

© 1995 National Semiconductor Corporation TL/H/10056

RRD-B30M115/Printed in U. S. A.

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Storage Temperature Range Ceramic DIP Molded DIP	−65°C to +175°C −65°C to +150°C
Operating Temperature Range Industrial (LM494I) Commercial (LM494C)	-40°C to +85°C 0°C to +70°C
Lead Temperature Ceramic DIP (Soldering, 60 sec.) Molded DIP (Soldering, 10 sec.)	300°C 265°C
Internal Power Dissipation (Notes 1, 2) 16L-Ceramic DIP 16L-Molded DIP	1.50W 1.04W
Supply Voltage	42V
Voltage from Any Lead to Ground (except Lead 8 and Lead 11)	V_{CC} + 0.3V

Output Collector Voltage42VPeak Collector Current
(I_{C1} and I_{C2})250 mAESD Susceptibility(to be determined)

Recommended Operating Conditions

70°C	Power Supply Voltage (V _{CC})	7.0V to 40V
	Voltage on Any Lead	
0°C	except Leads 8 and 11	
65°C	(Referenced to Ground) (VI)	-0.3V to V _{CC} $+$ 0.3V
	Output Voltage Collector (V_{C1} , V_{C2})	-0.3V to 40V
50W	Output Collector Current (IC1, IC2)	200 mA
04W	Timing Capacitor (C _T)	470 pF to 10 μF
42V	Timing Resistor (R _T)	1.8 k Ω to 500 k Ω
0.3V	Oscillator Frequency (f _{OSC})	1.0 kHz to 300 kHz

LM494

Electrical Characteristics $T_A = 0^{\circ}C$ to $+70^{\circ}C$ for the LM494C, $T_A = -40^{\circ}C$ to $+85^{\circ}C$ for the LM494I, $V_{CC} = 15V$, $f_{OSC} = 10$ kHz, unless otherwise specified

Symbol	Parameter	Conditions		Min	Тур	Max	Units
REFEREN	CE SECTION						
V _{REF}	Reference Voltage (Note 3)	$I_{\text{REF}} = 1.0 \text{ mA}$		4.75	5.0	5.25	V
Reg _{LINE}	Line Regulation of Reference Voltage	$7.0V \le V_{CC} \le 40V$			2.0	25	mV
TCV _{REF}	Temperature Coefficient of Reference Voltage	$0^{\circ}C \leq T_{A} \leq 70^{\circ}C$			0.01	0.03	%/°C
Reg _{LOAD}	Load Regulation of Reference Voltage	$1.0 \text{ mA} \leq I_{\text{REF}} \leq 10 \text{ mA}$			1.0	15	mV
l _{OS}	Output Short Circuit Current	$V_{REF} = 0V$	$0^{\circ}C \leq T_{A} \leq +70^{\circ}C$	10	35	50	- mA
			$-40^{\circ}C \leq T_{A} \leq +85^{\circ}C$		35		
OSCILLAT	TOR SECTION						
fosc	Oscillator Frequency (Figure 10)	$C_{T} = 0.01 \ \mu\text{F},$ $R_{T} = 12 \ k\Omega$			10		kHz
Δf_{OSC}	Oscillator Frequency Change	$\begin{array}{l} C_T = 0.01 \; \mu \text{F}, \\ R_T = 12 \; \text{k}\Omega \end{array}$	$0^{\circ}C \leq T_{A} \leq +70^{\circ}C$			2.0	- %
			$-40^{\circ}C \leq T_{A} \leq +85^{\circ}C$			2.0	
DEAD TIM	E CONTROL SECTION						_
I _{IB (DT)}	Input Bias Current	$V_{CC}=15V, 0V\leq V_4\leq 5.25V$			-2.0	-10	μA
DC _(Max)	Maximum Duty Cycle, Each Output	$V_{CC} = 15V$, Lead 4 = 0V, Output Control = V_{REF}		45			%
V _{TH(in)}	Input Threshold Voltage	Zero Duty Cycle Maximum Duty Cycle			3.0	3.3	v
				0			1
ERROR A	MPLIFIER SECTIONS						
V _{IO}	Input Offset Voltage	V ₃ = 2.5V			2.0	10	mV
I _{IO}	Input Offset Current	$V_3 = 2.5V$			25	250	nA
I _{IB}	Input Bias Current	$V_3 = 2.5V$			0.2	1.0	μΑ
V _{ICR}	Input Common Mode Voltage Range	$7.0V \le V_{CC} \le 40V$		-0.3		V _{CC}	v
A _{VS}	Large Signal Voltage Gain	$0.5V \leq V_3 \leq 3.5V$		60	74		dB
BW	Bandwidth				650		kHz

