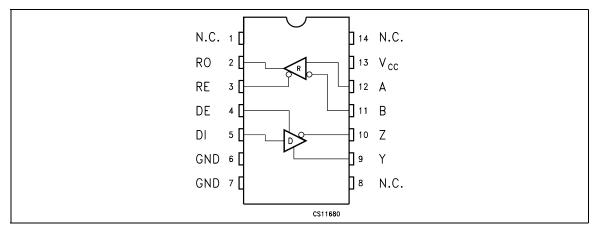

ST491A

LOW POWER HIGH SPEED RS-485/RS-422 TRANSCEIVER

- LOW SUPPLY CURRENT: 5mA MAX
- DESIGNED FOR RS485 INTERFACE APPLICATIONS
- -7 TO 12 COMMON MODE INPUT VOLTAGE RANGE
- 70mV TYPICAL INPUT HYSTERESIS
- DESIGNED FOR 25Mbps OPERATION
- OPERATE FROM SINGLE 5 SUPPLY
- ±4kV ESD PROTECTION
- CURRENT LIMITING AND THERMAL SHUTDOWN FOR DRIVER OVERLOAD PROTECTION

DESCRIPTION

The ST491A is a low power transceiver for RS-485 and RS-422 communications. The device contains one driver and one receiver in full duplex configuration. The ST491A draws 5mA (typ.) of supply current when unloaded and operates from a single 5V supply.


Driver is short-circuit current limited and is protected against excessive power dissipation by thermal shutdown circuitry that place the driver outputs into a high-impedance state. The receiver input has a fail-safe feature that guarantees a logic high output if both inputs are open circuit.

Туре	Temperature Range	Package	Comments
ST491ACN	0 to 70 °C	DIP-14	25parts per tube / 40tube per box
ST491ABN	-40 to 85 °C	DIP-14	25parts per tube / 40tube per box
ST491ACD	0 to 70 °C	SO-14 (Tube)	50parts per tube / 20tube per box
ST491ABD	-40 to 85 °C	SO-14 (Tube)	50parts per tube / 20tube per box
ST491ACDR	0 to 70 °C	SO-14 (Tape & Reel)	2500 parts per reel
ST491ABDR	-40 to 85 °C	SO-14 (Tape & Reel)	2500 parts per reel

ORDERING CODES

ST491A

PIN CONFIGURATION

PIN DESCRIPTION

PIN N°	SYMBOL	NAME AND FUNCTION
1	NC	Not Connected
2	RO	Receiver Output.
3	RE	Receiver Output Enable
4	DE	Driver Output Enable
5	DI	Inverting Driver Input.
6	GND	Ground
7	GND	Ground
8	NC	Not Connected
9	Y	Non-inverting Driver Output
10	Z	Inverting Driver Output
11	В	Inverting Receiver Input
12	A	Non-inverting Receiver Input
13	NC	Not Connected
14	V _{CC}	Supply Voltage

TRUTH TABLE (DRIVER)

Т	OUTPUTS		
DE	Y	Z	
Н	L	Н	
Н	Н	L	
L	Z	Z	
	H H L	DE Y H L H H L Z	

X= Don't Care; Z=High Impedance

TRUTH TABLE (RECEIVER)

INPUT	OUTPUT	
A-B	RE	RO
≥ -0.2V	L	Н
between -0.2V to 0.2V	L	?
≤ -0.2V	L	L
OPEN	L	Н
Х	Н	Z

?= Irrelevant; X= Don't Care; Z=High Impedance

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	7	V
V _{DI}	Driver Input Voltage	-0.5 to 7	V
V _Y , V _Z	Driver Output Voltage	-7.5 to 12.5	V
V_A, V_B	Receiver Input Voltage	-7.5 to 12.5	V
V _{RO}	Receiver Output Voltage	-0.3 to (V _{CC} + 0.3)	V
ESD	Human Body Model	3.5	K٧

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

ELECTRICAL CHARACTERISTICS

 V_{CC} = 4.5V to 5.5V, T_A = -40 to 85°C, unless otherwise specified. Typical values are referred to T_A = 25°C)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SUPPLY}	No Load Supply Current			2	5	mA
CIN	Input Capacitance			1.8		pF
C _{YZ}	Driver Output Capacitance			1.2		pF
C _{OUT}	Output Capacitance			2.3		pF

