General Description The ALVC32 contains four 2-input OR gates. This product is designed for low voltage (1.65V to 3.6V) V _{CC} applica- tions with I/O compatibility up to 3.6V. The ALVC32 is fabricated with an advanced CMOS tech- nology to achieve high-speed operation while maintaining low CMOS power dissipation.		3.6V) V _{CC} applica-	 Features 1.65V to 3.6V V_{CC} supply operation 3.6V tolerant inputs and outputs t_{PD} 2.8 ns max for 3.0V to 3.6V V_{CC} 3.1 ns max for 2.3V to 2.7V V_{CC} 4.7 ns max for 1.65V to 1.95V V_{CC} Power-off high impedance inputs and outputs Uses patented Quiet Series™ noise/EMI reduction circuitry Latchup conforms to JEDEC JED78 ESD performance: Human body model > 2000V Machine model > 250V 		
Ordering	Code:				
Order Number	Package Number		Package Description		
ALVC32M			Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow		
ALVC32MTC		14-Lead Thin Shrink S by appending the suffix lette	mall Outline Package (TSSOP), JEDEC MO-153, 4.4mm		
			Connection Diagram		
	IEEC/IEC	0 ₀	$A_0 \xrightarrow{1} \qquad \qquad$		
, , ,	IEEC/IEC 30 ≥1 31 32 32 33		$A_0 \xrightarrow{1}{2} \qquad \qquad$		
	IEEC/IEC λ₀ ≥1 λ₀	° ₁	$\begin{array}{c} A_{0} \\ \hline \\ B_{0} \\ \hline \\ 2 \\ \hline \\ 0_{0} \\ \hline \\ A_{1} \\ \hline \\ B_{1} \\ \hline \\ B_{2} \\ \hline \\ B_{3} \\ \hline \\ \\ B_{3} \\ \hline \\ B_{3} \\ \hline \\ \\ \\ \\ B_{3} \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $		

September 2001

Revised February 2002

FAIRCHILD

SEMICONDUCTOR

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC})	-0.5V to +4.6V
DC Input Voltage (VI)	-0.5V to 4.6V
Output Voltage (V _O) (Note 2)	–0.5V to V _{CC} +0.5V
DC Input Diode Current (I _{IK})	
V ₁ < 0V	–50 mA
DC Output Diode Current (I _{OK})	
V _O < 0V	–50 mA
DC Output Source/Sink Current	
(I _{OH} /I _{OL})	±50 mA
DC V _{CC} or GND Current per	
Supply Pin (I _{CC} or GND)	±100 mA
Storage Temperature Range (T _{STG})	-65°C to +150°C

Recommended Operating

Conditions (Note 3)

Power Supply	
Operating	1.65V to 3.6V
Input Voltage (V _I)	0V to V_{CC}
Output Voltage (V _O)	0V to V_{CC}
Free Air Operating Temperature (T _A)	$-40^\circ C$ to $+85^\circ C$
Minimum Input Edge Rate ($\Delta t / \Delta V$)	
$V_{IN} = 0.8V$ to 2.0V, $V_{CC} = 3.0V$	5 ns/V

Note 1: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: $\rm I_O$ Absolute Maximum Rating must be observed, limited to 4.6V.

Note 3: Floating or unused control inputs must be held HIGH or LOW.

DC Electrical Characteristics

Symbol	Parameter	Conditions	V _{CC} (V)	Min	Max	Units
VIH	HIGH Level Input Voltage		1.65 - 1.95	$0.65 \times V_{CC}$		
			2.3 - 2.7	1.7		V
			2.7 - 3.6	2.0		
V _{IL}	LOW Level Input Voltage		1.65 - 1.95		0.35 x V _{CC}	
			2.3 - 2.7		0.7	V
			2.7 - 3.6		0.8	
V _{он}	HIGH Level Output Voltage	I _{OH} = -100 μA	1.65 - 3.6	V _{CC} - 0.2		
		$I_{OH} = -4 \text{ mA}$	1.65	1.2		
		$I_{OH} = -6 \text{ mA}$	2.3	2.0		
		$I_{OH} = -12 \text{ mA}$	2.3	1.7		V
			2.7	2.2		
			3.0	2.4		
		$I_{OH} = -24 \text{ mA}$	3.0	2		
V _{OL}	LOW Level Output Voltage	$I_{OL} = 100 \ \mu A$	1.65 - 3.6		0.2	
		$I_{OL} = 4 \text{ mA}$	1.65		0.45	
		$I_{OL} = 6 \text{ mA}$	2.3		0.4	V
		$I_{OL} = 12 \text{ mA}$	2.3		0.7	v
			2.7		0.4	
		$I_{OL} = 24 \text{ mA}$	3.0		0.55	
lı	Input Leakage Current	$0 \le V_I \le 3.6V$	3.6		±5.0	μA
l _{cc}	Quiescent Supply Current	$V_I = V_{CC}$ or GND, $I_O = 0$	3.6		10	μΑ
Δl _{CC}	Increase in I _{CC} per Input	$V_{IH} = V_{CC} - 0.6V$	3 - 3.6		750	μΑ