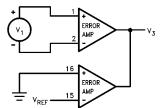
Symbol	Parameter	erwise specified (Continued) Conditions		Min	Тур	Max	Units	
PWM CO	MPARATOR SECTION (Figure 9)						1	
V _{THI}	Inhibit Threshold Voltage	Zero Duty Cycle			4.0	4.5	V	
l ₀ -	Output Sink Current (Note 4)	$0.5V \le V_3 \le 3.5V$		-0.2	-0.6		mA	
l0 ⁺	Output Source Current (Note 4)	$0.5V \leq V_3 \leq 3.5V$		2.0			mA	
ουτρυτ	SECTION							
V _{CE(sat)}	Output Saturation Voltage Common Emitter Configuration (<i>Figure 3</i>)	$V_E = 0V,$ $I_C = 200 \text{ mA}$		1.3	v			
	Emitter Follower Configuration <i>(Figure 4)</i>	$V_{\rm C} = 15V, I_{\rm E} = 200 {\rm mA}$			1.5	2.5		
I _{C(off)}	Collector Off-State Current	$V_{CC} = 40V, V_{CE} = 40V$			2.0	100	μΑ	
I _{E(off)}	Emitter Off-State Current		$\label{eq:constraint} \begin{array}{l} 0^{\circ}C \leq T_{A} \leq +70^{\circ}C, \\ -40^{\circ}C \leq T_{A} \leq +85^{\circ}C \end{array}$			-100	μΑ	
OUTPUT	CONTROL (Figure 6)		·					
V _{OCL}	Output Control Voltage Required for Single Ended or Parallel Output Operation					0.4	v	
V _{OCH}	Output Control Voltage Required for Push-Pull Operation			2.4			v	
TOTAL D	EVICE							
I _{CC}	Standby Power Supply Current				6.0	10	mA	
ουτρυτ	AC CHARACTERISTICS Use Reco	ommended Operating	Conditions with $T_A = 25^{\circ}C$					
t _r	Rise Time of Output Voltage Common Emitter Configuration (Figure 3)			100 200		ns		
	Emitter Follower Configuration (<i>Figure 4</i>)				100	200	1	
t _f	Fall Time of Output Voltage Common Emitter Configuration (Figure 3)				25	100	ns	
	Emitter Follower Configuration (<i>Figure 4</i>)				40	100		
Note 2: Ra Note 3: Se	$M_{ax} = 150^{\circ}$ C for the Molded DIP, and 175° tings apply to ambient temperature at 25°C, i lected devices with tightened tolerance refe ese limits apply when the voltage measured	Above this temperature, der rence voltage available.		/°C, and the	e 16L-Molde	d DIP at 8.3	m₩/°C.	

Functional Description

The basic oscillator (switching) frequency is controlled by an external resistor (R_T) and capacitor (C_T). The relationship between the values of R_T , C_T and frequency is shown in *Figure 10*.

The level of the sawtooth wave form is compared with an error voltage by the pulse width modulated comparator. The output of the PWM Comparator directs the pulse steering flip-flop and the output control logic.

The error voltage is generated by the error amplifier. The error amplifier boosts the voltage difference between the output and the 5.0V internal reference. See *Figure 7* for error amp sensing techniques. The second error amp is typically used to implement current-limiting.