TRANSMITTER ELECTRICAL CHARACTERISTICS

 V_{CC} = 4.5V to 5.5V, T_A = -40 to 85°C, unless otherwise specified. Typical values are referred to T_a = 25°C)

				1	
Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Differential Drive Output (No load)				V _{CC}	V
Differential Drive Output (With Load)	$R_L = 54\Omega (RS-422) (Figure 1)$	1.5	2.6	5	V
Differential Drive Output (With Load)	R _L = 100Ω (RS-422) (Figure 1)	2	3		V
Change in magnitude of Driver Differential Output Voltage for Complementary Output States (Note1)	R_L = 54Ω or 100Ω (Figure 1)		0	0.2	V
Driver Common Mode Output Voltage	$R_L = 54\Omega$ (Figure 1)	1		3	V
Change in magnitude of Driver Common Mode Output Voltage (Note1)	$R_L = 54\Omega$ (Figure 1)		0	0.2	V
Power Off Output Current	$V_{CC} = 0V$ $V_{O} = -7V$ to 12V			± 100	μΑ
Driver Short Circuit Output Current	V _O =-7V to 12V	± 35		± 250	mA
Input Logic Threshold Low				0.8	V
Input Logic Threshold High		2			V
	Differential Drive Output (No load) Differential Drive Output (With Load) Differential Drive Output (With Load) Change in magnitude of Driver Differential Output Voltage for Complementary Output States (Note1) Driver Common Mode Output Voltage Change in magnitude of Driver Common Mode Output Voltage (Note1) Power Off Output Current Driver Short Circuit Output Current Input Logic Threshold Low	Differential Drive Output (No load)R L = 54 Ω (RS-422) (Figure 1)Differential Drive Output (With Load)RL = 100 Ω (RS-422) (Figure 1)Differential Drive Output (With Load)RL = 100 Ω (RS-422) (Figure 1)Change in magnitude of Driver Differential Output Voltage for Complementary Output States (Note1)RL = 54 Ω or 100 Ω (Figure 1)Driver Common Mode Output VoltageRL = 54 Ω (Figure 1)Output VoltageRL = 54 Ω (Figure 1)Driver Common Mode Output Voltage (Note1)RL = 54 Ω (Figure 1)Power Off Output Current UrrentV _{CC} = 0V V _O =-7V to 12VDriver Short Circuit Output CurrentV _O =-7V to 12VInput Logic Threshold LowV	Differential Drive Output (No load)R L = 54 Ω (RS-422) (Figure 1)1.5Differential Drive Output (With Load)RL = 100 Ω (RS-422) (Figure 1)2Differential Drive Output (With Load)RL = 100 Ω (RS-422) (Figure 1)2Change in magnitude of Driver Differential Output Voltage for Complementary Output States (Note1)RL = 54 Ω or 100 Ω (Figure 1)2Driver Common Mode Output VoltageRL = 54 Ω (Figure 1)1Driver Common Mode Output Voltage (Note1)RL = 54 Ω (Figure 1)1Driver Common Mode Output Voltage (Note1)RL = 54 Ω (Figure 1)1Driver Short Circuit Output CurrentV _{CC} = 0V V _O =-7V to 12V± 35Input Logic Threshold Low± 35	Differential Drive Output (No load)R L = 54 Ω (RS-422) (Figure 1)1.52.6Differential Drive Output (With Load)RL = 100 Ω (RS-422) (Figure 1)23Differential Drive Output (With Load)RL = 100 Ω (RS-422) (Figure 1)23Change in magnitude of Driver Differential Output Voltage for Complementary Output States (Note1)RL = 54 Ω or 100 Ω (Figure 1)0Driver Common Mode Output VoltageRL = 54 Ω (Figure 1)1Output VoltageRL = 54 Ω (Figure 1)0Driver Common Mode Output Voltage (Note1)RL = 54 Ω (Figure 1)0Driver Common Mode Output Voltage (Note1)RL = 54 Ω (Figure 1)1Driver Short Circuit Output CurrentV _{CC} = 0V V _O =-7V to 12V1Driver Short Circuit Output 	Differential Drive Output (No load)RL= 54 Ω (RS-422) (Figure 1)NVDifferential Drive Output (With Load)RL= 54 Ω (RS-422) (Figure 1)1.52.65Differential Drive Output (With Load)RL= 100 Ω (RS-422) (Figure 1)232Change in magnitude of Driver Differential Output Voltage for Complementary Output States (Note1)RL= 54 Ω or 100 Ω (Figure 1)00.2Driver Common Mode Output Voltage Output Voltage (Note1)RL= 54 Ω (Figure 1)13Change in magnitude of Driver Common Mode Output Voltage (Note1)RL= 54 Ω (Figure 1)00.2Driver Common Mode Output Voltage (Note1)V _{CC} = 0V V _O =-7V to 12V13Power Off Output Current CurrentV _{CC} = 0V V _O =-7V to 12V± 35± 250Input Logic Threshold Low00.80.8

