DATA SHEET

74ALVC374
 Octal D-type flip-flop; positive edge-trigger; 3-state

Product specification
File under Integrated Circuits, IC24

Octal D-type flip-flop; positive edge-trigger; 3-state

FEATURES

- Wide supply voltage range from 1.65 to 3.6 V
- Complies with JEDEC standard:

JESD8-7 (1.65 to 1.95 V) JESD8-5 (2.3 to 2.7 V) JESD8B/JESD36 (2.7 to 3.6 V).

- 3.6 V tolerant inputs/outputs
- CMOS LOW power consumption
- Direct interface with TTL levels (2.7 to 3.6 V)
- Power-down mode
- Latch-up performance exceeds $\leq 250 \mathrm{~mA}$
- ESD protection: 2000 V Human Body Model (JESD22-A 114-A) 200 V Machine Model (JESD22-A 115-A).

DESCRIPTION

The 74ALVC374 is a high-performance, low-power, low-voltage, Si-gate CMOS device and superior to most advanced CMOS compatible TTL families.

The 74ALVC374 is an octal D-type flip-flop featuring separate D-type inputs for each flip-flop and 3-state outputs for bus oriented applications. A clock (CP) input and an output enable ($\overline{\mathrm{OE}}$) input are common to all flip-flops.
The eight flip-flops will store the state of their individual D-inputs that meet the set-up and hold times requirements on the LOW-to-HIGH CP transition.

When OE is LOW, the contents of the eight flip-flops is available at the outputs. When $\overline{\mathrm{OE}}$ is HIGH , the outputs go to the high-impedance OFF-state. Operation of the $\overline{O E}$ input does not affect the state of the flip-flops.

The ' 374 ' is functionally identical to the ' 574 ', but the ' 574 ' has a different pin arrangement.

QUICK REFERENCE DATA
GND $=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

SYMBOL	PARAMETER	CONDITIONS	TYPICAL	UNIT
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay CP to Q_{n}	$\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	3.1	ns
		$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega$	2.3	ns
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega$	2.5	ns
		$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega$	2.5	ns
C_{1}	input capacitance		3.5	pF
$\mathrm{C}_{\text {PD }}$	power dissipation capacitance per buffer	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$; notes 1 and 2 outputs enable outputs disabled	$\begin{aligned} & 21 \\ & 13 \end{aligned}$	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$

Notes

1. $C_{P D}$ is used to determine the dynamic power dissipation (P_{D} in $\left.\mu \mathrm{W}\right)$.
$P_{D}=C_{P D} \times V_{C C}{ }^{2} \times f_{i}+\left(C_{L} \times V_{C C}{ }^{2} \times f_{0}\right)$ where:
$\mathrm{f}_{\mathrm{i}}=$ input frequency in MHz ;
$\mathrm{f}_{\mathrm{o}}=$ output frequency in MHz ;
$\mathrm{C}_{\mathrm{L}}=$ output load capacitance in pF ;
$V_{C C}=$ supply voltage in Volts.
2. The condition is $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{Cc}.

Octal D-type flip-flop; positive edge-trigger; 3-state

ORDERING INFORMATION

TYPE NUMBER		PACKAGES			
		PACKAGE	MATERIAL	CODE	
74ALVC374D	20	SO	plastic	SOT163-1	
74ALVC374PW	20	TSSOP	plastic	SOT360-1	

FUNCTION TABLE

See note 1.

OPERATING MODES	INPUT			INTERNAL	OUTPUTS
	$\overline{\mathbf{O E}}$	$\mathbf{C P}$	$\mathbf{D}_{\mathbf{n}}$		$\mathbf{Q}_{\mathbf{0}}$ to $\mathbf{Q}_{\mathbf{7}}$
Load and read register	L	\uparrow	l	L	L
	L	\uparrow	h	H	H
Latch and read register	H	\uparrow	l	L	Z
	H	\uparrow	h	H	Z

Note

1. $\mathrm{H}=\mathrm{HIGH}$ voltage level;
$\mathrm{h}=$ HIGH voltage level one set-up time prior to the HIGH-to-LOW CP transition;
L = LOW voltage level;
I = LOW voltage level one set-up time prior to the HIGH-to-LOW CP transition;
$\uparrow=$ LOW-to-HIGH clock transition;
Z = high-impedance OFF-state.