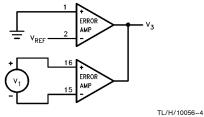
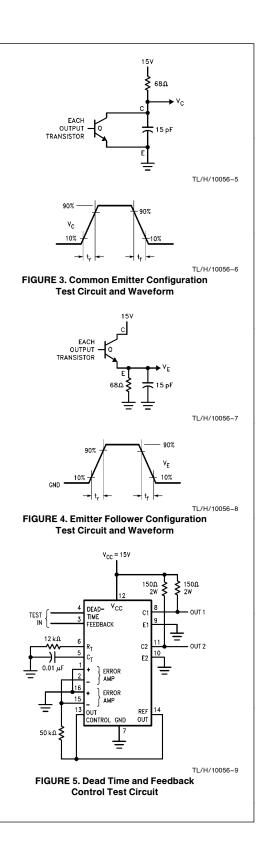
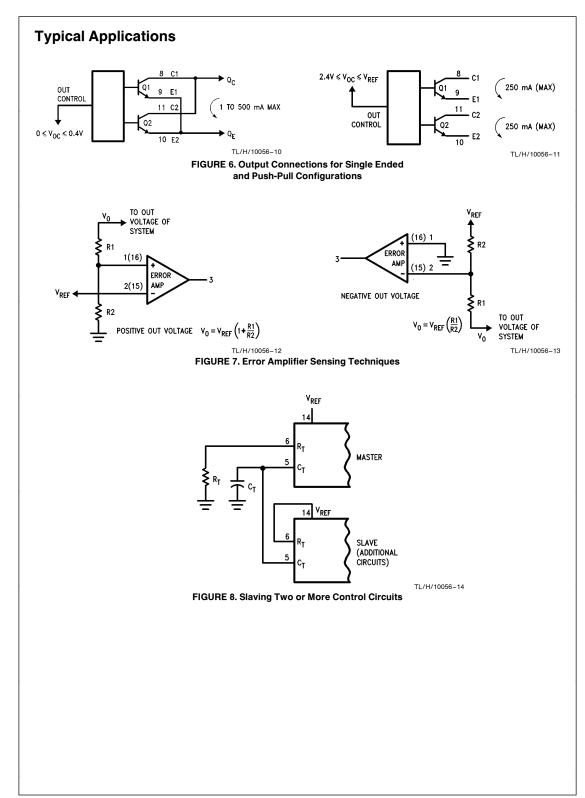
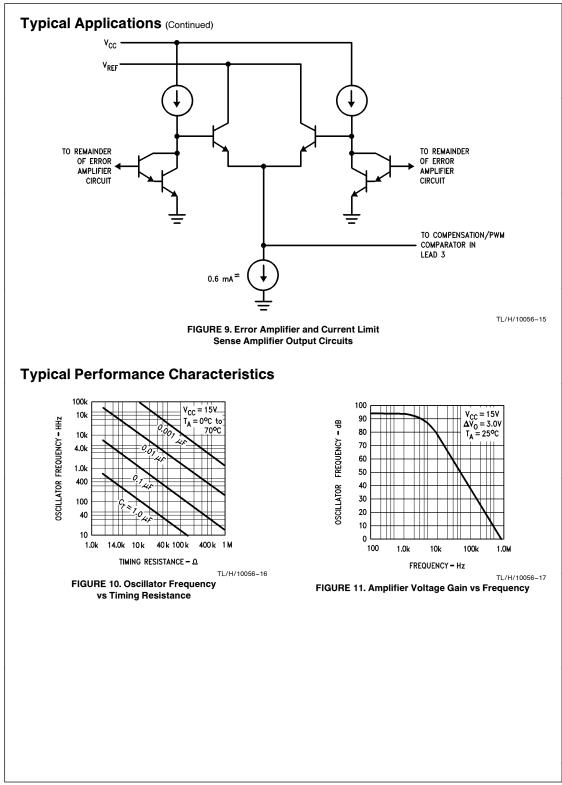
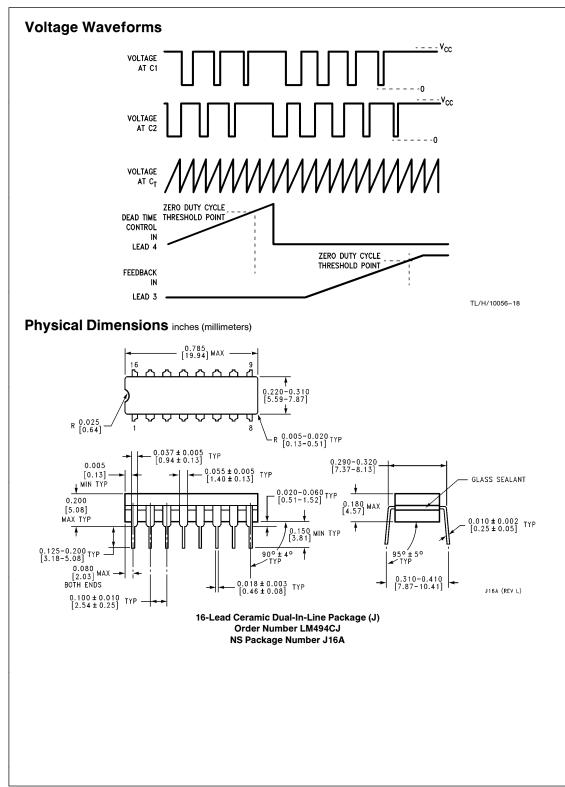