57

RECEIVER ELECTRICAL CHARACTERISTICS

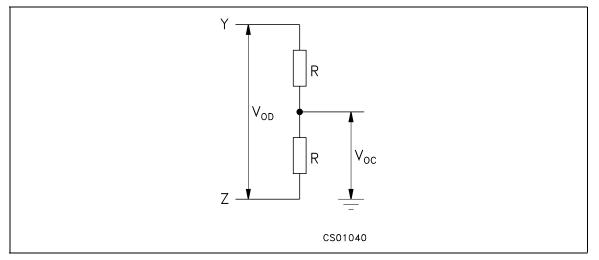
 V_{CC} = 4.5V to 5.5V, T_A = -40 to 85°C, unless otherwise specified. Typical values are referred to T_a = 25°C)

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
I _{IN}	Input Current (A, B)	other input=0V	V _{IN} =12V		0.5	1	mA
		V _{CC} = 0 or 5.25V	V _{IN} =-7V		-0.35	-0.8	mA
V _{TH}	Receiver Differential Threshold Voltage	$V_{CM} = -7V$ to 12V		-0.2		0.2	V
ΔV_{TH}	Receiver Input Hysteresis	$V_{CM} = 0V$			70		mV
V _{OH}	Receiver Output High Voltage	$I_{OUT} = -8mA, V_{ID} = 200mV$		3.5	4.7		V
V _{OL}	Receiver Output Low Voltage	I _{OUT} = 8mA, V _{ID} = -200mV			0.3	0.5	V
R _{RIN}	Receiver Input Resistance	V _{CM} = -7V to 12V		12	24		KΩ

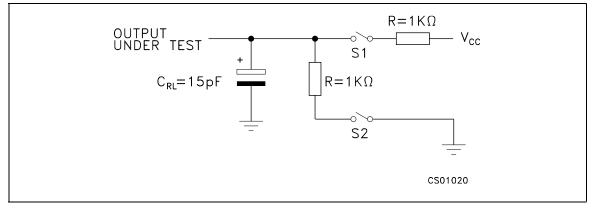
DRIVER SWITCHING CHARACTERISTICS

 V_{CC} = 4.5V to 5.5V, T_A = -40 to 85°C, unless otherwise specified. Typical values are referred to T_a = 25°C)

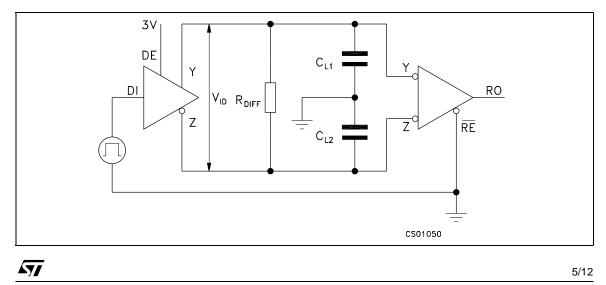
Symbol	Parameter		Test Conditions	Min.	Тур.	Max.	Unit
D _R	Maximum Data Rate	Jitter <5%		25	50		Mbps
t _{PLH} t _{PHL}	Propagation Delay Input to Output	R _L = 54Ω	C _{L1} =C _{L2} =50pF, (Figure 1)		10	16	ns
t _{SKEW}	Differential Output Delay Skew	$R_L = 54\Omega$	C _{L1} =C _{L2} =50pF, (Figure 1)		1	3	ns
t _{TLH} t _{THL}	Rise or Fall Differential Time	R _L = 54Ω	C _{L1} =C _{L2} =50pF, (Figure 1)		8	12	ns
t _{PZL}	Output Enable Time	$C_L = 50 pF$	S1 Closed		14	25	ns
t _{PZH}	Output Enable Time	C _L = 50pF	S2 Closed		14	25	ns
t _{PHZ}	Output Disable Time	C _L = 15pF	S2 Closed		10	25	ns
t _{PLZ}	Output Disable Time	C _L = 15pF	S1 Closed		16	25	ns