PINNING

PIN	SYMBOL	DESCRIPTION
1	$\overline{\mathrm{OE}}$	output enable input (active LOW)
$2,5,6,9,12,15,16,19$	Q_{0} to Q_{7}	3-state flip-flop outputs
$3,4,7,8,13,14,17,18$	D_{0} to D_{7}	data inputs
10	GND	ground (0 V)
11	CP	clock input (LOW-to-HIGH, edge triggered)
20	$\mathrm{~V}_{\mathrm{CC}}$	supply voltage

Octal D-type flip-flop; positive edge-trigger;

Fig. 2 Logic symbol.

Fig. 5 Logic diagram.

Octal D-type flip-flop; positive edge-trigger; 3-state

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V_{CC}	supply voltage		1.65	3.6	V
$\mathrm{~V}_{\mathrm{I}}$	input voltage		0	3.6	V
$\mathrm{~V}_{\mathrm{O}}$	output voltage	enable mode; $\mathrm{V}_{\mathrm{CC}}=1.65$ to 3.6 V	0	$\mathrm{~V}_{\mathrm{CC}}$	V
		disable mode; $\mathrm{V}_{\mathrm{CC}}=1.65$ to 3.6 V	0	3.6	V
		Power-down mode; $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$	0	3.6	V
$\mathrm{~T}_{\mathrm{amb}}$	operating ambient temperature		-40	+85	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	input rise and fall times	$\mathrm{V}_{\mathrm{CC}}=1.65$ to 2.7 V	0	20	$\mathrm{~ns} / \mathrm{V}$
		$\mathrm{V}_{\mathrm{CC}}=2.7$ to 3.6 V	0	10	$\mathrm{~ns} / \mathrm{V}$

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 60134); voltages are referenced to GND (ground = 0 V).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V_{CC}	supply voltage		-0.5	+4.6	V
I_{K}	input diode current	$\mathrm{V}_{1}<0$	-	-50	mA
V_{1}	input voltage		-0.5	+4.6	V
l_{OK}	output diode current	$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\text {CC }}$ or $\mathrm{V}_{\mathrm{O}}<0$	-	± 50	mA
V_{O}	output voltage	enable mode; notes 1 and 2	-0.5	$\mathrm{V}_{\mathrm{CC}}+0.5$	V
		disable mode	-0.5	+4.6	V
		Power-down mode; note 2	-0.5	+4.6	V
I_{0}	output diode current	$\mathrm{V}_{\mathrm{O}}=0$ to V_{CC}	-	± 50	mA
$\mathrm{I}_{\mathrm{GND}}, \mathrm{I}_{\mathrm{CC}}$	$\mathrm{V}_{\text {CC }}$ or GND current		-	± 100	mA
$\mathrm{T}_{\text {stg }}$	storage temperature		-65	+150	${ }^{\circ} \mathrm{C}$
$P_{\text {tot }}$	power dissipation per package SO package TSSOP package	above $70^{\circ} \mathrm{C}$ derate linearly with $8 \mathrm{~mW} / \mathrm{K}$ above $60^{\circ} \mathrm{C}$ derate linearly with $5.5 \mathrm{~mW} / \mathrm{K}$	-	$\begin{aligned} & 500 \\ & 500 \end{aligned}$	$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} \end{gathered}$

Notes

1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
2. When $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ (Power-down mode), the output voltage can be 3.6 V in normal operation.

