Discrete POWER & Signal **Technologies**

MPSA29

AIRCHILD SEMICONDUCTOR TM

MPSA29

NPN Darlington Transistor

This device is designed for applications requiring extremely high current gain at collector currents to 500 mA. Sourced from Process 03. See MPSA28 for characteristics.

Absolute Maximum Ratings* TA = 25°C unless otherwise noted

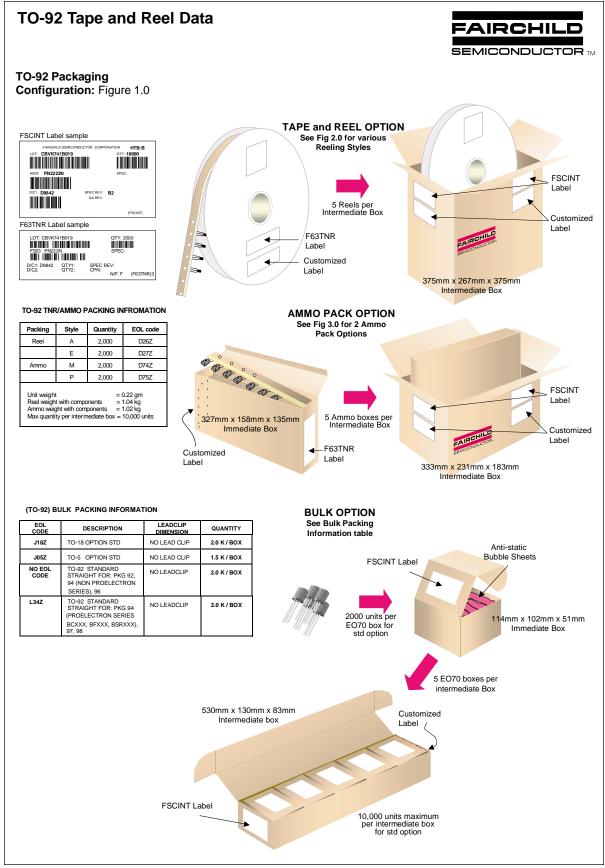
Symbol	Parameter	Value	Units
V _{CES}	Collector-Emitter Voltage	100	V
V _{CBO}	Collector-Base Voltage	100	V
V _{EBO}	Emitter-Base Voltage	12	V
Ic	Collector Current - Continuous	800	mA
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES:

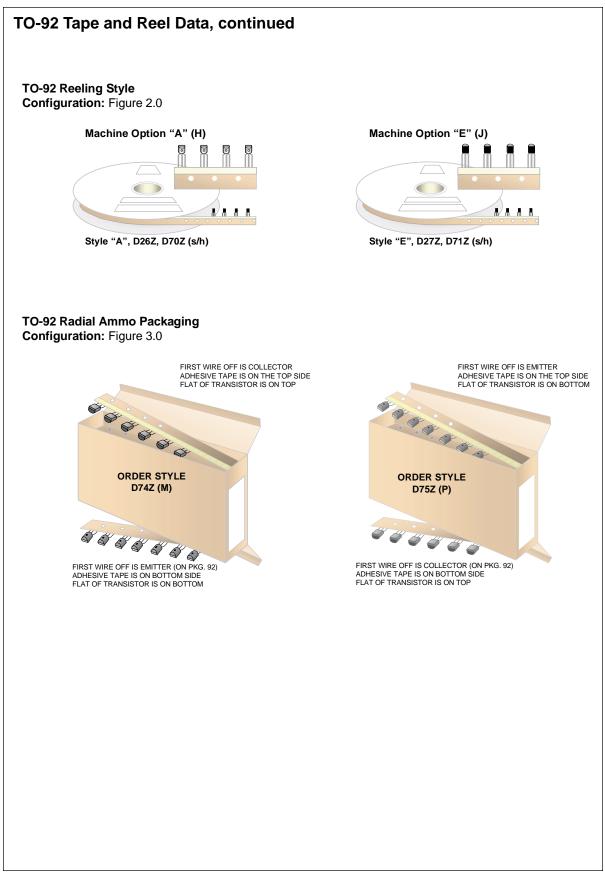
1) These ratings are based on a maximum junction temperature of 150 degrees C.
 2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics

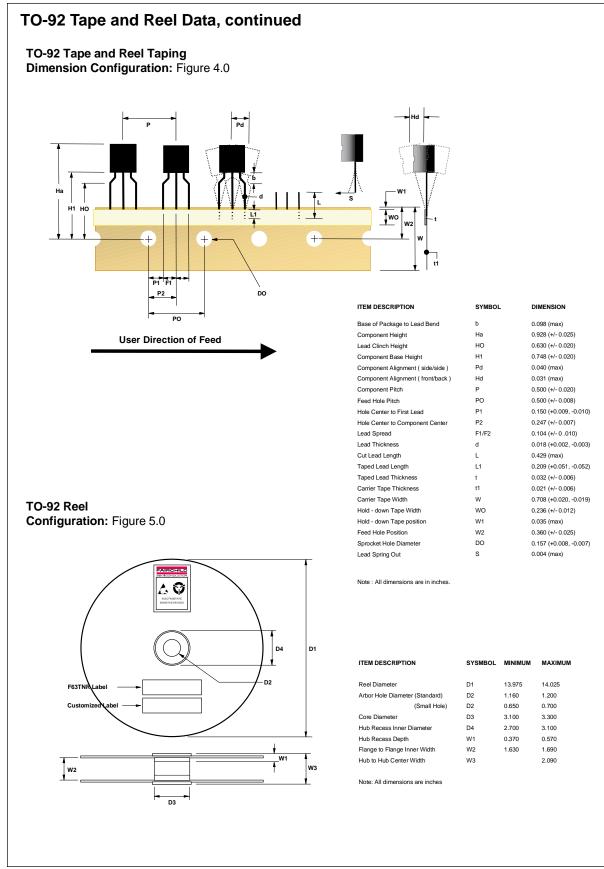

Thermal Characteristics TA = 25°C unless otherwise noted					
Symbol	Characteristic	Max	Units		
		MPSA29			
P _D	Total Device Dissipation	625	mW		
	Derate above 25°C	5.0	mW/°C		
$R_{\theta JC}$	Thermal Resistance, Junction to Case	83.3	°C/W		
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient	200	°C/W		

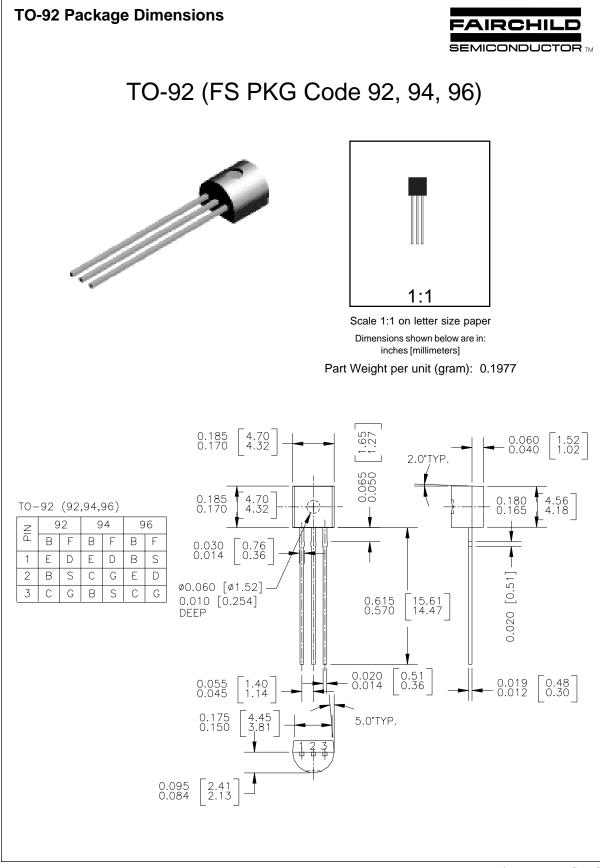
© 1997 Fairchild Semiconductor Corporation

NPN Darlington Transistor (continued)


