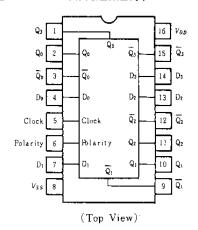
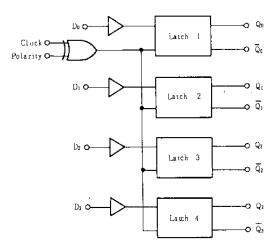
# HD14042B


# Quadruple Latch

The HD14042B quad latch has a separate data input, but all four latches share a common clock. The clock polarity (high or low) used to strobe data through the latches can be reversed using the polarity input. Information present at the data input is transferred to outputs Q and Q during the clock level which is determined by the polarity input. When the polarity input is in the logic "0" state, data is transferred during the low clock level, and when the polarity input is in the logic "1" state the transfer occurs during the high clock level.

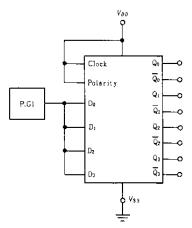

#### **■ FEATURES**

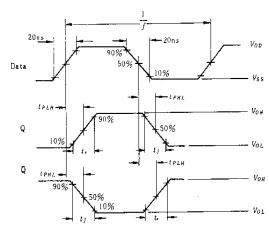
- Buffered Data Inputs
- Common Clock
- Positive or Negative Edge Clocked
- Q and  $\overline{O}$  Outputs
- Quiescent Current = 2nA/pkg typ. @5V
- Supply Voltage Range = 3 to 18V
- Capable of Driving One Low-power Schottky TTL Load Over the Rated Temperature Range

#### **■ PIN ARRANGEMENT**



## LOGIC DIAGRAM





## **TRUTH TABLE**

| Clock | Polarity | Q     |
|-------|----------|-------|
| 0     | 0        | Data  |
|       | 0        | Latch |
| 1     | 1        | Data  |
| l     | 1        | Latch |

## ■DC CHARACTERISTIC TEST CIRCUIT

(Data to Q, Q)

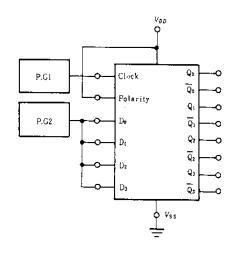


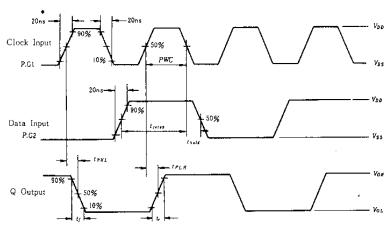


For Power Dissipation test, each output is loaded with capacitance  $C_{\text{L}}$ .