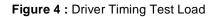

RECEIVER SWITCHING CHARACTERISTICS

 V_{CC} = 4.5V to 5.5V, T_A = -40 to 85°C, unless otherwise specified. Typical values are referred to T_a = 25°C)


	<i>,</i> ,						
Symbol	Parameter		Test Conditions	Min.	Тур.	Max.	Unit
t _{PLH} t _{PHL}	Propagation Delay Input to Output	C _L = 15pF	(Figures 2,4)		19	30	ns
t _{SKD}	t _{PLH -} t _{PHL} Receiver Output Skew	C _L = 15pF	(Figures 2,4)		1	3	ns
t _{TLH} t _{THL}	Rise or Fall Time	C _L = 15pF	(Figures 2,4)		6		ns
t _{PZL}	Output Enable Time	$C_{RL} = 15 pF$	S1 Closed		6	12	ns
t _{PZH}	Output Enable Time	$C_{RL} = 15 pF$	S2 Closed		7	12	ns
t _{PHZ}	Output Disable Time	$C_{RL} = 15 pF$	S2 Closed		6	12	ns
t _{PLZ}	Output Disable Time	$C_{RL} = 15 pF$	S1 Closed		6	12	ns

TEST CIRCUITS AND TYPICAL CHARACTERISTICS


Figure 1 : Driver DC Test Load


Figure 2 : Receiver Timing Test Load

ST491A

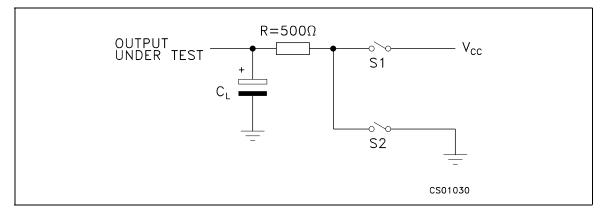
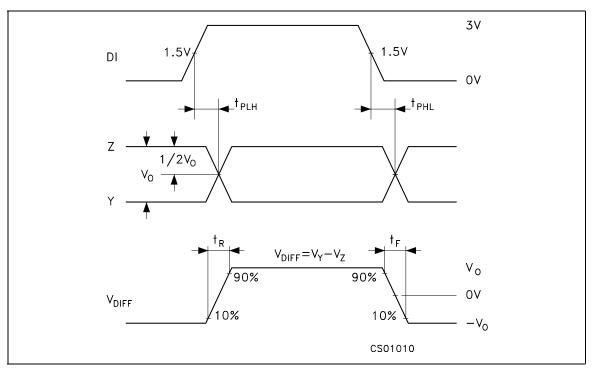



Figure 5 : Driver Propagation Delay

57

Figure 6 : Receiver Propagation Delay

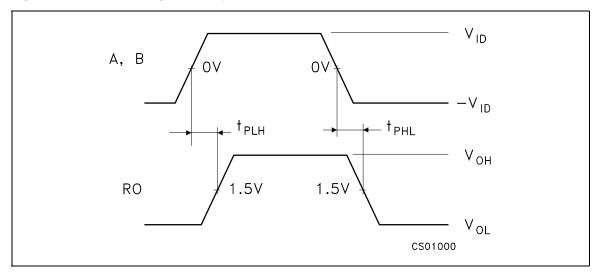
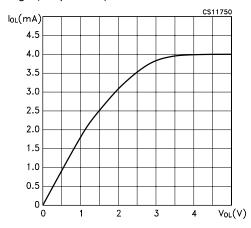
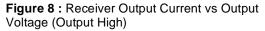
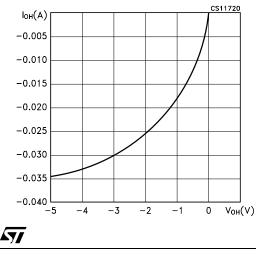
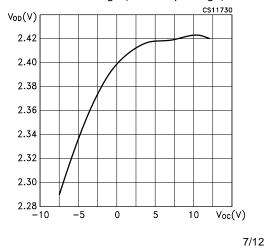





Figure 7 : Receiver Output Current vs Output Voltage (Output Low)



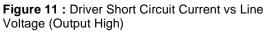

Figure 9 : Driver Diff. Output Voltage vs Common Mode Voltage (Diff. Output Low)

Figure 10 : Driver Diff. Output Voltage vs Common Mode Voltage (Diff. Output High)

