
f _C	Clock Input Frequency	(Notes 3, 4)			800	kHz
t _H	Clock Input High Time		300			ns
tL	Clock Input Low Time		300			ns
t _{DS}	Data Input Setup Time		100			ns
t _{DH}	Data Input Hold Time		100			ns
t _{ES}	Enable Input Setup Time		100			ns
t _{EH}	Enable Input Hold Time		100			ns
t _{CDO}	Data Output Clock Low to Data Out Time	$C_L = 50 \text{ pF}$			500	ns

Note 2: Note that, for timing purposes, the signals ENABLE and BLANK can be considered to be totally independent of each other. Note 3: AC input waveform specification for test purpose: $t_f \le 20$ ns, $t_f \le 20$ ns, f = 800 kHz, 50% ±10% duty cycle.

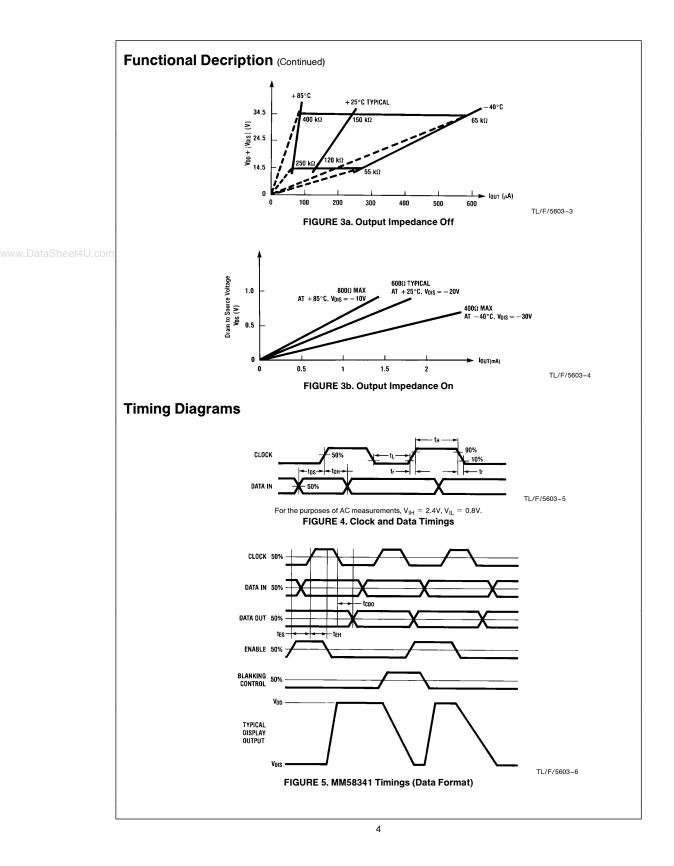
Note 4: Clock input rise and fall times must not exceed 5 μ s.