MPSA29

DF CHARACTERISTICS (BR)CBD Collector-Emitter Breakdown Voltage I _c = 100 µA, I _b = 0 100 V (BR)CBD Collector-Base Breakdown Voltage I _c = 10 µA, I _c = 0 12 V (BR)EBD Emitter-Base Breakdown Voltage I _c = 10 µA, I _c = 0 12 V (BR)EBD Emitter-Base Breakdown Voltage I _c = 10 µA, I _c = 0 12 V (BR)EBD Emitter-Base Breakdown Voltage I _c = 10 µA, I _c = 0 120 N (BR)EBD Emitter-Base Breakdown Voltage I _c = 10 µA, I _c = 0 1000 nA (BR)EBD Emitter-Cutoff Current V _{CE} = 80 V, I _c = 0 1000 nA (BO Emitter Cutoff Current V _{CE} = 5.0 V, I _c = 10 mA 10,000 nA (BC Current Gain V _{CE} = 5.0 V, I _c = 10 mA, I _b = 0.01 mA 1.2 V (B(n) Base-Emitter On Voltage I _c = 10 mA, V _{CE} = 5.0 V 2.0 V (BC(n) Base-Emitter On Voltage I _c = 10 mA, V _{CE} = 5.0 V, 125 MHz (B(n) Bandwidth Product I _c = 10 mA, V _{CE} = 5.0	Collector-Emitter Breakdown Voltage* Collector-Base Breakdown Voltage Emitter-Base Breakdown Voltage	$I_{C} = 100 \ \mu A, I_{E} = 0$			V
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Collector-Emitter Breakdown Voltage* Collector-Base Breakdown Voltage Emitter-Base Breakdown Voltage	$I_{C} = 100 \ \mu A, I_{E} = 0$			V
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Collector-Base Breakdown Voltage Emitter-Base Breakdown Voltage	$I_{C} = 100 \ \mu A, I_{E} = 0$			V
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Emitter-Base Breakdown Voltage	-	100		V
BOCollector Cutoff Current $V_{CB} = 80 \text{ V}, I_E = 0$ 100nABOEmitter Cutoff Current $V_{CE} = 80 \text{ V}, I_E = 0$ 500nABOEmitter Cutoff Current $V_{EB} = 10 \text{ V}, I_C = 0$ 100nAON CHARACTERISTICS*FEDC Current Gain $V_{CE} = 5.0 \text{ V}, I_C = 10 \text{ mA}$ $V_{CE} = 5.0 \text{ V}, I_C = 100 \text{ mA}$ $I_C = 100 \text{ mA}, I_B = 0.01 \text{ mA}$ $I_C = 100 \text{ mA}, I_B = 0.1 \text{ mA}$ 1.2 1.5 V ON Collector-Emitter Saturation VoltageIC = 100 mA, I_B = 0.1 mAI.5 V Base-Emitter On VoltageIC = 10 mA, $V_{CE} = 5.0 \text{ V}, I_C = 5.0 \text{ V}$ SMALL SIGNAL CHARACTERISTICSCurrent Gain - Bandwidth ProductI_C = 10 mA, $V_{CE} = 5.0 \text{ V}, I_C = 1.0 \text{ MHz}$ Source V_{CB} = 10 V, I_E = 0, f = 1.0 \text{ MHz}Source V_{CB} = 10 V, I_E = 0, f = 1.0 \text{ MHz}		$I_{\rm E} = 10 \text{uA}$, $I_{\rm C} = 0$	40		
ESCollector Cutoff Current $V_{CE} = 80 \text{ V}, I_E = 0$ 500nABOEmitter Cutoff Current $V_{EB} = 10 \text{ V}, I_C = 0$ 100nAON CHARACTERISTICS*FEDC Current Gain $V_{CE} = 5.0 \text{ V}, I_C = 10 \text{ mA}$ 10,000 $CE(sat)$ Collector-Emitter Saturation Voltage $I_C = 10 \text{ mA}, I_B = 0.01 \text{ mA}$ 1.2V $I_C = 100 \text{ mA}, I_B = 0.1 \text{ mA}$ 1.5VV $BE(On)$ Base-Emitter On Voltage $I_C = 100 \text{ mA}, V_{CE} = 5.0 \text{ V}$ 2.0VSMALL SIGNAL CHARACTERISTICSCurrent Gain - Bandwidth Product $I_C = 10 \text{ mA}, V_{CE} = 5.0 \text{ V}, I_C = 1.0 \text{ MHz}$ I_{Obo} Output Capacitance $V_{CB} = 10 \text{ V}, I_E = 0, f = 1.0 \text{ MHz}$ 8.0pF	Collector Cutorr Current		12	4.00	
