MRF5S19150R3 and MRF5S19150SR3 replaced by MRF5S19150HR3 and MRF5S19150HSR3. "H" suffix indicates lower thermal resistance package.

The RF MOSFET Line **RF Power Field Effect Transistors**

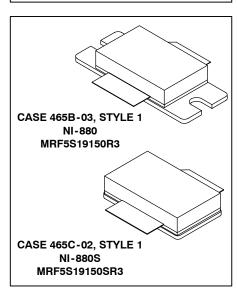
N-Channel Enhancement-Mode Lateral MOSFETs Designed for PCN and PCS base station applications at frequencies from

Designed for PCN and PCS base station applications at frequencies from 1.9 to 2.0 GHz. Suitable for TDMA, CDMA and multicarrier amplifier applications.

Typical 2-Carrier N-CDMA Performance for V_{DD} = 28 Volts, P_{out} = 32 Watts, I_{DQ} = 1400 mA, f1 = 1958.75 MHz, f2 = 1961.25 MHz IS-95 CDMA (Pilot, Sync, Paging, Traffic Codes 8 Through 13) 1.2288 MHz Channel Bandwidth Carrier. Adjacent Channels Measured over a 30 kHz Bandwidth at f1 -885 kHz and f2 +885 kHz. Distortion Products Measured over 1.2288 MHz Bandwidth at f1 -2.5 MHz and f2 +2.5 MHz. Peak/Avg. = 9.8 dB @ 0.01% Probability on CCDF.

Output Power — 32 Watts Avg.

Power Gain — 14 dB


Efficiency — 26% ACPR — -50 dB

AOI II — -50 UD

- IM3 -36.5 dBc
- Internally Matched, Controlled Q, for Ease of Use
- High Gain, High Efficiency and High Linearity
- Integrated ESD Protection
- Designed for Maximum Gain and Insertion Phase Flatness
- Capable of Handling 5:1 VSWR, @ 28 Vdc, f1 = 1960 MHz, 100 Watts CW Output Power
- Excellent Thermal Stability
- Qualified Up to a Maximum of 32 V Operation
- In Tape and Reel. R3 Suffix = 250 Units per 56 mm, 13 inch Reel.

MRF5S19150R3 MRF5S19150SR3

1990 MHz, 32 W, 28 V LATERAL N-CHANNEL RF POWER MOSFETs

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	65	Vdc
Gate-Source Voltage	V _{GS}	-0.5, +15	Vdc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	357 2	Watts W/°C
Storage Temperature Range	T _{stg}	- 65 to +150	°C
Operating Junction Temperature	T _J	200	°C
CW Operation	CW	100	Watts

THERMAL CHARACTERISTICS

Characteristic	Symbol	Value (1,2)	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$		°C/W
Case Temperature 80°C, 100 W CW		0.49	
Case Temperature 80°C, 32 W CW		0.53	

- (1) MTTF calculator available at http://www.motorola.com/semiconductors/rf. Select Tools/Software/Application Software/Calculators to access the MTTF calculators by product.
- (2) Refer to AN1955/D, *Thermal Measurement Methodology of RF Power Amplifiers*. Go to http://www.motorola.com/semiconductors/rf. Select Documentation/Application Notes AN1955.

NOTE - <u>CAUTION</u> - MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.

REV 1

ESD PROTECTION CHARACTERISTICS

Test Conditions	Class
Human Body Model	1 (Minimum)
Machine Model	M3 (Minimum)
Charge Device Model	C7 (Minimum)