Octal D-type flip-flop; positive edge-trigger; 3-state

DC CHARACTERISTICS

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

SYMBOL	PARAMETER	TEST CONDITIONS		$\mathrm{T}_{\text {amb }}\left({ }^{\circ} \mathrm{C}\right)$			UNIT
		OTHER	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	-40 to +85			
				MIN.	TYP. ${ }^{(1)}$	MAX.	
V_{IH}	HIGH-level input voltage		1.65 to 1.95	$0.65 \times \mathrm{V}_{\text {CC }}$	-	-	V
			2.3 to 2.7	1.7	-	-	V
			2.7 to 3.6	2	-	-	V
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage		1.65 to 1.95	-	-	$0.35 \times \mathrm{V}_{\mathrm{CC}}$	V
			2.3 to 2.7	-	-	0.7	V
			2.7 to 3.6	-	-	0.8	V
V_{OL}	LOW-level output voltage	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }} ; \mathrm{I}_{\mathrm{O}}=100 \mu \mathrm{~A}$	1.65 to 3.6	-	-	0.2	V
		$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}} ; \mathrm{I}_{\mathrm{O}}=6 \mathrm{~mA}$	1.65	-	0.11	0.3	V
		$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}} ; \mathrm{I}_{\mathrm{O}}=12 \mathrm{~mA}$	2.3	-	0.17	0.4	V
		$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}} ; \mathrm{I}_{\mathrm{O}}=18 \mathrm{~mA}$	2.3	-	0.25	0.6	V
		$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}} ; \mathrm{I}_{\mathrm{O}}=12 \mathrm{~mA}$	2.7	-	0.16	0.4	V
		$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}} ; \mathrm{I}_{\mathrm{O}}=18 \mathrm{~mA}$	3.0	-	0.23	0.4	V
		$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}} ; \mathrm{I}_{\mathrm{O}}=24 \mathrm{~mA}$	3.0	-	0.30	0.55	V
V_{OH}	HIGH-level output voltage	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}} ; \mathrm{I}_{\mathrm{O}}=-100 \mu \mathrm{~A}$	1.65 to 3.6	$\mathrm{V}_{\mathrm{CC}}-0.2$	-	-	V
		$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}} ; \mathrm{I}_{\mathrm{O}}=-6 \mathrm{~mA}$	1.65	1.25	1.51	-	V
		$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}} ; \mathrm{I}_{\mathrm{O}}=-12 \mathrm{~mA}$	2.3	1.8	2.10	-	V
		$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}} ; \mathrm{I}_{\mathrm{O}}=-18 \mathrm{~mA}$	2.3	1.7	2.01	-	V
		$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}} ; \mathrm{I}_{\mathrm{O}}=-12 \mathrm{~mA}$	2.7	2.2	2.53	-	V
		$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}} ; \mathrm{I}_{\mathrm{O}}=-18 \mathrm{~mA}$	3.0	2.4	2.76	-	V
		$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}} ; \mathrm{I}_{\mathrm{O}}=-24 \mathrm{~mA}$	3.0	2.2	2.68	-	V
1	input leakage current	$\mathrm{V}_{\mathrm{I}}=3.6 \mathrm{~V}$ or GND	3.6	-	± 0.1	± 5	$\mu \mathrm{A}$
I_{Oz}	3-state output OFF-state current	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \\ & \mathrm{V}_{\mathrm{O}}=3.6 \mathrm{~V} \text { or } \text { GND; note } 2 \end{aligned}$	1.65 to 3.6	-	0.1	± 10	$\mu \mathrm{A}$
$\mathrm{l}_{\text {off }}$	power OFF leakage current	$\mathrm{V}_{\text {I }}$ or $\mathrm{V}_{\mathrm{O}}=0$ to 3.6 V	0.0	-	± 0.1	± 10	$\mu \mathrm{A}$
ICC	quiescent supply current	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND; $\mathrm{I}_{\mathrm{O}}=0$	3.6	-	0.2	10	$\mu \mathrm{A}$
$\Delta \mathrm{l}_{\mathrm{CC}}$	additional quiescent supply current per input pin	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V} ; \mathrm{I}_{\mathrm{O}}=0$	3.0 to 3.6	-	5	750	$\mu \mathrm{A}$

Notes

1. All typical values are measured at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
2. For transceivers, the parameter l_{Oz} includes the input leakage current.