# ■ ELECTRICAL CHARACTERISTICS

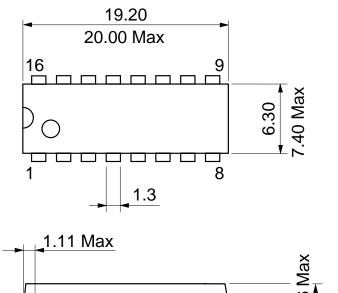
| Characteristic       |          | Symbol       | i<br>       | Test Conditions                                 | -40℃                                             |      | 25℃   |          |      | 85℃   |       | I Tanks    |
|----------------------|----------|--------------|-------------|-------------------------------------------------|--------------------------------------------------|------|-------|----------|------|-------|-------|------------|
|                      |          | Symbol       | $V_{DD}(V)$ |                                                 | min                                              | max  | min   | typ      | max  | min   | max   | Unit       |
|                      |          |              | 5.0         |                                                 | _                                                | 0.05 | _     | 0        | 0.05 |       | 0.05  |            |
|                      |          | Vol          | 10          | $V_{in} = V_{DD} \text{ or } 0$                 | -                                                | 0.05 | -     | 0        | 0.05 | -     | 0.05  | V          |
|                      |          |              | 15          |                                                 | -                                                | 0.05 | -     | 0        | 0.05 | _     | 0.05  |            |
| Output Voltag        | ge       |              | 5.0         |                                                 | 4.95                                             | _    | 4.95  | 5.0      | _    | 4.95  | _     |            |
| •                    | •        |              | 10          | $V_{in}=0 \text{ or } V_{DD}$                   | 9.95                                             |      | 9.95  | 10       | -    | 9.95  | - [   | V          |
|                      |          |              | 15          |                                                 | 14.95                                            | _    | 14.95 | 15       | -    | 14.95 |       |            |
|                      |          |              | 5.0         | $V_{out} = 4.5 \text{ or } 0.5 \text{V}$        |                                                  | 1.5  | _     | 2.25     | 1.5  | _     | 1.5   | V          |
|                      | Data     |              | 10          | $V_{vut} = 9.0 \text{ or } 1.0 \text{V}$        | -                                                | 3.0  | -     | 4.50     | 3.0  |       | 3.0   |            |
|                      |          | .,           | 15          | $V_{out} = 13.5 \text{ or } 1.5 \text{V}$       |                                                  | 4.0  | _     | 6.75     | 4.0  |       | 4.0   |            |
|                      |          | $V_{IL}$     | 5.0         | $V_{\text{out}} = 4.5 \text{ or } 0.5 \text{V}$ |                                                  | 1.5  |       | 2.25     | 1.5  | -     | 1.5   |            |
|                      | Clock    |              | 10          | $V_{out} = 9.0 \text{ or } 1.0 \text{V}$        |                                                  | 3.0  |       | 4.50     | 3.0  | _     | 3.0   |            |
|                      | Polarity |              | 15          | V <sub>evt</sub> = 13.5 or 1.5V                 |                                                  | 3.75 | _     | 6.75     | 3.75 | _     | 3.75  |            |
| Input Voltage        |          |              | 5.0         | V <sub>ext</sub> = 0.5 or 4.5V                  | 3.5                                              | _    | 3.5   | 2.75     | _    | 3.5   | -     | V          |
| !                    | Data     |              | 10          | $V_{out} = 1.0 \text{ or } 9.0 \text{V}$        | 7.0                                              | _    | 7.0   | 5.50     |      | 7.0   |       |            |
|                      |          |              | 15          | $V_{out} = 1.5 \text{ or } 13.5 \text{V}$       | 11.0                                             | _    | 11.0  | 8.25     | _    | 11.0  |       |            |
|                      |          | $V_{IH}$     | 5.0         | $V_{\text{out}} = 0.5 \text{ or } 4.5 \text{V}$ | 3.5                                              | _    | 3.5   | 2.75     |      | 3.5   |       |            |
|                      | Clock    |              | 10          | $V_{out} = 1.0 \text{ or } 9.0 \text{V}$        | 7.0                                              |      | 7.0   | 5.50     |      | 7.0   |       |            |
|                      | Polarity |              | 15          | $V_{out} = 1.5 \text{ or } 13.5 \text{V}$       | 11.25                                            |      | 11.25 | 8.25     | _    | 11.25 |       |            |
|                      | <u></u>  | Іон          | 5.0         | $V_{OH} = 2.5 \text{V}$                         | -1.0                                             | _    | -0.8  | -1.7     | _ !  | -0.6  |       | mA         |
|                      |          |              | 5.0         | V <sub>OH</sub> = 4.6V                          | -0.2                                             | _    | -0.16 | -0.36    |      | -0.12 | _     |            |
|                      |          |              | 10          | $V_{OH} = 9.5 \text{V}$                         | -0.5                                             | _    | -0.4  | -0.9     | _    | -0.3  | _     |            |
| Output Drive         | Current  |              | 15          | $V_{OH} = 13.5 \text{V}$                        | -1.4                                             |      | -1.2  | -3.5     | _    | -1.0  |       |            |
| •                    |          | -            | 5.0         | $V_{OL} = 0.4 \mathrm{V}$                       | 0.52                                             | . –  | 0.44  | 0.88     |      | 0.36  |       |            |
|                      |          | IoL          | 10          | $V_{ol} = 0.5V$                                 | 1.3                                              | _    | 1,1   | 2.25     |      | 0.9   |       |            |
|                      |          |              | 15          | Vol = 1.5V                                      | 3.6                                              | _    | 3.0   | 8.8      |      | 2.4   |       |            |
| Input Current        |          | I.n          | 15          |                                                 | _                                                | ±0.3 | _     | ±0.00001 | ±0.3 | _     | ±1,0  | μA         |
| Input Capacitance    |          | C,           | _           | $V_{in} = 0$                                    | ; <del>-</del>                                   |      | · -   | 5.0      | 7.5  |       |       | рF         |
| ··· b - a abasimor   |          |              | 5.0         |                                                 | _                                                | 4.0  | _     | 0.002    | 4.0  | _     | 30    |            |
| Quiescent C          | urrent   | IDD          | 10          | Zero Signal,                                    | _                                                | 8.0  |       | 0.004    | 8.0  | _     | 60    | μ <b>A</b> |
| •                    |          |              | 15          | per Package                                     | 16                                               |      | 0.006 | . 16     | _    | 120   | <br>: |            |
|                      |          | <del> </del> | 5.0         | Dynamic $+I_{DD}$ ,                             | <del>                                     </del> |      |       | 1.0      |      | _     |       |            |
| Total Supply         | Current* | $I_T$        | 10          | per Gate                                        | _                                                | _    |       | 2.0      |      |       | -     |            |
| rotar Supply Current |          | 1 -          | 15          | $C_L = 50 \text{pF}, f = 1 \text{ kHz}$         | _                                                | _    | _     | 3.0      |      | _     |       |            |