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS	•		1	•	•
Zero Gate Voltage Drain Leakage Current (V _{DS} = 65 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	10	μAdc
Zero Gate Voltage Drain Leakage Current (V _{DS} = 28 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	1	μAdc
Gate-Source Leakage Current (V _{GS} = 5 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	_	_	1	μAdc
ON CHARACTERISTICS	•		u.	•	
Gate Threshold Voltage (V_{DS} = 10 Vdc, I_{D} = 360 μ Adc)	V _{GS(th)}	2.5	2.8	3.5	Vdc
Gate Quiescent Voltage (V _{DS} = 28 Vdc, I _D = 1400 mAdc)	V _{GS(Q)}	_	3.8	_	Vdc
Drain-Source On-Voltage (V _{GS} = 10 Vdc, I _D = 3.6 Adc)	V _{DS(on)}	_	0.24	_	Vdc
Forward Transconductance (V _{DS} = 10 Vdc, I _D = 3.6 Adc)	9 _{fs}	_	9	_	S
DYNAMIC CHARACTERISTICS			-II		l
Reverse Transfer Capacitance (1) (V _{DS} = 28 Vdc, V _{GS} = 0, f = 1 MHz)	C _{rss}	_	3.1	_	pF
FUNCTIONAL TESTS (In Motorola Test Fixture, 50 ohm system) 2-Carri Peak/Avg = 9.8 dB @ 0.01% Probability on CCDF.	er N-CDMA, 1.2	2288 MHz C	hannel Bandv	vidth Carriers	
Common-Source Amplifier Power Gain (V _{DD} = 28 Vdc, P _{out} = 32 W Avg, I _{DQ} = 1400 mA, f1 = 1930 MHz, f2 = 1932.5 MHz and f1 = 1987.5 MHz, f2 = 1990 MHz)	G _{ps}	13	14	_	dB
Drain Efficiency $(V_{DD} = 28 \text{ Vdc}, P_{out} = 32 \text{ W Avg}, I_{DQ} = 1400 \text{ mA}, f1 = 1930 \text{ MHz}, f2 = 1932.5 \text{ MHz} and f1 = 1987.5 \text{ MHz}, f2 = 1990 \text{ MHz})$	η	24	26	_	%
Third Order Intermodulation Distortion	IM3	_	-36.5	-35	dBc

(1) Part is internally matched both on input and output.

referenced to carrier channel power.)

Adjacent Channel Power Ratio

(V_{DD} = 28 Vdc, P_{out} = 32 W Avg, I_{DQ} = 1400 mA, f1 = 1930 MHz, f2 = 1932.5 MHz and f1 = 1987.5 MHz, f2 = 1990 MHz; IM3 measured over 1.2288 MHz Bandwidth at f1 $\,$ -2.5 MHz and f2 $\,$ +2.5 MHz

 $(V_{DD} = 28 \text{ Vdc}, P_{out} = 32 \text{ W Avg}, I_{DQ} = 1400 \text{ mA}, f1 = 1930 \text{ MHz}, f2 = 1932.5 \text{ MHz} and f1 = 1987.5 \text{ MHz}, f2 = 1990 \text{ MHz}; ACPR measured over 30 kHz Bandwidth at f1 -885 MHz and f2 +885 MHz)$

 $(V_{DD} = 28 \text{ Vdc}, P_{out} = 32 \text{ W Avg}, I_{DQ} = 1400 \text{ mA}, f1 = 1930 \text{ MHz}, f2 = 1932.5 \text{ MHz}$ and f1 = 1987.5 MHz, f2 = 1990 MHz)

-48

dBc

dΒ

-50

-17

ACPR

IRL

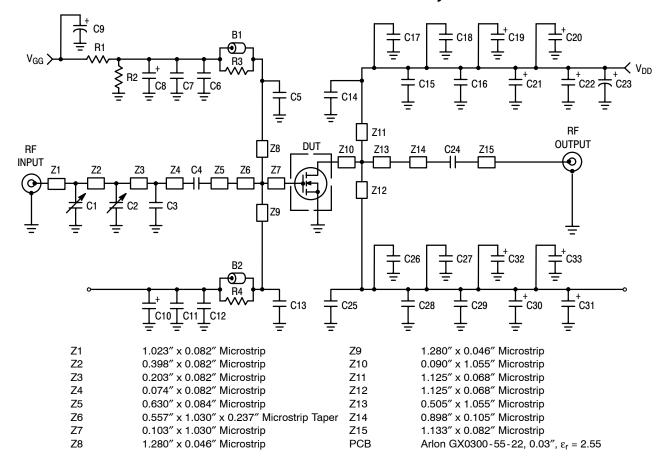


Figure 1. MRF5S19150 Test Circuit Schematic

Table 1. MRF5S19150 Test Circuit Component Designations and Values

1	Part	Description	
	B1, B2	Short RF Beads	
	C1, C2	0.6 – 4.5 Variable Capacitors, Gigatrim	
	C3 0.8 pF Chip Capacitor, B Case		
)	C4, C5, C13, C14, C24, C25	9.1 pF Chip Capacitors, B Case	
1	C8, C10	1.0 μF, 50 V SMT Tantalum Capacitors	
1	C6, C12, C16, C17, C18, C27, C28, C29	0.1 μF Chip Capacitors, B Case	
	C7, C11, C15, C26	1000 pF Chip Capacitors, B Case	
4	C9	100 μF, 50 V Electrolytic Capacitor	
	C23	470 μF, 63 V Electrolytic Capacitor	
	C19, C20, C21, C22, C30, C31, C32, C33	22 μF, 35 V Tantalum Capacitors	
	R1	1 kΩ Chip Resistor	
	R2	560 kΩ Chip Resistor	
	R3, R4	12 Ω Chip Resistors	