Octal D-type flip-flop; positive edge-trigger; 3-state

AC CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS		Tamb (${ }^{\circ} \mathrm{C}$)			UNIT
		WAVEFORMS	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	-40 to +85			
				MIN.	TYP. ${ }^{(1)}$	MAX.	
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay CP to Q_{n}	see Figs 6 and 9	1.65 to 1.95	1.0	3.1	6.4	ns
			2.3 to 2.7	1.0	2.3	3.9	ns
			2.7	1.0	2.5	3.6	ns
			3.0 to 3.6	1.0	2.5	3.6	ns
$\mathrm{t}_{\text {PZH }} / \mathrm{t}_{\text {PZL }}$	3-state output enable time $\overline{O E}$ to Q_{n}	see Figs 8 and 9	1.65 to 1.95	1.0	3.2	6.4	ns
			2.3 to 2.7	1.0	2.6	4.5	ns
			2.7	1.0	3.2	4.6	ns
			3.0 to 3.6	1.0	2.4	4.0	ns
$\mathrm{t}_{\text {PHZ }} / \mathrm{t}_{\text {PLZ }}$	3-state output disable time $\overline{O E}$ to Q_{n}	see Figs 8 and 9	1.65 to 1.95	1.5	3.6	7.0	ns
			2.3 to 2.7	1.0	2.3	4.4	ns
			2.7	1.5	2.9	4.4	ns
			3.0 to 3.6	1.0	2.8	4.4	ns
tw	clock pulse with HIGH or LOW	see Figs 7 and 9	1.65 to 1.95	3.8	1.1	-	ns
			2.3 to 2.7	3.3	0.9	-	ns
			2.7	3.3	0.8	-	ns
			3.0 to 3.6	3.3	1.2	-	ns
$\mathrm{t}_{\text {su }}$	set-up time D_{n} to CP	see Figs 7 and 9	1.65 to 1.95	0.8	-0.1	-	ns
			2.3 to 2.7	0.8	0.1	-	ns
			2.7	0.8	0.3	-	ns
			3.0 to 3.6	0.8	0.0	-	ns
t_{n}	hold time D_{n} to CP	see Figs 7 and 9	1.65 to 1.95	0.8	-0.1	-	ns
			2.3 to 2.7	0.8	0.1	-	ns
			2.7	0.8	0.4	-	ns
			3.0 to 3.6	0.7	-0.1	-	ns
$\mathrm{f}_{\max }$	maximum clock pulse frequency	see Figs 6 and 9	2.3 to 2.7	100	200	-	MHz
			2.7	100	200	-	MHz
			3.0 to 3.6	150	300	-	MHz

Note

1. All typical values are measured at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

Octal D-type flip-flop; positive edge-trigger;

AC WAVEFORMS

Fig. 6 Input D_{n} to output Q_{n} propagation delay times, the clock pulse width and the clock pulse frequency.

Octal D-type flip-flop; positive edge-trigger;

$\mathbf{V}_{\mathbf{C C}}$	$\mathbf{V}_{\mathbf{M}}$	INPUT	
		$\mathbf{V}_{\mathbf{I}}$	$\mathbf{t}_{\mathbf{r}}=\mathbf{t}_{\mathbf{f}}$
1.65 to 1.95 V	$0.5 \times \mathrm{V}_{\mathrm{CC}}$	V_{CC}	$\leq 2.0 \mathrm{~ns}$
2.3 to 2.7 V	$0.5 \times \mathrm{V}_{\mathrm{CC}}$	V_{CC}	$\leq 2.0 \mathrm{~ns}$
2.7 V	1.5 V	2.7 V	$\leq 2.5 \mathrm{~ns}$
3.0 to 3.6 V	1.5 V	2.7 V	$\leq 2.5 \mathrm{~ns}$

The shaded areas indicate when the input is permitted to change for predictable output performance.
Fig. 7 Data set-up and hold rimes for D_{n} to $C P$.

Octal D-type flip-flop; positive edge-trigger;

3-state

Fig. 8 3-state enable and disable times.

