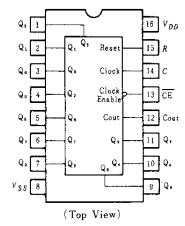

HD14017B

Decade Counter/Divider


The HD14017B is a five-stage Johnson decade counter with built-in code converter. High speed operation and spike free outputs are obtained by use of a Johnson decade counter design. The ten decoded outputs are normally low, and go high only at their appropriate decimal time period. The output changes occur on the positive going edge of the clock pulse. This part can be used in frequency division applications as well as decade counter or decimal decode display applications.

FEATURES

- Carry Output for Cascading 12MHz (typ) Operation @10V
- Divide-by-N Counting
- Quiescent Current = 5nA/pkg typ. @5V
- Supply Voltage Range = 3 to 18V
- Capable of Driving One Low-power Schottky TTL Load Over the Rated Temperature Range
- Pin-for-Pin Replacement for CD4017B and MC14017B

PIN ARRANGEMENT

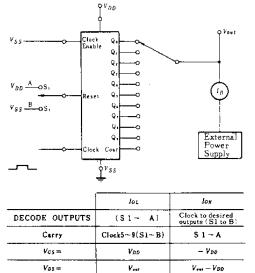
TRUTH TABLE

С	CE	R	Decode Output=n
0	×	0	n
×	1	0	n
×	×	1	\mathbf{Q}_{0}
	0	0	n + 1
	×	0	n
×		0	n
1		0	n + 1

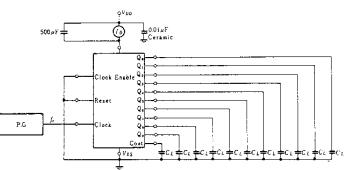
Notes) 1. \times : Don't Care.

2. If n<5 Carry="1", Otherwise~"0"

ELECTRICAL CHARACTERISTICS


Characteristic	Symbol		Test Conditions	- 40°C		l 1	25°C			85°C	
Unaracteristic	Symbol	$V_{DD}(V)$	Test Conditions	min	max	min	typ	max	min	max	Unit
Output Voltage		5.0	$V_{ix} = V_{DD}$ or ()	-	0.05	-	0	0.05	-	0.05	
	Vol	10		_	0.05	-	0	0.05	-	0.05	v
		15		-	0.05	_	0	0.05	_	0.05	
		5.0	$V_{in} = 0$ or V_{DD}	4.95	_	4.95	5.0	_	4.95	-	
	Voн	10		9.95	-	9.95	10	-	9,95		v
		15		14.95	_	14.95	15	_	14.95		
.۲	1	5.0	$V_{out} = 4.5 \text{ or } 0.5 \text{V}$	-	1.5	-	2.25	1.5	—	1.5	v
	VIL	10	$V_{out} = 9.0 \text{ or } 1.0 \text{V}$		3.0	-	4.50	3.0	—	3.0	
Lucit Walter		15	$V_{out} = 13.5 \text{ or } 1.5 \text{V}$	-	4.0	-	6.75	4.0		4.0	
Input Voltage		5.0	$V_{out} = 0.5 \text{ or } 4.5 \text{V}$	3.5	_	3.5	2.75	_	3.5	-	v
	VIH	10	$V_{out} = 1.0 \text{ or } 9.0 \text{V}$	7.0	-	7.0	5.50	-	7.0	—	
		• 15	$V_{out} = 1.5 \text{ or } 13.5 \text{V}^{\bullet}$	11.0		11.0	8.25		11.0	_	
		5.0	$V_{OH} = 2.5 \text{ V}$	-1.0	_	-0.8	-1.7		-0.6	-	mA
	t	5.0	$V_{0H} = 4.6 V$	-0.2	-	-0.16	-0.36	-	-0.12	-	
	Іон	10	$V_{OH} = 9.5 V$	-0.5	_	-0.4	-0.9		-0.3	—	
Output Drive Current		15	$V_{OH} = 13.5 \text{ V}$	-1.4	-	-1.2	-3.5	-	-1.0	_	
	1	5.0	$V_{OL} = 0.4 V$	0.52		0.44	0.88	—	0.36		mA
	IoL	10	$V_{OL} = 0.5 V$	1.3		1.1	2.25		0.9		
		15	$V_{OL} = 1.5 \text{ V}$	3.6		3.0	8.8		2.4		
Input Current	Iin	15		-	±0.3	-	±0,00001	± 0.3	_	±1.0	μA
Input Capacitance	Cin	-	$V_{in} = 0$	-	-	-	5.0	7.5		_	pF
Quiescent Current		5.0	7 ())	-	20		0.005	20	—	150	-
	IDD	10	Zero Signal, - per Package	-	40	-	0.010	40	-	300	
	ł	15		-	80		0.015	80	_	600	
		5.0	Dynamie+IDD,		· _	_	0.27	<u> </u>	—		μA
Total Supply Current*	Ιτ	10	$C_t = 50 \mathrm{pF}, f = 1 \mathrm{kHz},$	-	-		0.55	-			
		15	per Gate	_	_	-	0.83	_	-	_	