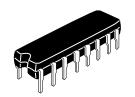


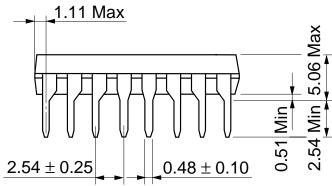


<sup>\*</sup> To calculate total supply current at frequency other than IkHz.  $@V_{00} = 5.0V \ I_T = (1.0 \,\mu\text{A/kHz})f + I_{00}$ ,  $@V_{20} = 10V \ I_T = (2.0 \,\mu\text{A/kHz})f + I_{00}$ .  $@V_{00} = 15V \ I_T = (3.0 \,\mu\text{A/kHz})f + I_{00}$ .

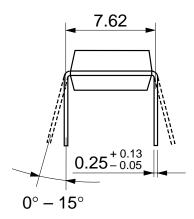
# $\blacksquare {\sf SWITCHING\ CHARACTERISTICS\ }(\textit{C}_{\textit{L}} {=}\, 50 \text{pF}, \textit{Ta} {=}\, 25 \text{°C}\,)$

| Characteristic    |               | Symbol      | $V_{DD}(V)$ | min          | typ      | max | Unit |  |
|-------------------|---------------|-------------|-------------|--------------|----------|-----|------|--|
| •                 |               |             | 5.0         | _            | 180      | 360 |      |  |
| Output Rise Time  | e             | $t_{\tau}$  | 10          | _            | 90       | 180 | ns   |  |
|                   |               |             | 15          |              | 65       | 130 | 1    |  |
| Output Fall Time  |               |             | 5.0         |              | 100      | 200 |      |  |
|                   |               | $t_f$       | 10          |              | 50       | 100 | ns   |  |
|                   |               | . <u>-</u>  | 15          | _            | 40       | 80  |      |  |
|                   |               |             | 5.0         | <del>-</del> | 220      | 440 | ns   |  |
|                   | Däta to Q, Q  |             | 10          | _            | 90       | 180 |      |  |
| Propagation       |               | $t_{PLH}$ , | 15          |              | 60       | 120 |      |  |
| Delay Time        |               | $t_{PHL}$   | 5.0         | _            | 220      | 440 |      |  |
|                   | Clock to Q, Q |             | 10          | -            | 90       | 180 |      |  |
|                   |               |             | 15          |              | 60       | 120 | 1    |  |
| Clock Pulse Width |               |             | 5.0         | 300          | 150      |     |      |  |
|                   |               | $PW_{c}$    | 10          | 100          | 50       | _   | ns   |  |
|                   |               |             | 15          | 80           | 40       |     |      |  |
| Clock Rise Time   |               |             | 5.0         |              |          | ,   |      |  |
|                   |               | $t_r$       | 10          |              | No Limit |     |      |  |
|                   |               |             | 15          |              |          |     |      |  |
| Hold Time         |               |             | 5.0         | 100          | 50       | _   | ns   |  |
|                   |               | thoid       | 10          | 50           | 25       | _   |      |  |
|                   |               |             | 15          | 40           | 20       | _   |      |  |
| Setup Time        |               |             | 5.0         | 50           | 0        | _   |      |  |
|                   |               | tsetup      | 10          | 30           | 0        | _   | ns   |  |
|                   |               |             | 15          | 25           | 0        | _   |      |  |