Octal D-type flip-flop; positive edge-trigger;

$\mathbf{V}_{\mathbf{C C}}$	$\mathbf{V}_{\mathbf{I}}$	$\mathbf{C}_{\mathbf{L}}$	$\mathbf{R}_{\mathbf{L}}$	$\mathbf{V}_{\mathbf{E X T}}$		
				$\mathbf{t}_{\mathbf{P L L}} / \mathbf{t}_{\mathbf{P H L}}$	$\mathbf{t}_{\mathbf{P Z H}} / \mathbf{t}_{\mathbf{P H Z}}$	$\mathbf{t}_{\mathbf{P Z L}} / \mathbf{t}_{\mathbf{P L Z}}$
1.65 to 1.95 V	$\mathrm{~V}_{\mathrm{CC}}$	30 pF	$1 \mathrm{k} \Omega$	open	GND	$2 \times \mathrm{V}_{\mathrm{CC}}$
2.3 to 2.7 V	$\mathrm{~V}_{\mathrm{CC}}$	30 pF	500Ω	open	GND	$2 \times \mathrm{V}_{\mathrm{CC}}$
2.7 V	2.7 V	50 pF	500Ω	open	GND	6 V
3.0 to 3.6 V	2.7 V	50 pF	500Ω	open	GND	6 V

$R_{L}=$ Load resistor.
$C_{L}=$ Load capacitance including jig and probe capacitance.
$R_{T}=$ Termination resistance should be equal to the output impedance Z_{o} of the pulse generator.

Fig. 9 Load circuitry for switching times.

Octal D-type flip-flop; positive edge-trigger; 3-state

PACKAGE OUTLINES

SO20: plastic small outline package; 20 leads; body width 7.5 mm
SOT163-1

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	$\begin{gathered} \mathrm{A} \\ \max . \end{gathered}$	A_{1}	A_{2}	A_{3}	b_{p}	c	$D^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$\mathrm{z}^{(1)}$	θ
mm	2.65	$\begin{aligned} & 0.30 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 2.45 \\ & 2.25 \end{aligned}$	0.25	$\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 12.6 \end{aligned}$	$\begin{aligned} & 7.6 \\ & 7.4 \end{aligned}$	1.27	$\begin{aligned} & 10.65 \\ & 10.00 \end{aligned}$	1.4	$\begin{aligned} & 1.1 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.0 \end{aligned}$	0.25	0.25	0.1	0.9 0.4	$\begin{aligned} & 8^{\circ} \\ & 0^{\circ} \end{aligned}$
inches	0.10	$\begin{aligned} & 0.012 \\ & 0.004 \end{aligned}$	$\begin{aligned} & 0.096 \\ & 0.089 \end{aligned}$	0.01	$\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$	$\begin{aligned} & 0.013 \\ & 0.009 \end{aligned}$	$\begin{aligned} & 0.51 \\ & 0.49 \end{aligned}$	$\begin{aligned} & 0.30 \\ & 0.29 \end{aligned}$	0.050	$\begin{aligned} & 0.419 \\ & 0.394 \end{aligned}$	0.055	$\begin{aligned} & 0.043 \\ & 0.016 \end{aligned}$	$\begin{aligned} & 0.043 \\ & 0.039 \end{aligned}$	0.01	0.01	0.004	$\begin{aligned} & 0.035 \\ & 0.016 \end{aligned}$	

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT163-1	075E04	MS-013		\square ¢	$\begin{aligned} & -97-05-22 \\ & 99-12-27 \end{aligned}$

Octal D-type flip-flop; positive edge-trigger; 3-state

DIMENSIONS (mm are the original dimensions)

UNIT	A max.	A_{1}	A_{2}	A_{3}	b_{p}	c	$D^{(1)}$	$E^{(2)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$Z^{(1)}$	θ
mm	1.10	$\begin{aligned} & 0.15 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 0.95 \\ & 0.80 \end{aligned}$	0.25	$\begin{aligned} & 0.30 \\ & 0.19 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \hline 6.6 \\ & 6.4 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.3 \end{aligned}$	0.65	$\begin{aligned} & \hline 6.6 \\ & 6.2 \end{aligned}$	1.0	$\begin{aligned} & 0.75 \\ & 0.50 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.3 \end{aligned}$	0.2	0.13	0.1	$\begin{aligned} & 0.5 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 8^{\circ} \\ & 0^{\circ} \end{aligned}$

Notes

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT360-1		MO-153		$\square \oplus$	$\begin{aligned} & \hline-95-02-04 \\ & 99-12-27 \end{aligned}$

Octal D-type flip-flop; positive edge-trigger; 3-state

SOLDERING

Introduction to soldering surface mount packages

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "Data Handbook IC26; Integrated Circuit Packages" (document order number 9398652 90011).

