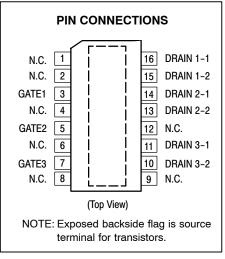
The RF Sub-Micron MOSFET Line **RF Power Field Effect Transistor Array** N-Channel Enhancement-Mode Lateral MOSFET


Designed for broadband commercial and industrial applications with frequencies to 1.0 GHz. The high gain and broadband performance of this device make it ideal for large-signal, common-source amplifier applications in 26 volt base station equipment. The device is in a PFP-16 Power Flat Pack package which gives excellent thermal performances through a solderable backside contact.

- Typical Performance at 960 MHz, 26 Volts Output Power — 2 Watts Per Transistor Power Gain — 18 dB Efficiency — 50%
- Designed for Maximum Gain and Insertion Phase Flatness
- Capable of Handling 10:1 VSWR, @ 26 Vdc, 960 MHz, 2 Watts CW Output Power
- Excellent Thermal Stability
- Characterized with Series Equivalent Large-Signal Impedance Parameters
- In Tape and Reel. R2 Suffix = 1,500 Units per 16 mm, 13 inch Reel.

1.0 GHz, 2 W, 26 V LATERAL N-CHANNEL BROADBAND RF POWER MOSFET

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	65	Vdc
Gate-Source Voltage	V _{GS}	- 0.5, +15	Vdc
Total Dissipation Per Transistor @ $T_{C} = 25^{\circ}C$	PD	4	Watts
Storage Temperature Range	T _{stg}	- 65 to +150	°C
Operating Junction Temperature	TJ	150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case, Single Transistor	$R_{ extsf{ heta}JC}$	12	°C/W

NOTE - **CAUTION** - MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.

REV 4

© Motorola, Inc. 2004

MOISTURE SENSITIVITY LEVEL

Test Methodology			Rating				
Per JESD 22-A113	3						
ELECTRICAL CHARACTERISTICS (T _C = 25°C unless otherwise noted)							
Characteristic	Symbol	Min	Тур	Max	Unit		
ON CHARACTERISTICS							
Gate Threshold Voltage $(V_{DS} = 10 \text{ Vdc}, I_D = 20 \ \mu\text{Adc})$	V _{GS(th)}	2.4		4	Vdc		
Gate Quiescent Voltage (V _{DS} = 26 Vdc, I _D = 25 mAdc)	V _{GS(Q)}	3		5	Vdc		
Drain-Source On-Voltage (V _{GS} = 10 Vdc, I _D = 0.1 Adc)	V _{DS(on)}	—	0.3	_	Vdc		
FUNCTIONAL TESTS (Per Transistor in Motorola Test Fixture, 50	0 ohm system)	ľ			1		
Common-Source Amplifier Power Gain @ P1dB (V _{DD} = 26 Vdc, I _{DQ} = 25 mA, f = 960.0 MHz)	G _{ps}	15	18	_	dB		
Drain Efficiency @ P1dB (V _{DD} = 26 Vdc, I _{DQ} = 25 mA, f = 960.0 MHz)	η	35	50	_	%		
Input Return Loss @ P1dB (V _{DD} = 26 Vdc, I _{DQ} = 25 mA, f = 960.0 MHz)	IRL	—	- 15	- 9	dB		
		0.4	37				
Power Output, 1 dB Compression Point (V _{DD} = 26 Vdc, I _{DQ} = 25 mA, f = 960.0 MHz)	P _{1dB}	34	57	_	dBm		