www.fairchildsemi.com

2

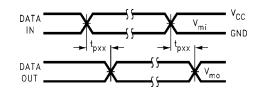
AC Electrical Characteristics

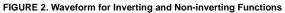
		$T_A = -40^{\circ}$ C to $+85^{\circ}$ C, $R_L = 500\Omega$								
Symbol	Parameter	C _L = 50 pF			C _L = 30 pF			Units		
Cymbol	i arameter	$V_{CC} = 3.3V \pm 0.3V$ $V_{CC} = 2.7V$		$V_{CC} = 2.5V \pm 0.2V \qquad V_{CC} = 1.8V \pm 0.15V$			V ± 0.15V			
		Min	Max	Min	Max	Min	Max	Min	Max	
t _{PHL} , t _{PLH}	Propagation Delay	1.0	2.8		2.9	1.0	3.1	1.0	4.7	ns

Capacitance

Symbol	Parameter	Conditions	T _A = -	Units	
		conditions	V _{cc}	Typical	Units
CIN	Input Capacitance	$V_I = 0V \text{ or } V_{CC}$	3.3	4	pF
C _{PD}	Power Dissipation Capacitance	$f = 10 \text{ MHz}, C_L = 50 \text{ pF}$	3.3	26	
			2.5	24	pF
			1.8	23	

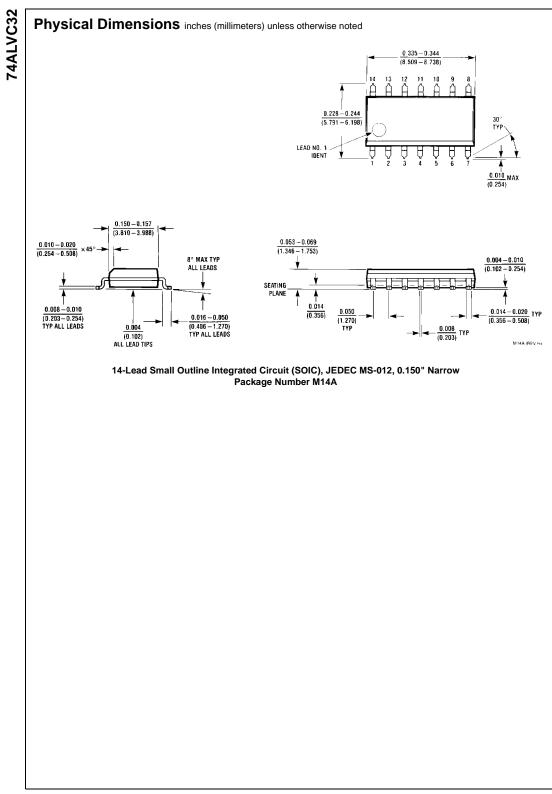
AC Loading and Waveforms

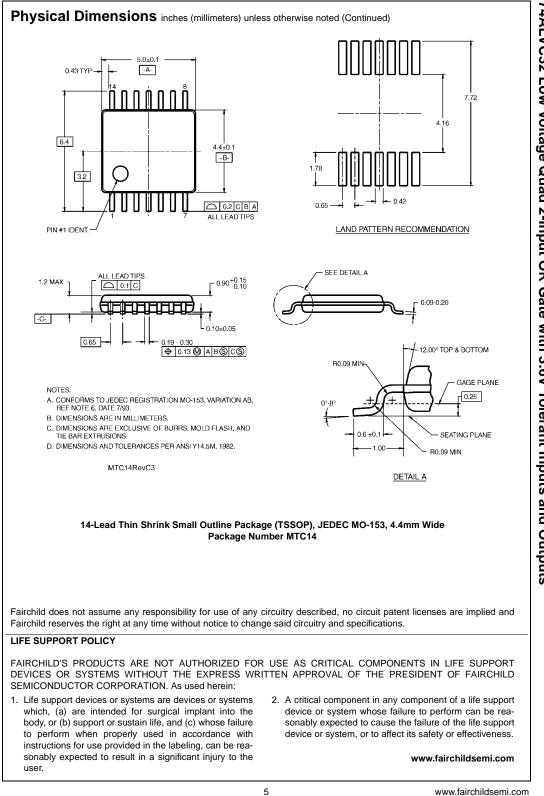



TABLE 1. Values for Figure 1

TEST	SWITCH
t _{PLH} , t _{PHL}	Open

TABLE 2. Variable Matrix (Input Characteristics: f = 1MHz; t_r = t_f = 2ns; Z_0 =50 Ω)


			1 1			
Symbol	v _{cc}					
Symbol	$3.3V \pm 0.3V$	2.7V	$\textbf{2.5V} \pm \textbf{0.2V}$	$\textbf{1.8V} \pm \textbf{0.15V}$		
V _{mi}	1.5V	1.5V	V _{CC} /2	V _{CC} /2		
V _{mo}	1.5V	1.5V	V _{CC} /2	V _{CC} /2		


www.fairchildsemi.com

74ALVC32

www.fairchildsemi.com

4