The output control logic selects either push-pull or singleended operation of the output transistors (see *Figure 6*).

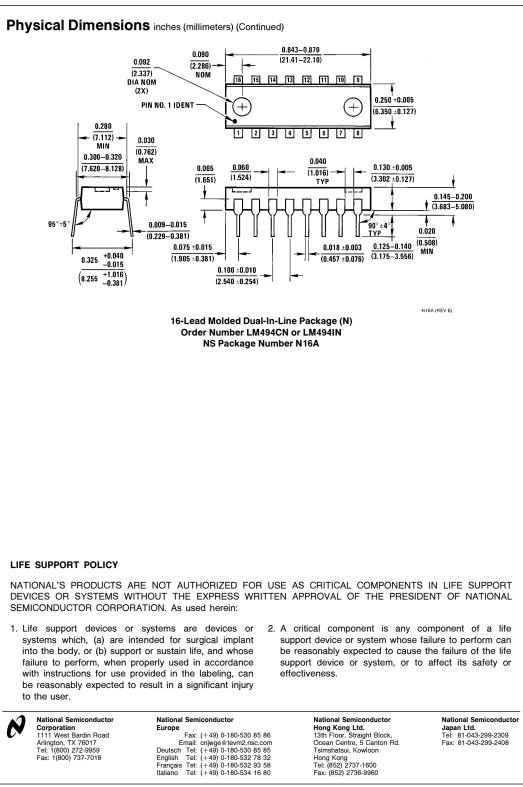
The dead time control prevents on-state overlap of the output transistors as can be seen in *Figure 5*. The dead time is approximately 3.0% or 5.0% of the total period if the dead time control is grounded. This dead time can be increased by connecting the dead time control to a voltage up to 5.0V.

The frequency response of the error amps (*Figure 11*) can be modified by using external resistors and capacitors. These components are typically connected between the compensation terminal and the inverting input of the error amps.

The switching frequency of two or more LM494 circuits can be synchronized. The timing capacitor, C_T, is connected as shown in *Figure 8*. Charging current is provided by the master circuit. Discharging is through all the circuits slaved to the master. R_T is required only for the master circuit.

TL/H/10056-3 FIGURE 1. Error Amplifier Test Circuit


FIGURE 2. Current Limit Sense Amplifier Test Circuit

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.