
The RF MOSFET Line **RF Power Field Effect Transistors** N-Channel Enhancement-Mode Lateral MOSFETs

Designed for PCN and PCS base station applications with frequencies from 2.1 to 2.2 GHz. Suitable for W-CDMA, CDMA, TDMA, GSM and multicarrier amplifier applications.

- Typical W-CDMA Performance: 2140 MHz, 28 Volts 5 MHz Offset @ 4.096 MHz BW, 15 DTCH Output Power — 6.0 Watts Power Gain — 12.5 dB Drain Efficiency — 15%
- Internally Matched, Controlled Q, for Ease of Use
- High Gain, High Efficiency and High Linearity
- Integrated ESD Protection
- Designed for Maximum Gain and Insertion Phase Flatness
- Capable of Handling 10:1 VSWR, @ 28 Vdc, 2.11 GHz, 60 Watts CW Output Power
- Excellent Thermal Stability
- Characterized with Series Equivalent Large-Signal Impedance Parameters
- In Tape and Reel. R3 Suffix = 250 Units per 56 mm, 13 Inch Reel.

2170 MHz, 60 W, 28 V LATERAL N-CHANNEL RF POWER MOSFETs

NI-780S MRF21060SR3

MAXIMUM RATINGS

emiconductor, I

đ

Besca

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	65	Vdc
Gate-Source Voltage	V _{GS}	-0.5, +15	Vdc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	180 0.98	Watts W/°C
Storage Temperature Range	T _{stg}	- 65 to +150	°C
Operating Junction Temperature	TJ	200	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	1.02	°C/W

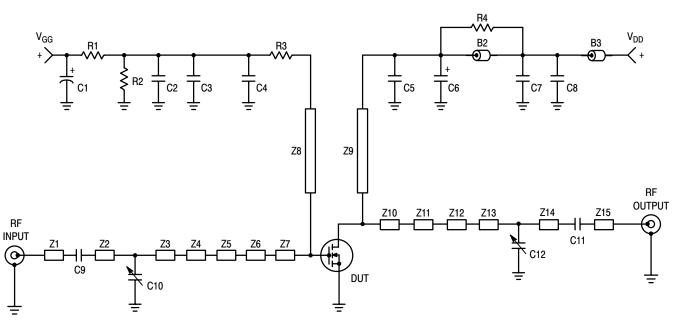
ESD PROTECTION CHARACTERISTICS

Test Conditions	Class
Human Body Model	2 (Minimum)
Machine Model	M3 (Minimum)

NOTE - **CAUTION** - MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.

Go to: www.freescale.com

© Motorola, Inc. 2004



Downloaded from Elcodis.com electronic components distributor

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS				•	
Drain - Source Breakdown Voltage (V_{GS} = 0 Vdc, I _D = 10 μ Adc)	V _{(BR)DSS}	65	_	_	Vdc
Zero Gate Voltage Drain Current (V _{DS} = 28 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_		6	μAdc
Gate-Source Leakage Current (V _{GS} = 5 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	_		1	μAdc
ON CHARACTERISTICS					
Gate Threshold Voltage (V _{DS} = 10 Vdc, I _D = 300 μAdc)	V _{GS(th)}	2	_	4	Vdc
Gate Quiescent Voltage (V _{DS} = 28 Vdc, I _D = 500 mAdc)	V _{GS(Q)}	2.5	3.9	4.5	Vdc
Drain-Source On-Voltage (V _{GS} = 10 Vdc, I _D = 2 Adc)	V _{DS(on)}	—	0.27	_	Vdc
Forward Transconductance $(V_{DS} = 10 \text{ Vdc}, I_D = 2 \text{ Adc})$	9fs	—	4.7	_	S
DYNAMIC CHARACTERISTICS					
Reverse Transfer Capacitance (1) $(V_{DS} = 28 \text{ Vdc}, V_{GS} = 0, f = 1 \text{ MHz})$	C _{rss}	—	2.7	—	pF
UNCTIONAL TESTS (In Motorola Test Fixture, 50 ohm system)					
Two-Tone Common-Source Amplifier Power Gain (V _{DD} = 28 Vdc, P _{out} = 60 W PEP, I _{DQ} = 500 mA, f = 2110 MHz and 2170 MHz, Tone Spacing = 100 kHz)	G _{ps}	11	12.5	_	dB
Two-Tone Drain Efficiency (V _{DD} = 28 Vdc, P _{out} = 60 W PEP, I _{DQ} = 500 mA, f = 2110 MHz and 2170 MHz, Tone Spacing = 100 kHz)	η	31	34	_	%
3rd Order Intermodulation Distortion (V_{DD} = 28 Vdc, P_{out} = 60 W PEP, I_{DQ} = 500 mA, f = 2110 MHz and 2170 MHz, Tone Spacing = 100 kHz)	IMD		-30	-28	dBc
Input Return Loss (V _{DD} = 28 Vdc, P _{out} = 60 W PEP, I _{DQ} = 500 mA, f = 2110 MHz and 2170 MHz, Tone Spacing = 100 kHz)	IRL		-12	_	dB
P _{out} , 1 dB Compression Point (V _{DD} = 28 Vdc, P _{out} = 60 W CW, f = 2170 MHz)	P1dB		60	_	W
Output Mismatch Stress (V_{DD} = 28 Vdc, P_{out} = 60 W CW, I_{DQ} = 500 mA, f = 2110 MHz, VSWR = 10:1, All Phase Angles at Frequency of Tests)	Ψ	No Degradation In Output Power Before and After Test			

(1) Part is internally matched both on input and output.

