

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays．

Absolute Maximum Ratings(Note 2)
Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias
$V_{C C}$ Pin Potential to Ground Pin
Input Voltage (Note 3)
Input Current (Note 3)
Voltage Applied to Any Output in the Disable or
Power-Off State
in the HIGH State
Current Applied to Output
in LOW State (Max)
twice the rated $\mathrm{l}_{\mathrm{OL}}(\mathrm{mA})$
$-500 \mathrm{~mA}$
Over Voltage Latchup (I/O)

Recommended Operating

 Conditions| Free Air Ambient Temperature | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| :--- | ---: |
| Supply Voltage | +4.5 V to +5.5 V |
| Minimum Input Edge Rate $(\Delta \mathrm{V} / \Delta \mathrm{t})$ | |
| \quad Data Input | $50 \mathrm{mV} / \mathrm{ns}$ |
| Enable Input | $20 \mathrm{mV} / \mathrm{ns}$ |
| Clock Input | $100 \mathrm{mV} / \mathrm{ns}$ |

Note 2: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied
Note 3: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter	Min	Typ Max	Units	V_{cc}	Conditions
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	2.0		V		Recognized HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage		0.8	V		Recognized LOW Signal
V_{CD}	Input Clamp Diode Voltage		-1.2	V	Min	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$ (Non I/O Pins)
V_{OH}	Output HIGH Voltage	$\begin{aligned} & \hline 2.5 \\ & 2.0 \end{aligned}$				$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA},\left(\mathrm{~A}_{n}, \mathrm{~B}_{\mathrm{n}}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-32 \mathrm{~mA},\left(\mathrm{~A}_{n}, \mathrm{~B}_{\mathrm{n}}\right) \end{aligned}$
V_{OL}	Output LOW Voltage		0.55			$\mathrm{I}_{\mathrm{OL}}=64 \mathrm{~mA},\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right)$
$\mathrm{V}_{\text {ID }}$	Input Leakage Test	4.75		V	0.0	$\mathrm{I}_{\mathrm{ID}}=1.9 \mu \mathrm{~A}, \text { (Non-l/O Pins) }$ All Other Pins Grounded
$\mathrm{IIH}^{\text {H}}$	Input HIGH Current		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\mu \mathrm{A}$	Max	$\begin{aligned} & \hline \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}(\text { (Non-I/O Pins) } \\ & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { (Non-I/O Pins) 4) } \end{aligned}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test		7	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$ (Non-//O Pins)
$\mathrm{I}_{\text {BVIT }}$	Input HIGH Current Breakdown Test (I/O)		100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right)$
IL	Input LOW Current		$\begin{aligned} & \hline-1 \\ & -1 \end{aligned}$	$\mu \mathrm{A}$	Max	$\begin{array}{\|l} \hline \mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}(\text { (Non-I/O Pins) (Note 4) } \\ \mathrm{V}_{\mathrm{IN}}=0.0 \mathrm{~V} \text { (Non-//O Pins) } \\ \hline \end{array}$
$\mathrm{I}_{\text {IH }}+\mathrm{I}_{\text {OZH }}$	Output Leakage Current		10	$\mu \mathrm{A}$	0V-5.5V	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right) ; \overline{\mathrm{OE}}=2.0 \mathrm{~V}$
$\mathrm{I}_{\text {IL }}+\mathrm{I}_{\text {OZL }}$	Output Leakage Current		-10	$\mu \mathrm{A}$	0V-5.5V	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}\left(\mathrm{~A}_{n}, \mathrm{~B}_{\mathrm{n}}\right) ; \overline{\mathrm{OE}}=2.0 \mathrm{~V}$
los	Output Short-Circuit Current	-100	-275	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right)$
$\mathrm{I}_{\text {cex }}$	Output HIGH Leakage Current		50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}\left(\mathrm{A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right)$
Izz	Bus Drainage Test		100	$\mu \mathrm{A}$	0.0V	$\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{~B}_{\mathrm{n}}\right) ;$ All Others GND
$\mathrm{I}_{\mathrm{CCH}}$	Power Supply Current		250	$\mu \mathrm{A}$	Max	All Outputs HIGH
$\mathrm{I}_{\text {CLL }}$	Power Supply Current		30	mA	Max	All Outputs LOW
$\mathrm{I}_{\text {ccz }}$	Power Supply Current		50	$\mu \mathrm{A}$	Max	Outputs 3-STATE; All Others GND
${ }^{\text {CCT }}$	Additional $\mathrm{ICC}^{\text {/ }}$ Input		2.5	mA	Max	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V} \\ & \text { All Other Outputs at } \mathrm{V}_{\mathrm{CC}} \text { or GND } \end{aligned}$
${ }^{\text {CCD }}$	Dynamic I_{CC} No Load (Note 4)		0.18	$\mathrm{mA} / \mathrm{MHz}$	Max	Outputs OPEN $\overline{\mathrm{OE}}$ and DIR = GND, Non-I/O = GND or VCC (Note 5) One Bit toggling, 50% duty cycle

Note 4: Guaranteed but not tested
Note 5: For 8-bit toggling, $\mathrm{I}_{\mathrm{CCD}}<1.4 \mathrm{~mA} / \mathrm{MHz}$.

