

www.fairchildsemi.com

Absolute Maximum Ratings(Note 1)		Recommended Operating Conditions	
Supply Voltage (Vcc)	${ }^{-0.5 v}$ to		
DC Input Diode Curent (1)		Supply voltage (voc)	4.5 V to 5
$\mathrm{v}_{1}=-0.5 \mathrm{~V}$	20 mA	Input Voltage (V_{1})	
$\mathrm{V}_{1}=\mathrm{v}_{\mathrm{cc}}+0.5 \mathrm{~V}$	+20 mA	Output Volage (Vo)	OV to
DC Output Diode Current (lok)		Operating Temperature (T_{A})	C $10+8$
$\mathrm{V}_{\mathrm{o}}=-0.5 \mathrm{~V}$	-20 mA	Minimum Inut Edge Rate (AV/L	
$\mathrm{v}_{\mathrm{o}}=\mathrm{v}_{\mathrm{cc}}+0.5 \mathrm{~V}$	+20 mA	$\mathrm{V}_{1 / 2}$ trom 0.8 V to 2.0 V	
DC Output Voltage (V_{0})	${ }^{-0.5 \mathrm{~V} \text { to } \mathrm{Vcc}+0.5 \mathrm{~V}}$	$\mathrm{V}_{\text {cc }}$ @ 4.5V, 5.5 V	
DC Ouput Soure/sink Curren	mA	Noite: Absod	
DC $V_{C C}$ or Ground Current per Output Pin			
Storage Temperature	$5^{\circ} \mathrm{C}$ to		

DC Electrical Characteristics

Symbol	Parameter		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Units	Conditions
		(V)	Typ	Guaranteed Limits			
V_{IH}	Minimum HIGH Input Voltage	$\begin{aligned} & \hline 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {IL }}$	Maximum LOW Input Voltage	$\begin{aligned} & \hline 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & \hline 0.8 \\ & 0.8 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
V_{OH}	Minimum HIGH Output Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 4.49 \\ & 5.49 \end{aligned}$	$\begin{aligned} & \hline 4.4 \\ & 5.4 \end{aligned}$	$\begin{aligned} & \hline 4.4 \\ & 5.4 \end{aligned}$	V	$\mathrm{l}_{\text {OUT }}=-50 \mu \mathrm{~A}$
		$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 3.86 \\ & 4.86 \end{aligned}$	$\begin{aligned} & 3.76 \\ & 4.76 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}(\text { Note } 2) \end{aligned}$
V_{OL}	Maximum LOW Output Voltage	$\begin{aligned} & \hline 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 0.001 \\ & 0.001 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \end{aligned}$	V	$\mathrm{I}_{\text {OUT }}=50 \mu \mathrm{~A}$
		$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 0.36 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.44 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}(\text { Note } 2) \end{aligned}$
$\overline{\mathrm{I}} \mathrm{OZ}$	Maximum 3-STATE Leakage Current	5.5		± 0.5	± 5.0	$\mu \mathrm{A}$	$\begin{aligned} & V_{I}=V_{\mathrm{IL}}, V_{\mathrm{IH}} \\ & V_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND} \end{aligned}$
$\overline{I_{\mathrm{IN}}}$	Maximum Input Leakage Current	5.5		± 0.1	± 1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND}$
${ }_{\text {ICCT }}$	Maximum I ${ }_{\text {CC }} /$ Input	5.5	0.6		1.5	mA	$\mathrm{V}_{1}=\mathrm{V}_{C C}-2.1 \mathrm{~V}$
I_{CC}	Maximum Quiescent Supply Current	5.5		8.0	80.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or GND
IOLD	Minimum Dynamic Output Current (Note 3)	5.5			75	mA	$\mathrm{V}_{\text {OLD }}=1.65 \mathrm{~V}$ Max
$\mathrm{I}_{\text {OHD }}$					-75	mA	$\mathrm{V}_{\text {OHD }}=3.85 \mathrm{~V}$ Min

Note 2: All outputs loaded; thresholds associated with output under test.
Note 3: Maximum test duration 2.0 ms ; one output loaded at a time.

Symbol	Parameter	V_{CC} (V) (Note 4)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
			Min	Typ	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency	5.0	71			67		MHz
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay CP to O_{n}	5.0	$\begin{aligned} & \hline 3.1 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.3 \\ & 5.1 \end{aligned}$	$\begin{aligned} & 7.9 \\ & 7.3 \end{aligned}$	$\begin{aligned} & \hline 3.1 \\ & 3.0 \end{aligned}$	$\begin{aligned} & \hline 8.4 \\ & 7.8 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Time	5.0	$\begin{aligned} & 2.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 4.7 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 7.4 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.9 \\ & 8.5 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable Time	5.0	$\begin{aligned} & \hline 2.1 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \hline 5.1 \\ & 4.8 \end{aligned}$	$\begin{aligned} & \hline 7.9 \\ & 7.4 \end{aligned}$	$\begin{aligned} & 2.1 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 8.2 \\ & 7.9 \end{aligned}$	ns

AC Operating Requirements

Symbol	Parameter	V_{CC} (V)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$	Units
		(Note 5)	Typ		anteed Limits	
t_{s}	Setup Time, HIGH or LOW, Input to Clock	5.0	0.7	3.0	3.0	ns
t_{H}	Hold Time, HIGH or LOW, Input to Clock	5.0	0.8	1.0	1.0	ns
t_{W}	CP Pulse Width, HIGH or LOW	5.0	1.5	5.0	5.0	ns

Note 5: Voltage Range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$.

Capacitance

Symbol	Parameter	Typ	Units	Conditions
C_{IN}	Input Capacitance	4.5	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
C_{PD}	Power Dissipation Capacitance	30	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

Physical Dimensions inches（millimeters）unless otherwise noted

www.fairchildsemi.com