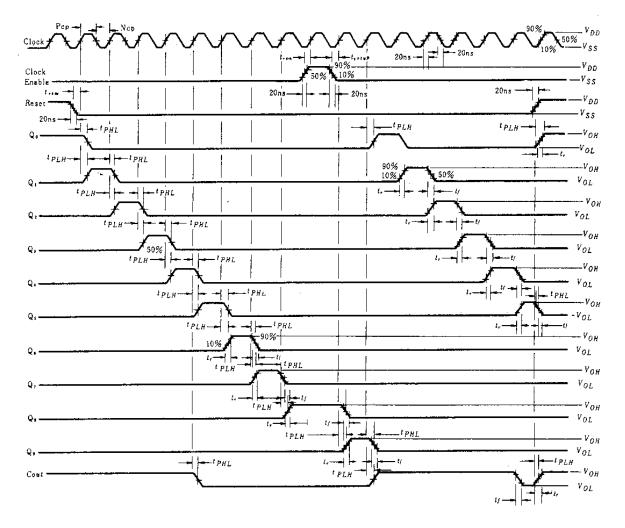
* To calculate total supply current at frequency other than 1kHz.


 $@V_{DD} = 5.0V \quad i_T = (0.27\mu A/kHz)f + i_{DD} \qquad @V_{DD} = 10V \quad i_T = (0.55\mu A/kHz)f + i_{DD} \qquad @V_{DD} = 15V \quad i_T = (0.83\mu A/kHz)f + i_{DD}$

DC CHARACTERISTIC TEST CIRCUIT

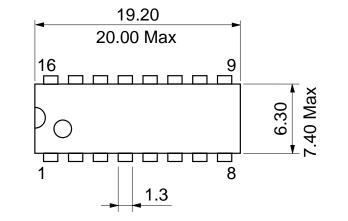
 Typical Output Source and Output Sink **Characteristics Test Circuit**