B2 - B3	Ferrite Beads, Fair Rite #2743019447	Z3	0.180″ x 0.100″ Microstrip
C1	10 μF, 50 V Electrolytic Chip Capacitor, Panasonic #ECEV1HV100R	Z4	0.152" x 0.293" Microstrip
C2, C7	1000 pF Chip Capacitors, ATC #100B102JCA500X	Z5	0.216" x 0.100" Microstrip
C3, C8	0.10 µF Chip Capacitors, Kemet #CDR33BX104AKWS	Z6	0.114" x 0.410" Microstrip
C4, C5	4.7 pF Chip Capacitors, ATC #100B4R7JCA500X	Z7	0.626" x 0.872" Microstrip
C6	22 μF, 35 V Tantalum Surface Mount Chip Capacitor, Sprague	Z8	1.050" x 0.050" Microstrip
C9, C11	9.1 pF Chip Capacitors, ATC #100B9R1JCA500X	Z9	0.830" x 0.050" Microstrip
C10	0.8 pF - 8.0 pF Variable Capacitor, Johanson Gigatrim	Z10	0.596" x 1.040" Microstrip
C12	0.4 pF - 4.5 pF Variable Capacitor, Johanson Gigatrim	Z11	0.186" x 0.315" Microstrip
R1	1 kΩ, 1/4 W Fixed Film Chip Resistor, 0.08″ x 0.13″	Z12	0.097" x 0.525" Microstrip
R2	560 kΩ, 1/4 W Fixed Film Chip Resistor, 0.08″ x 0.13″	Z13	0.353" x 0.138" Microstrip
R3	10 Ω, 1/4 W Fixed Film Chip Resistor, 0.08″ x 0.13″	Z14	0.112" x 0.080" Microstrip
R4	10 Ω, 1/4 W Fixed Film Chip Resistor, 0.08″ x 0.13″	Z15	0.722" x 0.080" Microstrip
Z1	0.743″ x 0.080″ Microstrip	Board	0.030" Glass Teflon [®] , Arlon
Z2	0.070" x 0.100" Microstrip		GX-0300-55-22, 2 oz Cu

Figure 1. MRF21060 Test Circuit Schematic

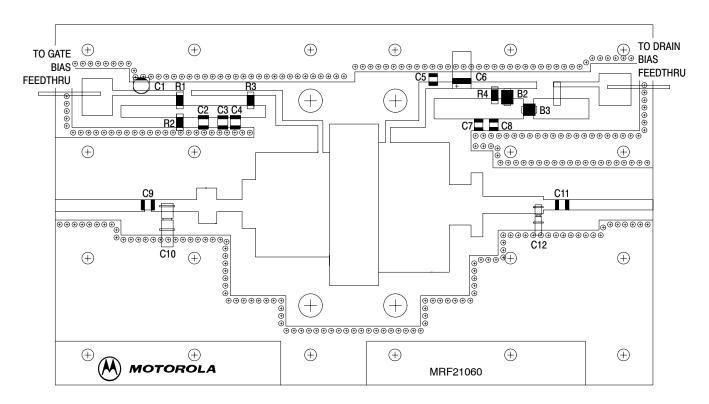
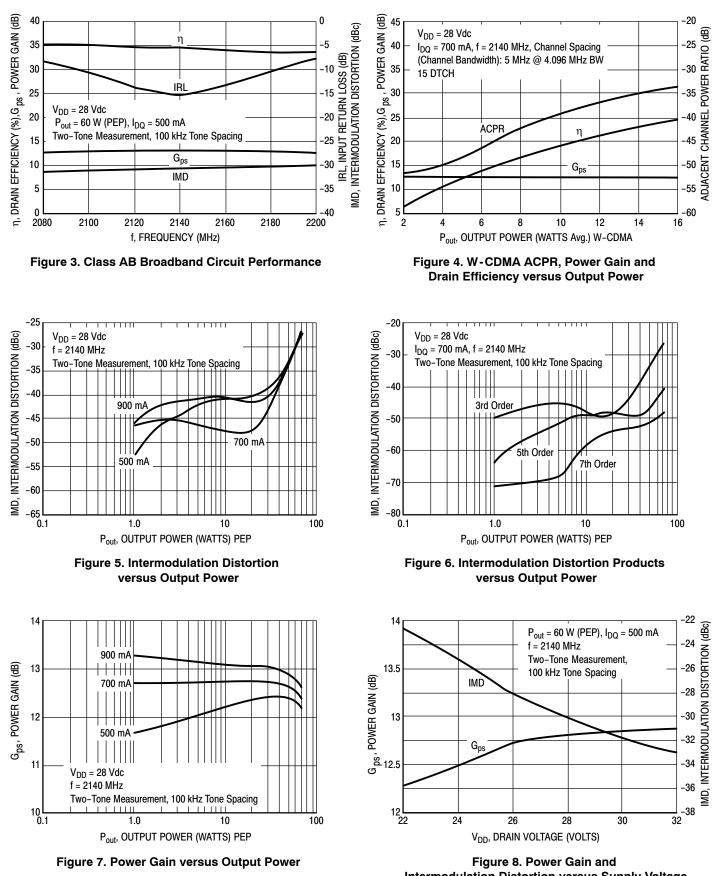