CS11700 0.00 -0.02 -0.04 -0.06 -0.08 -0.10 -0.12 -0.14 -0.14 -0.5 0 5 10 Vo(V)

Figure 12 : Driver Short Circuit Current vs. Line Voltage (Output Low)

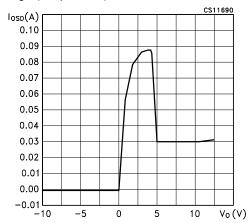
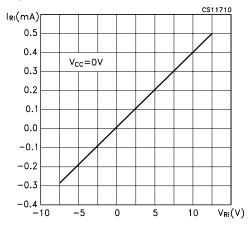
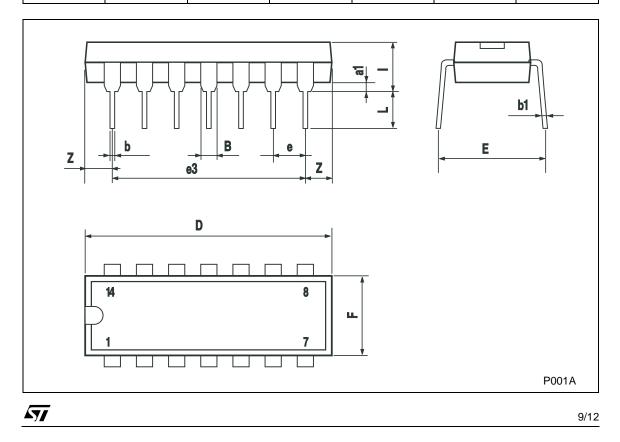
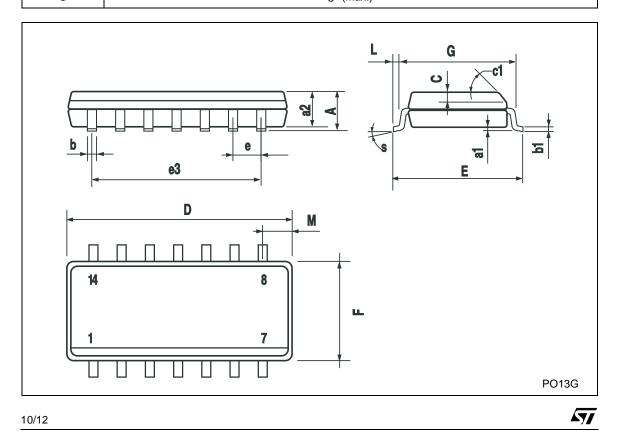




Figure 13 : Receiver Input Current vs Input Voltage



8/12


Plastic DIP-14 MECHANICAL DATA								
DIM.		mm.			inch			
DIM.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.		
a1	0.51			0.020				
В	1.39		1.65	0.055		0.065		
b		0.5			0.020			
b1		0.25			0.010			
D			20			0.787		
E		8.5			0.335			
е		2.54			0.100			
e3		15.24			0.600			
F			7.1			0.280		
Ι			5.1			0.201		
L		3.3			0.130			
Z	1.27		2.54	0.050		0.100		

SO-14 MECHANICAL DATA							
DIM.		mm.			inch		
	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.	
А			1.75			0.068	
a1	0.1		0.2	0.003		0.007	
a2			1.65			0.064	
b	0.35		0.46	0.013		0.018	
b1	0.19		0.25	0.007		0.010	
С		0.5			0.019		
c1		•	45°	(typ.)			
D	8.55		8.75	0.336		0.344	
E	5.8		6.2	0.228		0.244	
е		1.27			0.050		
e3		7.62			0.300		
F	3.8		4.0	0.149		0.157	
G	4.6		5.3	0.181		0.208	
L	0.5		1.27	0.019		0.050	
М			0.68			0.026	
S		•	8° (r	nax.)			

Tape & Reel SO-14 MECHANICAL DATA						
DIM.	mm.			inch		
	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.
A			330			12.992
С	12.8		13.2	0.504		0.519
D	20.2			0.795		
Ν	60			2.362		
Т			22.4			0.882
Ao	6.4		6.6	0.252		0.260
Во	9		9.2	0.354		0.362
Ko	2.1		2.3	0.082		0.090
Po	3.9		4.1	0.153		0.161
Р	7.9		8.1	0.311		0.319

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patents of patents of stMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2003 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States. © http://www.st.com

12/12

57