POWER DISSIPATION TEST CIRCUIT

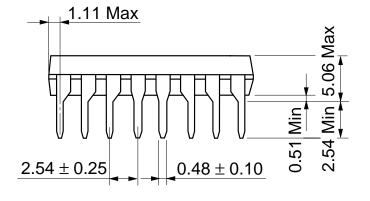

59

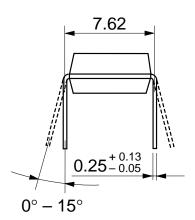
HD14017B ------

Characteristic		Symbol	$V_{DD}(V)$	min	typ	max	Unit	
Output Rise Time		tr	5.0	_	180	400	ns	
			10	_	90	200		
			15	_	65	160		
			5.0	_	100	200		
Output Fall Time		tj	10		50	100	ns	
			15	_	37	80		
	Reset - to - Decode		- 5.0	_	500	1000		
·••			10	-	230	460		
	Decode		15	-	140	350		
			5.0		400	800		
	Clock-to- Cout	tplh,	10	_	150	350	ns	
Provention Dalay Time	COUL	tphl	15	-	100	250		
Propagation Delay Time			5.0		500	1000		
•	Clock-to- Decode		10	_	230	460		
, , ,	Decode		15	-	140	350		
	D	tplh	5.0	÷	400	800	ns	
•	Reset-to-		10	<u> </u>	150	350		
;	Cout		15		100	250		
Clock Pulse Width		PWc	5.0	250	100	_	ns	
			10	100	42			
			15	75	30	_		
Clock Pulse Frequency		PRF	5.0	_	5.0	2.0	MHz	
			10		12	5.0		
			15	_	16	6.7	! 	
Reset Pulse Width		PWR	5.0	500	200		ns	
			10	250	100			
			15	190	75			
			5.0	750	300			
Reset Removal Time		trem	10	275	100		ns	
			15	210	80		1	
Clock Pulse Rise and Fall Time			5.0		· · · · · · · · · · · · · · · · · · ·	·,		
		tr, tj	10					
			15					
Clock Enable Setup Time		tsetup	5.0	700	175		<u>+</u>	
			10	300	75		ns	
			15	225	52	<u> </u>		
Clock Enable Removal Time			5.0	700	260	<u>├</u>		
		ŧ rem	10	300	100		ns	
			15	225	70			
		. <u>.</u> <u>.</u>	10		· · ·	1		

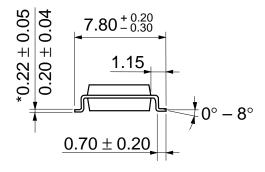

SWITCHING CHARACTERISTICS ($C_L = 50 \text{pF}, Ta = 25^{\circ}\text{C}$)

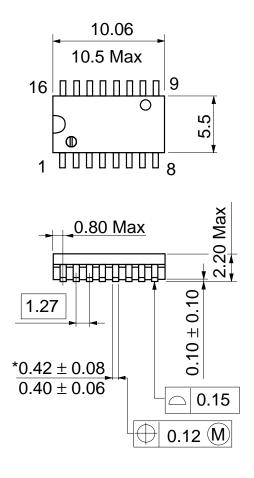
DYNAMIC SIGNAL WAVEFORMS



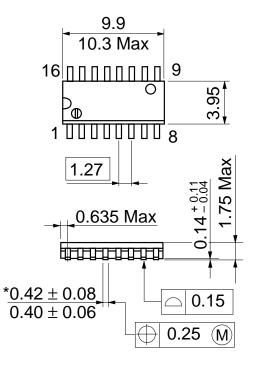


Unit: mm

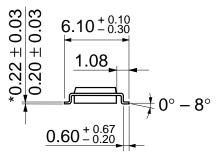



Hitachi Code	DP-16
JEDEC	Conforms
EIAJ	Conforms
Weight (reference value)	1.07 g

Unit: mm

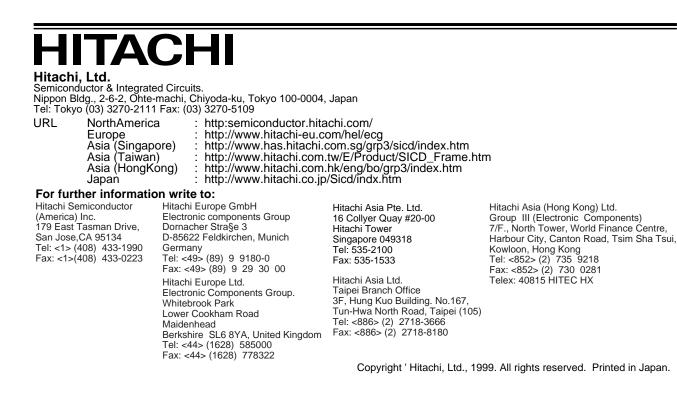


Hitachi Code	FP-16DA
JEDEC	
EIAJ	Conforms
Weight (reference value)	0.24 g


*Dimension including the plating thickness Base material dimension

Unit: mm

*Dimension including the plating thickness Base material dimension



Hitachi Code	FP-16DN
JEDEC	Conforms
EIAJ	Conforms
Weight (reference value)	0.15 g

Cautions

- Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document.
- 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.
- 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
- 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
- 5. This product is not designed to be radiation resistant.
- 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
- 7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products.

HITACHI