There is no soldering method that is ideal for all surface mount IC packages. Wave soldering can still be used for certain surface mount ICs, but it is not suitable for fine pitch SMDs. In these situations reflow soldering is recommended.

Reflow soldering

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.
Several methods exist for reflowing; for example, convection or convection/infrared heating in a conveyor type oven. Throughput times (preheating, soldering and cooling) vary between 100 and 200 seconds depending on heating method.
Typical reflow peak temperatures range from
215 to $250^{\circ} \mathrm{C}$. The top-surface temperature of the packages should preferable be kept below $220^{\circ} \mathrm{C}$ for thick/large packages, and below $235^{\circ} \mathrm{C}$ for small/thin packages.

Wave soldering

Conventional single wave soldering is not recommended for surface mount devices (SMDs) or printed-circuit boards with a high component density, as solder bridging and non-wetting can present major problems.

To overcome these problems the double-wave soldering method was specifically developed.

If wave soldering is used the following conditions must be observed for optimal results:

- Use a double-wave soldering method comprising a turbulent wave with high upward pressure followed by a smooth laminar wave.
- For packages with leads on two sides and a pitch (e):
- larger than or equal to 1.27 mm , the footprint longitudinal axis is preferred to be parallel to the transport direction of the printed-circuit board;
- smaller than 1.27 mm , the footprint longitudinal axis must be parallel to the transport direction of the printed-circuit board.
The footprint must incorporate solder thieves at the downstream end.
- For packages with leads on four sides, the footprint must be placed at a 45° angle to the transport direction of the printed-circuit board. The footprint must incorporate solder thieves downstream and at the side corners.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Typical dwell time is 4 seconds at $250^{\circ} \mathrm{C}$.
A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

Manual soldering

Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage (24 V or less) soldering iron applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to $300^{\circ} \mathrm{C}$.

When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and $320^{\circ} \mathrm{C}$.

Octal D-type flip-flop; positive edge-trigger;
3-state

Suitability of surface mount IC packages for wave and reflow soldering methods

PACKAGE	SOLDERING METHOD	
	WAVE	REFLOW $^{(1)}$
BGA, LFBGA, SQFP, TFBGA	not suitable	suitable
HBCC, HLQFP, HSQFP, HSOP, HTQFP, HTSSOP, SMS	not suitable	
PLCC $^{(2)}$, SO, SOJ	suitable	
LQFP, QFP, TQFP	not recommended	suitable
SSOP, TSSOP, VSO	suitable	
suitable		

Notes

1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum temperature (with respect to time) and body size of the package, there is a risk that internal or external package cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the Drypack information in the "Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods".
2. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink (at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).
3. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction. The package footprint must incorporate solder thieves downstream and at the side corners.
4. Wave soldering is only suitable for LQFP, TQFP and QFP packages with a pitch (e) equal to or larger than 0.8 mm ; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm .
5. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm ; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm .

Octal D-type flip-flop; positive edge-trigger; 3-state

74ALVC374

DATA SHEET STATUS

DATA SHEET STATUS ${ }^{(1)}$	PRODUCT STATUS	
Objective data	Development	DEFINITIONS
Preliminary data	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.	
Qroduct data	Production	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Changes will be communicated according to the Customer Product/Process Change Notification (CPCN) procedure SNW-SQ-650A.		

Notes

1. Please consult the most recently issued data sheet before initiating or completing a design.
2. The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

DEFINITIONS

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.
Limiting values definition - Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

DISCLAIMERS

Life support applications - These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.
Right to make changes - Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Octal D-type flip-flop; positive edge-trigger; 3-state

Octal D-type flip-flop; positive edge-trigger; 3-state

Philips Semiconductors - a worldwide company

Contact information

For additional information please visit http://www.semiconductors.philips.com. Fax: +31 402724825 For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

