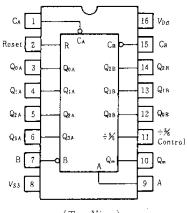
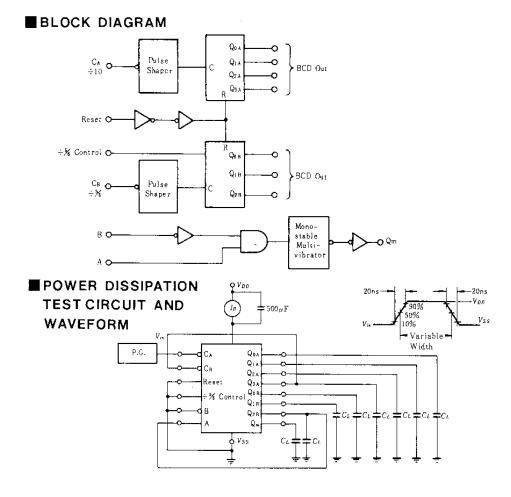
HD14566B

Industrial Time Base Generator

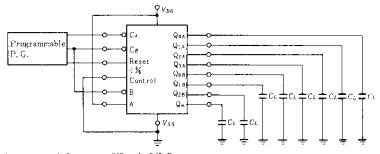

The HD14566B industrial time base generator consists of a divide-by-10 ripple counter and a divide-by-5 or divide-by-6 ripple counter to permit stable time generation from a 50 or 60Hz line. By cascading this device as divide-by-60 counter to permit stable time generation from a 50 or 60Hz line. By cascading this device as divide-by-60 counters, seconds and minutes can be counted and are available in BCD format at the circuit outputs

An internal monostable multivibrator is included whose output can be used as a reset or clock pulse providing additional frequency flexibility. Also a pin has been included to allow divide-by-5 counting for generating 1.0Hz from European 50Hz line.

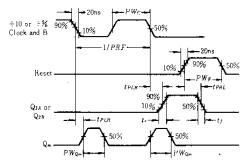

FEATURES

- Negative Edge Triggered Counters for Ease of Cascading
- Pulse Shapers on Counter Inputs Accept Slow Input Rise Times
- Monostable Multivibrator Positive or Negative Edge Triggered
- Noise Immunity = 45% of V_{DD} typ.
- Quiescent Current = 5nA/pkg typ. @5V
- Supply Voltage Range = 3 to 18V
- Capable of Driving One Low-power Schottky TTL Load Over the Rated Temperature Range

OHITACHI


Characteristic	Symbol		Voo(V) Test Conditions	-4	−40°C		25° C			8 5°C	
	Jymnor	$V_{0,0}(\mathbf{V})$		min	max	min	typ	max	min	max	- Unit
Output Voltage		5.0	$V_{iz} = V_{DD}$ or 0		0.05	_	0	0.05		0.05	v
	VOL	10		—	0.05		0	0.05	_	0.05	
		15		-	0.05	—	0	0.05	—	0.05	
	V _{OH}	5.0		4.95		4.95	5.0	—	4.95	_	v
		10	$V_{in} = 0$ or V_{DD}	9.95	-	9,95	10	_	9.95		
		15		14.95	—	14.95	15	—	14.95	_	
Input Voltage		5.0	$V_{out} = 4.5$ or $0.5 \mathrm{V}$		1.5		2.25	1.5	_	1.5	V
	VIL	10	$V_{out} = 9.0 \text{ or } 1.0 \text{ V}$		3.0	_	4.50	3.0	_	3.0	
		15	$V_{out} = 13.5 \text{ or } 1.5 \text{ V}$		4.0	_	6.75	4.0	_	4.0	
		5.0	$V_{out} = 0.5 \text{ or } 4.5 \text{ V}$	3.5	_	3.5	2.75		3.5	—	v
	V_{IH}	10	$V_{out} = 1.0 \text{ or } 9.0 \text{ V}$	7.0	—	7.0	5.50	-	7.0	_	
		15	$V_{out} = 1.5$ or $13.5{ m V}$	11.0	—	11.0	8.25	_	11.0	—	
Output Drive Current		5.0	$V_{OH} = 2.5 \mathrm{V}$	-1.0	_	0.8	-1.7	—	-0.6	_	mA
	Іон	5.0	$V_{OH} = 4.6 \mathrm{V}$	-0.2	_	-0.16	-0.36	_	0.12		
		10	$V_{OH} = 9.5 \mathrm{V}$	-0.5	—	-0.4	-0.9	—	-0.3	—	
		15	$V_{OH} = 13.5 \mathrm{V}$	-1.4	_	-1.2	-3.5	—	-1.0	—	
		5.0	$V_{ol} = 0.4 \mathrm{V}$	0.52	_	0.44	0.88	—	0.36		mA
	Ior	10	$V_{OL} = 0.5 \mathrm{V}$	1.3	. —	1.1	2.25	_	0.9	_	
		15	$V_{GL} = 1.5 \mathrm{V}$	3.6		3.0	8.8	_	2.4		
Input Current	Iin	15			±0.3	_	± 0.0001	± 0.3	—	±1.0	μA
Input Capacitance	<i>C</i> .,		$V_{in} = 0$	-			5.0	7.5	_	_	pF
Quiescent Current		5.0	- Zero Signal, - per Package	-	20	-	0.005	20	-	150	μA
	IDD	10			40	. —	0.010	40		300	
		15		—	80	-	0.015	80	; ; —	600	
Total Supply Current*	IT	5.0	Dynamic-IDD,	! _	-	-	1.0		- 1	_	μA
		10	per Gate		_	_	2.0	_	—		
		15	$C_L = 50 \mathrm{pF}, f = 1 \mathrm{kHz}$	_	- 1	_	3.0	_	i —		