BOEmitter Cutoff Current $V_{EB} = 10 \text{ V}, I_C = 0$ 100nAON CHARACTERISTICS*FEDC Current Gain $V_{CE} = 5.0 \text{ V}, I_C = 10 \text{ mA}$ 10,00010,000 $CE(sat)$ Collector-Emitter Saturation Voltage $I_C = 10 \text{ mA}, I_B = 0.01 \text{ mA}$ 1.2V $I_C = 100 \text{ mA}, I_B = 0.1 \text{ mA}$ 1.5V $I_C = 100 \text{ mA}, I_B = 0.1 \text{ mA}$ 1.5V $BE(on)$ Base-Emitter On Voltage $I_C = 100 \text{ mA}, V_{CE} = 5.0 \text{ V}$ 2.0VSMALL SIGNAL CHARACTERISTICSCurrent Gain - Bandwidth Product $I_C = 10 \text{ mA}, V_{CE} = 5.0 \text{ V}, f = 100 \text{ MHz}$ 125MHzGutput Capacitance $V_{CB} = 10 \text{ V}, I_E = 0, f = 1.0 \text{ MHz}$ 8.0pF	Collector Cutoff Current		+		
DN CHARACTERISTICS*TEDC Current Gain $V_{CE} = 5.0 \text{ V}, I_C = 10 \text{ mA}$ 10,000 $V_{CE} = 5.0 \text{ V}, I_C = 100 \text{ mA}$ 10,000 $V_{CE} = 5.0 \text{ V}, I_C = 100 \text{ mA}$ 10,000 $Ce[sat)$ Collector-Emitter Saturation Voltage $I_C = 10 \text{ mA}, I_B = 0.01 \text{ mA}$ 1.2 $I_C = 100 \text{ mA}, I_B = 0.1 \text{ mA}$ 1.5V $BE(0n)$ Base-Emitter On Voltage $I_C = 100 \text{ mA}, V_{CE} = 5.0 \text{ V}$ 2.0SMALL SIGNAL CHARACTERISTICSCurrent Gain - Bandwidth Product $I_C = 10 \text{ mA}, V_{CE} = 5.0 \text{ V}, f = 100 \text{ MHz}$ $foboOutput CapacitanceV_{CB} = 10 \text{ V}, I_E = 0, f = 1.0 \text{ MHz}8.0$					
DC Current Gain $V_{CE} = 5.0 \text{ V}, I_C = 10 \text{ mA}$ 10,000 10,000 $C_{CE(sat)}$ Collector-Emitter Saturation Voltage $I_C = 10 \text{ mA}, I_B = 0.01 \text{ mA}$ 1.2 V $I_C = 100 \text{ mA}, I_B = 0.1 \text{ mA}$ 1.5 V $BE(on)$ Base-Emitter On Voltage $I_C = 100 \text{ mA}, V_{CE} = 5.0 \text{ V}$ 2.0 V SMALL SIGNAL CHARACTERISTICS Current Gain - Bandwidth Product $I_C = 10 \text{ mA}, V_{CE} = 5.0 \text{ V}, f = 100 \text{ MHz}$ 125 MHz fobo Output Capacitance $V_{CB} = 10 \text{ V}, I_E = 0, f = 1.0 \text{ MHz}$ 8.0 pF		$v_{EB} = 10 v, i_C = 0$		100	IIA
V _{CE} = 5.0 V, I _C = 100 mA10,000 $C_{CE(sat)}$ Collector-Emitter Saturation VoltageI _C = 10 mA, I _B = 0.01 mA1.2VI _C = 100 mA, I _B = 0.1 mA1.5VBase-Emitter On VoltageI _C = 100 mA, V _{CE} = 5.0 V2.0VSMALL SIGNAL CHARACTERISTICSCurrent Gain - Bandwidth ProductI _C = 10 mA, V _{CE} = 5.0 V, f = 100 MHz125MHzStoboOutput CapacitanceV _{CB} = 10 V, I _E = 0, f = 1.0 MHz8.0pF	ACTERISTICS*				-
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	DC Current Gain				