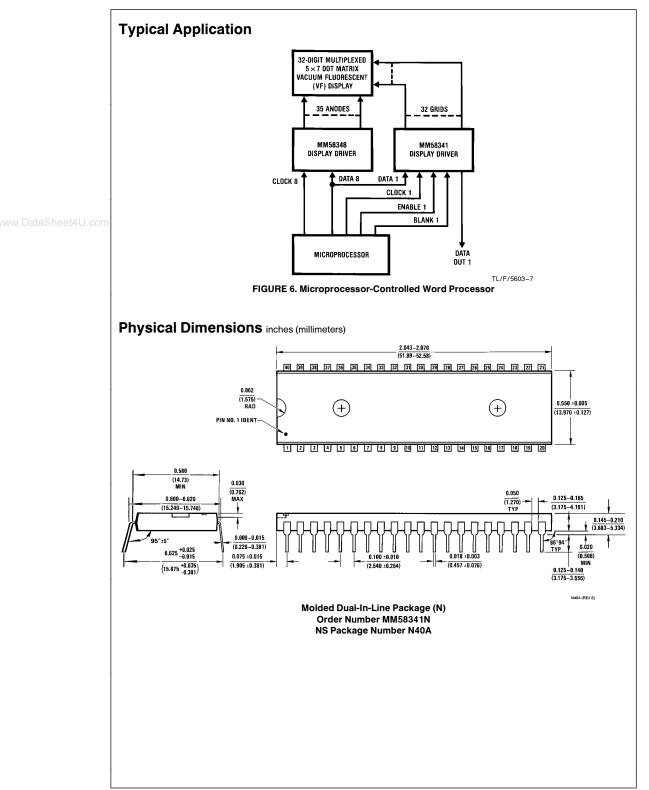
w.DataSheet4U.com

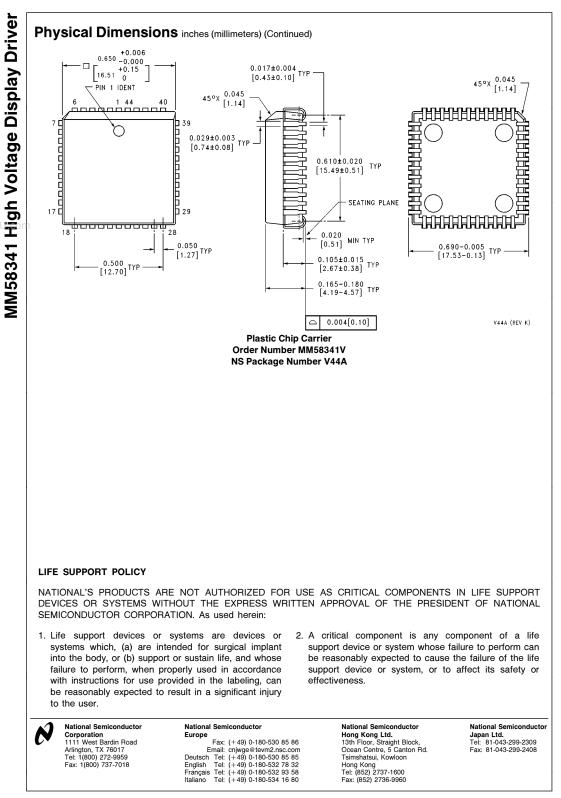
Functional Description

This product is specifically designed to drive multiplexed or non-multiplexed high voltage alphanumeric or dot matrix vacuum fluorescent (VF) displays. Character generation is done externally in the microprocessor, with a serial data path to the display driver. The MM58341 uses three signals, DATA IN, CLOCK and ENABLE, where ENABLE acts as an external load signal. Display blanking can be achieved by means of the BLANKING CONTROL input, and a logic '1' will turn off all sections of the display. A block diagram of the MM58341 is shown in *Figure 1*.

Figure 2 shows the pinout of the MM58341 device, where output 1 (pin 18) is equivalent to bit 1 (i.e., the first bit of data to be loaded into the shift register following ENABLE high). A logic '1' at the input will turn on the corresponding display digit/segment/dot output.


A significant reduction in discrete board components can be achieved by use of the MM58341, because external pulldown resistors are not required. Due to the nature of the output stage, both its on and off impedance values vary as a function of the display voltage applied. However, *Figures 3a* and *3b* show that this output impedance will remain constant for a fixed value of display voltage.


Figure 4 demonstrates the critical timing requirements between CLOCK and DATA IN for the MM58341.


To clear (reset) the display driver at power on or any time, the following flushing routine may be used. With the enable signal high, clock in 32 zeroes. Drive the enable signal low and the display will be blank. It is recommended to clear the driver at power on.

In *Figure 5*, the ENABLE signal acts as an envelope, and only while this signal is at a logic '1' does the circuit accept CLOCK input signals. Data is transferred and shifted in the internal shift register on the rising clock edge, i.e., '0'-'1' transition. When the ENABLE signal goes low, the contents of the shift registers are latched, and the display will show new data. During data transfer, the display will show old data. DATA OUT is also provided on the MM58341, being output on the falling edge. At any time, the display may be blanked under processor control, using the BLANKING CONTROL input.

Figure 6 shows a schematic diagram of a microprocessorbased system where the MM58341 is used to provide the grid drive for a 32-digit 5 x 7 dot matrix vacuum fluorescent (VF) display. The anode drive in this example is provided by another member of the high voltage display driver family, namely the MM58348, which does not require an externally generated load signal.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.