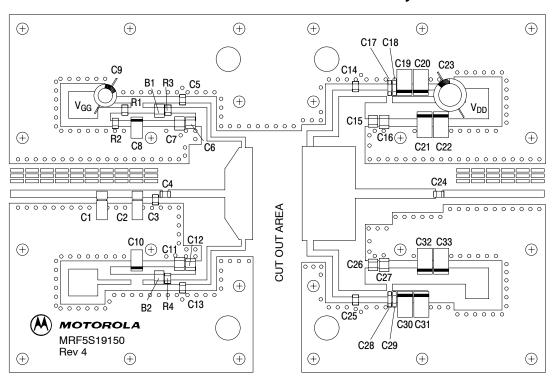


Figure 2. MRF5S19150 Test Circuit Component Layout

TYPICAL CHARACTERISTICS

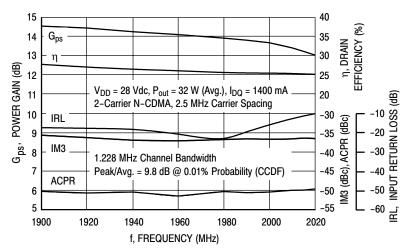


Figure 3. 2-Carrier N-CDMA Broadband Performance

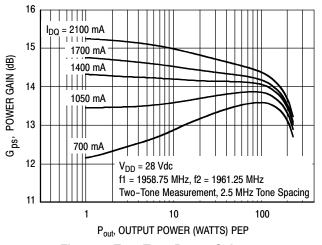


Figure 4. Two-Tone Power Gain versus Output Power

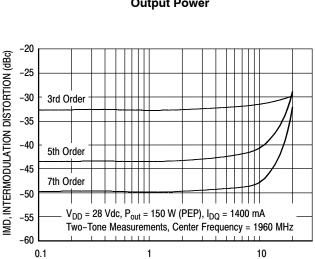


Figure 6. Intermodulation Distortion Products versus Tone Spacing

TWO-TONE SPACING (MHz)

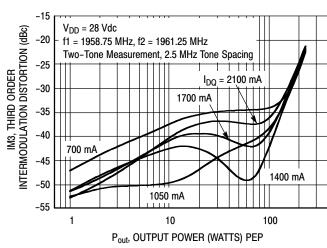


Figure 5. Third Order Intermodulation versus
Output Power

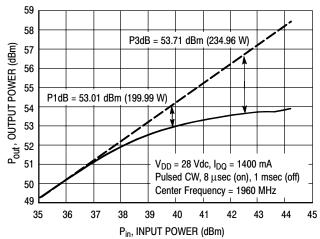


Figure 7. Pulse CW Output Power versus Input Power

TYPICAL CHARACTERISTICS

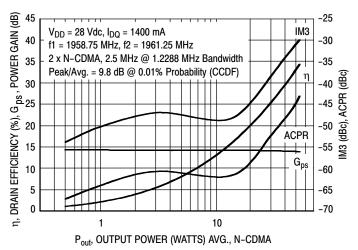


Figure 8. 2-Carrier N-CDMA ACPR, IM3, Power Gain, Drain Efficiency versus Output Power

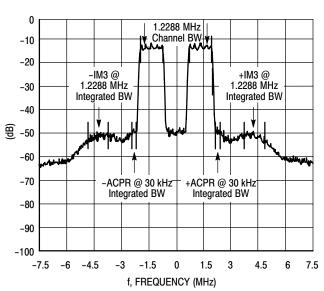
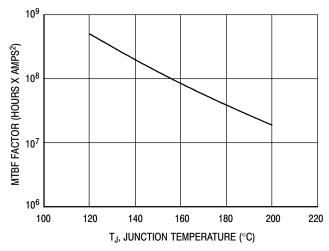
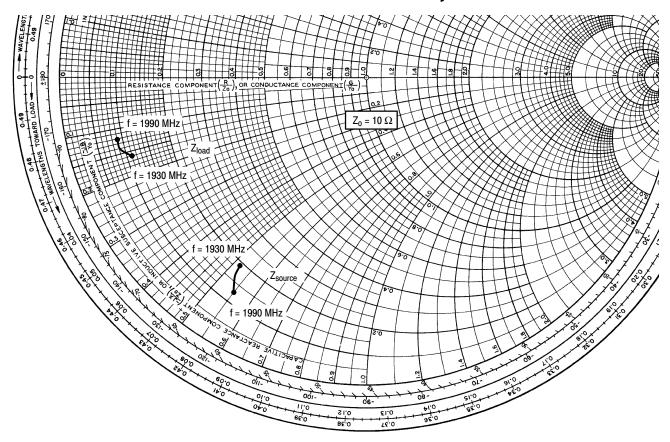