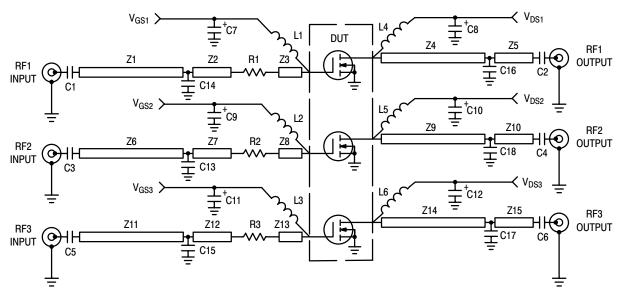


Figure 1. MRF9002R2 Broadband Test Circuit Schematic

Designators	Description	
C1-C6	33 pF Chip Capacitors (0805)	
C7-C12	1.0 µF, 35 V Tantalum Capacitors, B Case, Kemet	
C13	8.2 pF Chip Capacitor (0805)	
C14, C15	10 pF Chip Capacitors (0805)	
C16, C17	2.7 pF Chip Capacitors (0805)	
C18	3.3 pF Chip Capacitor (0805)	
L1-L6	12 nH Chip Inductors (0805)	
R1-R3	0 Ω Chip Resistors (0805)	
Z1, Z11	1.16 x 28.5 mm Microstrip	
Z2, Z7, Z12	0.65 x 5.6 mm Microstrip	
Z3, Z8, Z13	0.65 x 2.6 mm Microstrip	
Z4, Z14	1.16 x 19.5 mm Microstrip	
Z5, Z15	1.16 x 17.5 mm Microstrip	
Z6	1.16 x 12.9 mm Microstrip	
Z9	1.16 x 27.2 mm Microstrip	
Z10	1.16 x 4.3 mm Microstrip	
PCB	Etched Circuit Board	
Raw PCB Material	Rogers RO4350, 0.020", 2.5", x 2.5", $\epsilon_r = 3.5$	
Bedstead	Copper Heatsink	

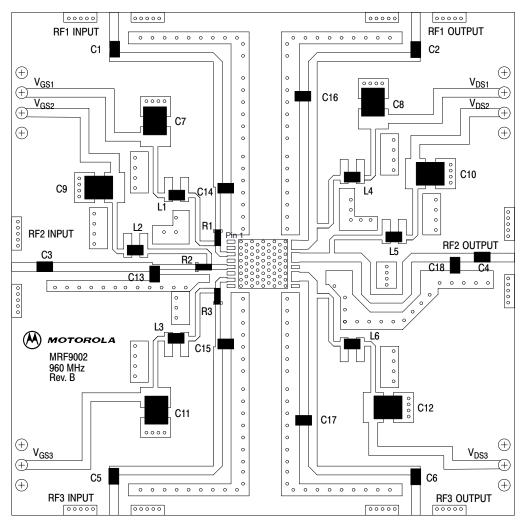
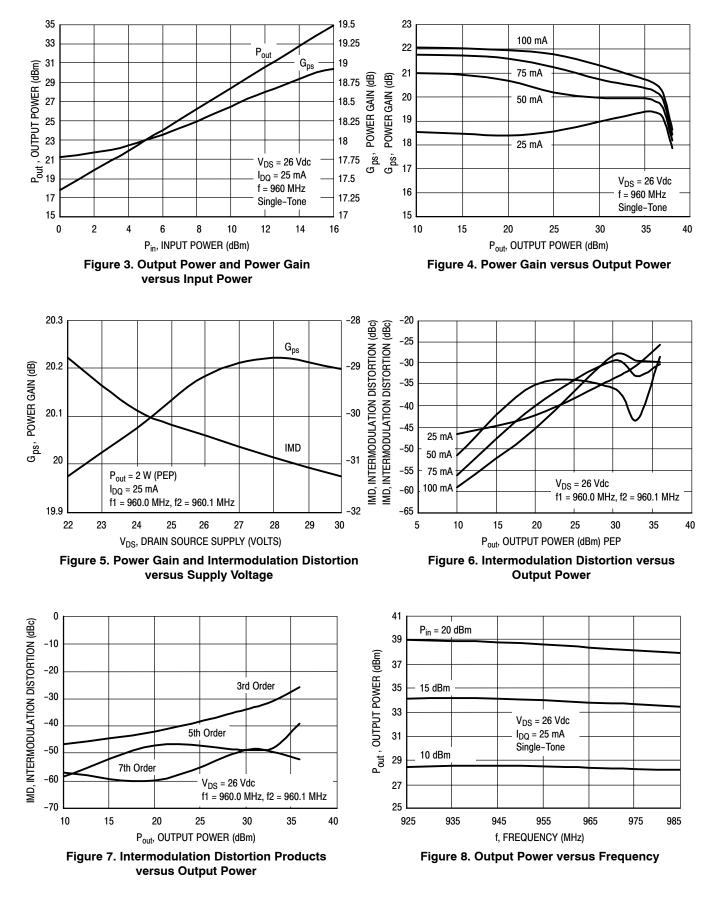