# ■AC TEST CIRCUIT (Clock to Q)

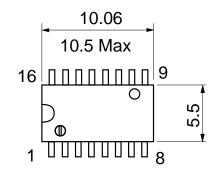


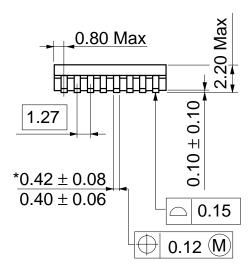





\* Input clock rise time is 20ns except for maximum

Unit: mm

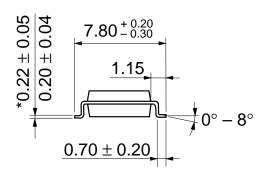




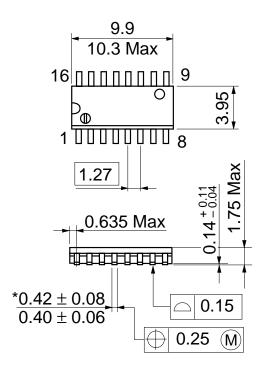



| Hitachi Code             | DP-16    |
|--------------------------|----------|
| JEDEC                    | Conforms |
| EIAJ                     | Conforms |
| Weight (reference value) | 1.07 g   |

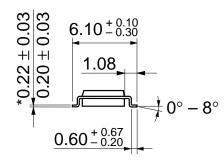

Unit: mm






\*Dimension including the plating thickness
Base material dimension






| Hitachi Code             | FP-16DA  |
|--------------------------|----------|
| JEDEC                    |          |
| EIAJ                     | Conforms |
| Weight (reference value) | 0.24 g   |

Unit: mm







\*Dimension including the plating thickness
Base material dimension

| Hitachi Code             | FP-16DN  |
|--------------------------|----------|
| JEDEC                    | Conforms |
| EIAJ                     | Conforms |
| Weight (reference value) | 0.15 g   |

# **Cautions**

- 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document.
- 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.
- 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
- 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
- 5. This product is not designed to be radiation resistant.
- 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
- 7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products.

# HITACHI

Hitachi, Ltd.

Semiconductor & Integrated Circuits.

Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109

**URL** NorthAmerica http:semiconductor.hitachi.com/ Europe

http://www.hitachi-eu.com/hel/ecg http://www.has.hitachi.com.sg/grp3/sicd/index.htm http://www.hitachi.com.tw/E/Product/SICD\_Frame.htm Asia (Singapore) Asia (Taiwan) Asia (HongKong) http://www.hitachi.com.hk/eng/bo/grp3/index.htm

http://www.hitachi.co.jp/Sicd/indx.htm Japan

#### For further information write to:

Hitachi Semiconductor (America) Inc. 179 East Tasman Drive, San Jose,CA 95134 Tel: <1> (408) 433-1990 Fax: <1>(408) 433-0223 Hitachi Europe GmbH Electronic components Group Dornacher Stra§e 3 D-85622 Feldkirchen, Munich Germany

Tel: <49> (89) 9 9180-0 Fax: <49> (89) 9 29 30 00

Hitachi Europe Ltd. Electronic Components Group Whitebrook Park Lower Cookham Road Maidenhead

Berkshire SL6 8YA, United Kingdom Tel: <44> (1628) 585000 Fax: <44> (1628) 778322

Hitachi Asia Pte. Ltd. 16 Collyer Quay #20-00 Hitachi Tower Singapore 049318 Tel: 535-2100 Fax: 535-1533

Hitachi Asia Ltd. Taipei Branch Office

3F, Hung Kuo Building. No.167, Tun-Hwa North Road, Taipei (105) Tel: <886> (2) 2718-3666 Fax: <886> (2) 2718-8180

Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Tsim Sha Tsui, Kowloon, Hong Kong Tel: <852> (2) 735 9218 Fax: <852> (2) 730 0281

Telex: 40815 HITEC HX

Copyright 'Hitachi, Ltd., 1999. All rights reserved. Printed in Japan.