I_C = 100 mA, I_B = 0.1 mA1.5VBase-Emitter On VoltageI_C = 100 mA, V_{CE} = 5.0 V2.0VSMALL SIGNAL CHARACTERISTICSCurrent Gain - Bandwidth ProductI_C = 10 mA, V_{CE} = 5.0 V, f = 100 MHz125MHzGoboOutput CapacitanceV_{CB} = 10 V, I_E = 0, f = 1.0 MHz8.0pF	Collector-Emitter Saturation Voltage		10,000	1.2	V
SMALL SIGNAL CHARACTERISTICS Current Gain - Bandwidth Product $I_C = 10 \text{ mA}, V_{CE} = 5.0 \text{ V}, \\ f = 100 \text{ MHz}$ 125 MHz Nobo Output Capacitance $V_{CB} = 10 \text{ V}, I_E = 0, f = 1.0 \text{ MHz}$ 8.0 pF		$I_{\rm C} = 100 \text{ mA}, I_{\rm B} = 0.1 \text{ mA}$			
Current Gain - Bandwidth Product $I_C = 10 \text{ mA}, V_{CE} = 5.0 \text{ V}, f = 100 \text{ MHz}$ 125MHzNoboOutput Capacitance $V_{CB} = 10 \text{ V}, I_E = 0, f = 1.0 \text{ MHz}$ 8.0pF	Base-Emitter On Voltage	$I_{\rm C} = 100 \text{ mA}, V_{\rm CE} = 5.0 \text{ V}$		2.0	V
*Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2.0%	Output Capacitance			8.0	pF
		DC Current Gain Collector-Emitter Saturation Voltage Base-Emitter On Voltage GNAL CHARACTERISTICS Current Gain - Bandwidth Product Output Capacitance	$\label{eq:constraint} \begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{c c} DC \ Current \ Gain & V_{CE} = 5.0 \ V, \ I_{C} = 10 \ mA & 10,000 \\ V_{CE} = 5.0 \ V, \ I_{C} = 100 \ mA & 10,000 \\ \hline V_{CE} = 5.0 \ V, \ I_{C} = 100 \ mA & 10,000 \\ \hline I_{C} = 100 \ mA, \ I_{B} = 0.01 \ mA & I_{C} = 100 \ mA, \ I_{B} = 0.1 \ mA & I_{C} = 100 \ mA, \ I_{B} = 0.1 \ mA & I_{C} = 100 \ mA, \ V_{CE} = 5.0 \ V \\ \hline \end{array} $	DC Current Gain $V_{CE} = 5.0 \text{ V}, I_C = 10 \text{ mA}$ 10,000 $V_{CE} = 5.0 \text{ V}, I_C = 100 \text{ mA}$ 10,000 Collector-Emitter Saturation Voltage $I_C = 10 \text{ mA}, I_B = 0.01 \text{ mA}$ 1.2 $I_C = 100 \text{ mA}, I_B = 0.1 \text{ mA}$ 1.5 1.5 Base-Emitter On Voltage $I_C = 100 \text{ mA}, V_{CE} = 5.0 \text{ V}$ 2.0 SNAL CHARACTERISTICS Current Gain - Bandwidth Product $I_C = 10 \text{ mA}, V_{CE} = 5.0 \text{ V}, f = 100 \text{ MHz}$ 125 Output Capacitance $V_{CB} = 10 \text{ V}, I_E = 0, f = 1.0 \text{ MHz}$ 8.0




©2001 Fairchild Semiconductor Corporation

March 2001, Rev. B1

September 1999, Rev. B

©2000 Fairchild Semiconductor International

January 2000, Rev. B

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACExTM BottomlessTM CoolFETTM $CROSSVOLT^{TM}$ DOMETM E²CMOSTM EnSignaTM FACTTM FACT Quiet SeriesTM FAST ® FASTr[™] GlobalOptoisolator[™] GTO[™] HiSeC[™] ISOPLANAR[™] MICROWIRE[™] OPTOLOGIC[™] OPTOPLANAR[™] PACMAN[™] POP[™] PowerTrench® QFET™ QS™ QT Optoelectronics™ Quiet Series™ SILENT SWITCHER® SMART START™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SyncFET™ TinyLogic™ UHC™ VCX™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Product Status	Definition
Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
	Formative or In Design First Production Full Production