Figure 2. MRF9002R2 Broadband Test Circuit Component Layout

TYPICAL CHARACTERISTICS

MOTOROLA RF DEVICE DATA

For More Information On This Product, Go to: www.freescale.com

Downloaded from Elcodis.com electronic components distributor

TYPICAL CHARACTERISTICS

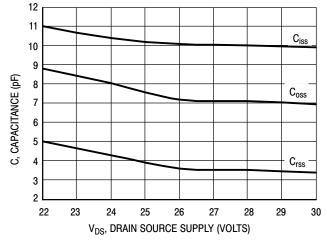
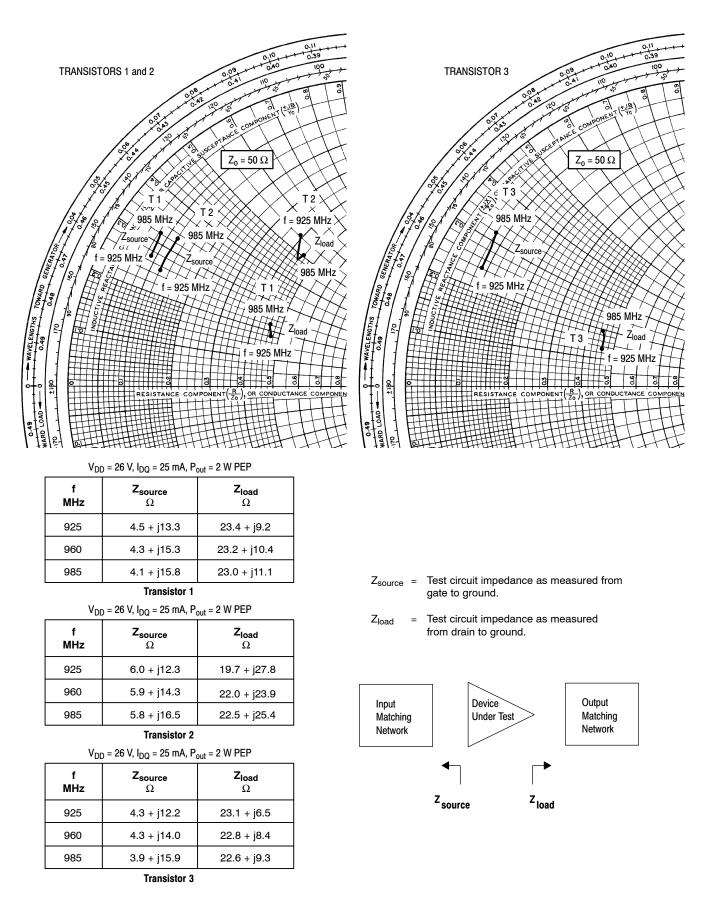



Figure 9. Capacitance versus Drain Source Voltage

MOTOROLA RF DEVICE DATA

For More Information On This Product, Go to: www.freescale.com

PACKAGE DIMENSIONS

Information in this document is provided solely to enable system and software implementers to use Motorola products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights or the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the path.

MOTOROLA and the Stylized M Logo are registered in the US Patent and Trademark Office. All other product or service names are the property of their respective owners. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

© Motorola Inc. 2004

HOW TO REACH US:

USA/EUROPE/LOCATIONS NOT LISTED: Motorola Literature Distribution P.O. Box 5405, Denver, Colorado 80217 1-800-521-6274 or 480-768-2130 JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center, 3-20-1, Minami-Azabu, Minato-ku, Tokyo 106-8573, Japan 81-3-3440-3569

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong 852-26668334

HOME PAGE: http://motorola.com/semiconductors

[◊]For More Information On This Product, Go to: www.freescale.com