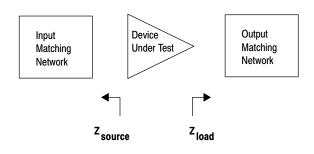
Figure 2. MRF21060 Test Circuit Component Layout

TYPICAL CHARACTERISTICS

Intermodulation Distortion versus Supply Voltage

For More Information On This Product, Go to: www.freescale.com

5

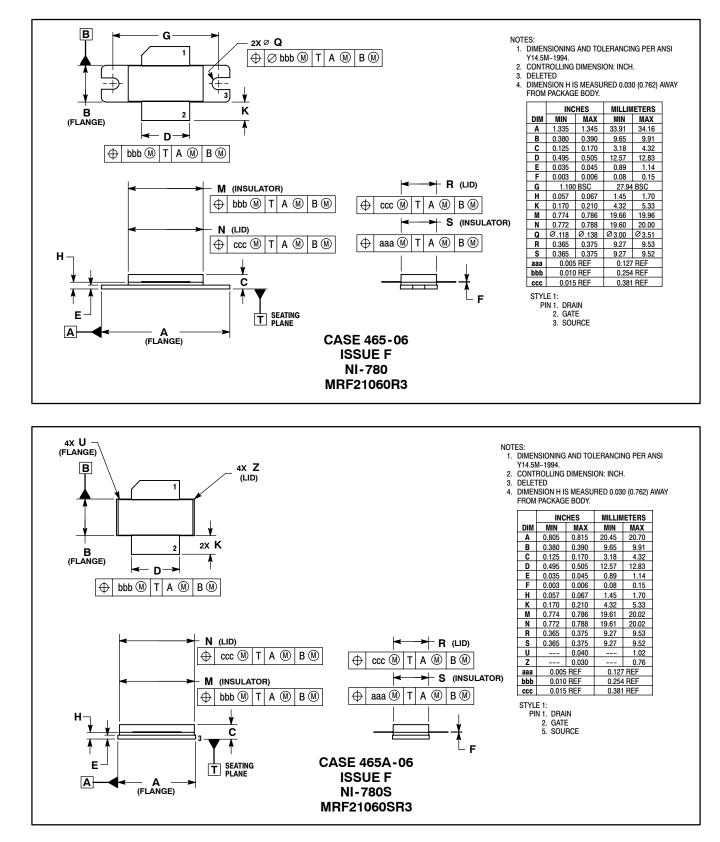



 V_{DD} = 28 V, I_{DQ} = 500 mA, P_{out} = 60 W PEP

f MHz	z_{source}	${\sf Z}_{\sf load}_{\Omega}$
2110	2.40 - j0.55	3.07 - j2.05
2140	2.26 - j0.87	2.89 - j2.38
2170	2.08 - j1.23	2.66 - j2.71

Test circuit impedance as measured from Z_{source} = gate to ground.

Test circuit impedance as measured Z_{load} = from drain to ground.



Freescale Semiconductor, Inc.

MRF21060R3 MRF21060SR3

PACKAGE DIMENSIONS

MOTOROLA RF DEVICE DATA

For More Information On This Product, Go to: www.freescale.com

Information in this document is provided solely to enable system and software implementers to use Motorola products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights or other rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.

MOTOROLA and the Stylized M Logo are registered in the US Patent and Trademark Office. All other product or service names are the property of their respective owners. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

© Motorola Inc. 2004

HOW TO REACH US:

USA/EUROPE/LOCATIONS NOT LISTED: Motorola Literature Distribution P.O. Box 5405, Denver, Colorado 80217 1-800-521-6274 or 480-768-2130 JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center, 3-20-1, Minami-Azabu, Minato-ku, Tokyo 106-8573, Japan 81-3-3440-3569

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong 852-26668334

HOME PAGE: http://motorola.com/semiconductors

[◊]For More Information On This Product, Go to: www.freescale.com