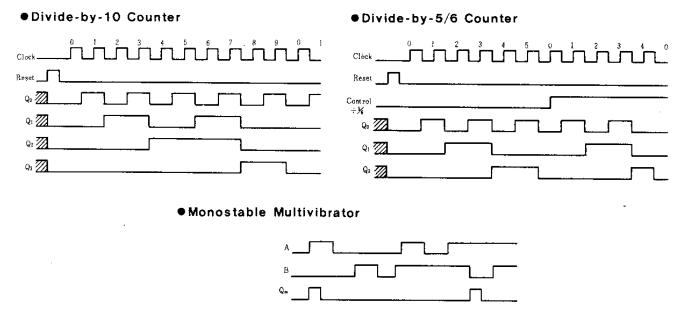
ELECTRICAL CHARACTERISTICS


* To calculate total supply current at frequency other than 1kHz.

 $(\underline{0}V_{DD} = 5.0V I_{T} = (1.0 \,\mu\text{A/kHz})f + I_{DD}, \quad (\underline{0}V_{DD} = 10V I_{T} = (2.0 \,\mu\text{A/kHz})f + I_{DD}, \quad (\underline{0}V_{DD} = 15V I_{T} = (3.0 \,\mu\text{A/kHz})f + I_{DD}) = 10V I_{T} = (3.0 \,\mu\text{A/kHz})f + I_{DD} = 10V I_{T} = 10V I_{T}$

SWITCHING TIME TEST CIRCUIT

Note) Assume ± 10 Counter at "6" and $\pm 5/6$ Counter at "2" at bigining of sequence.

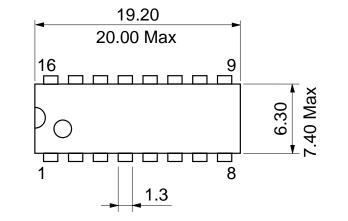

C HITACHI

HD14566B-

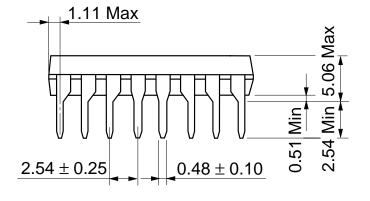
SWITCHING CHARACTERISTICS ($C_L = 50 \text{ pF}$, $Ta = 25^{\circ}\text{C}$)

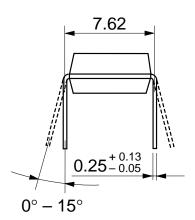
Characteri	Symbol	$V_{DD}(\mathbf{V})$	min	typ	max	Unit	
	t.	5.0	_	180	400	ns	
Output Rise Time		10		90	200		
		15		65	160		
Output Fall Time		tj	5.0	_	120	250	ns
			10		60	125	
			15		40	100	
	Clock to Q3A	tрін, tphi	5.0		1450	4500	ns
Propagation Delay Time			10	"	530	1500	
			15		320	1000	
	Reset to Q3A	tphl	5.0		930	3000	ns
			10	—	315	1000	
			15		210	750	
Clock Pulse Width		PWc	5.0	1200	400	· · · · ·	ns
			10	400	125		
			15	270	90		
		PW _R	5.0	1200	400		ns
Reset Pulse Width	10		400	125	—		
			15	270	90		
		PRF	5.0		1.0	0.3	MHz
Clock Frequency	10		_	2.5	1.0		
			15	—	4.2	1.5	
		tr, tj	5.0	No Limit			
Clock Pulse Rise and Fall Time	10						
			15				
	PW _{Qm}	5.0	1200	2800		<u> </u>	
Monostable Multibivrator Pulse W		10	400	900	_	ns	
		15	300	600		1	

TIMING DIAGRAM

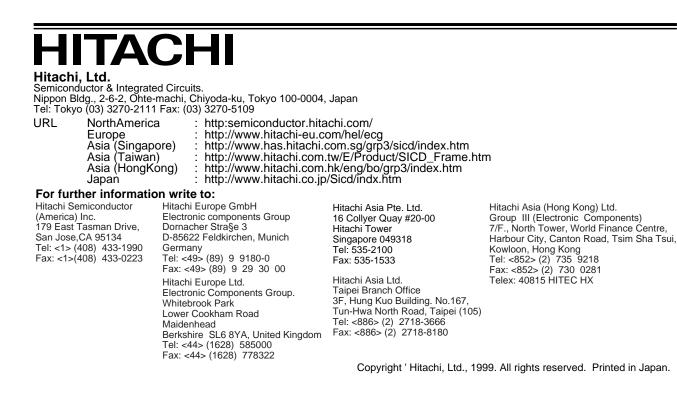


🜌 = Don't Care




296

Unit: mm



Hitachi Code	DP-16
JEDEC	Conforms
EIAJ	Conforms
Weight (reference value)	1.07 g

Cautions

- Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document.
- 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.
- 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
- 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
- 5. This product is not designed to be radiation resistant.
- 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
- 7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products.

HITACHI