Figure 9. 2-Carrier N-CDMA Spectrum

This above graph displays calculated MTBF in hours x ampere² drain current. Life tests at elevated temperatures have correlated to better than $\pm 10\%$ of the theoretical prediction for metal failure. Divide MTBF factor by $I_D{}^2$ for MTBF in a particular application.

Figure 10. MTBF Factor versus Junction Temperature

 V_{DD} = 28 V, I_{DQ} = 1400 mA, P_{out} = 32 W Avg.

f MHz	$ \begin{array}{c cccc} \textbf{f} & \textbf{Z}_{\textbf{source}} & \textbf{Z}_{\textbf{loar}} \\ \textbf{MHz} & \Omega & \Omega \\ \end{array} $	
1930	1.89 - j5.24	1.06 - j1.58
1960	1.64 - j5.29	0.88 - j1.37
1990	1.3 - j5.49	0.90 - j1.21

Z_{source} = Test circuit impedance as measured from gate to ground.

Z_{load} = Test circuit impedance as measured from drain to ground.

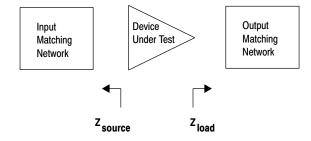
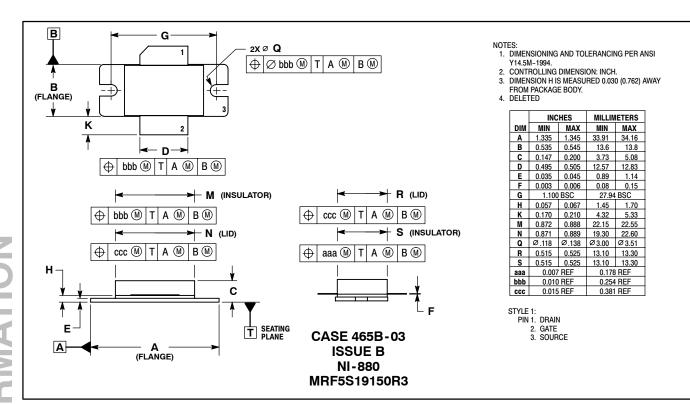
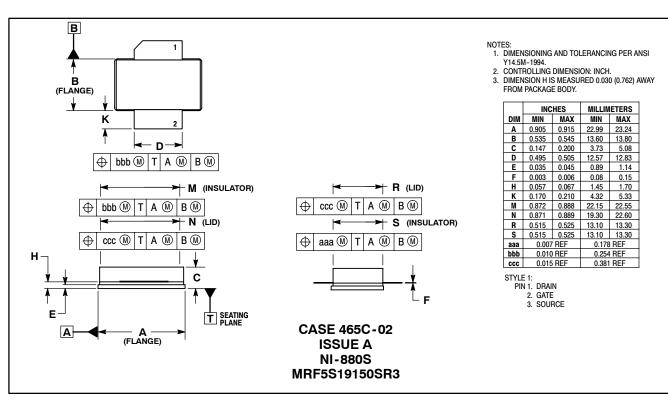




Figure 11. Series Equivalent Input and Output Impedance

PACKAGE DIMENSIONS

Information in this document is provided solely to enable system and software implementers to use Motorola products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.

MOTOROLA and the Stylized M Logo are registered in the US Patent and Trademark Office. All other product or service names are the property of their respective owners. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

© Motorola Inc. 2004

HOW TO REACH US:

USA/EUROPE/LOCATIONS NOT LISTED:Motorola Literature Distribution
P.O. Box 5405, Denver, Colorado 80217
1-800-521-6274 or 480-768-2130

JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center, 3-20-1, Minami-Azabu, Minato-ku, Tokyo 106-8573, Japan 81-3-3440-3569

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong 852-26668334

HOME PAGE: http://motorola.com/semiconductors