DC Electrical Characteristics

Symbol	Parameter	Min	Typ	Max	Units	V_{cc}	$\begin{gathered} \text { Conditions } \\ C_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$
$\mathrm{V}_{\text {OLP }}$	Quiet Output Maximum Dynamic $\mathrm{V}_{\text {OL }}$		0.6	0.8	V	5.0	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 6)
$\mathrm{V}_{\text {OLV }}$	Quiet Output Minimum Dynamic V_{OL}	-1.2	-0.9		V	5.0	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 6)
$\mathrm{V}_{\text {OHV }}$	Minimum HIGH Level Dynamic Output Voltage	2.5	3.0		V	5.0	$\mathrm{T}_{\mathrm{A}}=25^{\circ}$ (Note 7)
$\mathrm{V}_{\text {IHD }}$	Minimum HIGH Level Dynamic Input Voltage	2.2	1.8		V	5.0	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 8)
$\mathrm{V}_{\text {ILD }}$	Maximum LOW Level Dynamic Input Voltage		0.8	0.5	V	5.0	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 8)

Note 6: Max number of outputs defined as (n). $\mathrm{n}-1$ data inputs are driven OV to 3 V . One output at LOW. Guaranteed, but not tested.
Note 7: Max number of outputs defined as (n). $\mathrm{n}-1$ data inputs are driven OV to 3 V . One output HIGH. Guaranteed, but not tested.
Note 8: Max number of data inputs (n) switching. n - 1 inputs switching OV to 3 V . Input-under-test switching: 3 V to threshold ($\mathrm{V}_{\mathrm{ILD}}$), OV to threshold ($\mathrm{V}_{\text {IHD }}$). Guaranteed, but not tested.

AC Electrical Characteristics

(SOIC and SSOP package)

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}-5.5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}-5.5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
		Min	Typ	Max	Min	Max	Min	Max	
${ }^{\text {m MAX }}$	Maximum Clock Frequency	200			200		200		MHz
$\begin{array}{\|l\|} \hline t_{\text {PLH }} \\ t_{\text {PHL }} \end{array}$	Propagation Delay Clock to Bus	$\begin{aligned} & \hline 1.7 \\ & 1.7 \end{aligned}$	$\begin{aligned} & \hline 3.0 \\ & 3.4 \end{aligned}$	$\begin{aligned} & 5.6 \\ & 5.6 \end{aligned}$	$\begin{aligned} & 2.2 \\ & 1.7 \end{aligned}$	$\begin{aligned} & \hline 8.8 \\ & 8.8 \end{aligned}$	$\begin{aligned} & 1.7 \\ & 1.7 \end{aligned}$	$\begin{aligned} & 5.6 \\ & 5.6 \end{aligned}$	ns
$\begin{array}{\|l\|} \hline \mathrm{t}_{\mathrm{PLH}} \\ \mathrm{t}_{\mathrm{PH}} \end{array}$	Propagation Delay Bus to Bus	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 2.6 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 4.8 \\ & 4.8 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.9 \\ & 7.9 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 4.8 \\ & 4.8 \end{aligned}$	ns
$\begin{array}{\|l\|} \hline t_{\text {PLH }} \\ \mathrm{t}_{\mathrm{PH}} \end{array}$	Propagation Delay SBA or SAB to A_{n} to B_{n}	$\begin{aligned} & \hline 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 3.0 \\ & 3.4 \end{aligned}$	$\begin{aligned} & 5.9 \\ & 5.9 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 8.1 \\ & 8.9 \end{aligned}$		$\begin{aligned} & 5.9 \\ & 5.9 \end{aligned}$	ns
$\begin{array}{\|l\|l\|l\|} \hline \mathrm{t}_{\text {PZH }} \\ \mathrm{t}_{\text {PZL }} \\ \hline \end{array}$	Enable Time $\overline{\mathrm{OE}}$ to A_{n} or B_{n}	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 3.2 \\ & 3.5 \end{aligned}$	$\begin{aligned} & \hline 6.3 \\ & 6.3 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.9 \end{aligned}$	$\begin{aligned} & \hline 7.3 \\ & 8.8 \end{aligned}$		$\begin{aligned} & \hline 6.3 \\ & 6.3 \end{aligned}$	ns
$\begin{array}{\|l\|} \hline \mathrm{t}_{\mathrm{PHZ}} \\ \mathrm{t}_{\mathrm{PLZ}} \\ \hline \end{array}$	$\begin{aligned} & \text { Disable Time } \\ & \overline{\mathrm{OE}} \text { to } \mathrm{A}_{\mathrm{n}} \text { or } \mathrm{B}_{\mathrm{n}} \end{aligned}$	$\begin{aligned} & \hline 1.5 \\ & 1.5 \end{aligned}$		$\begin{aligned} & \hline 6.0 \\ & 6.0 \end{aligned}$		$\begin{aligned} & 9.3 \\ & 9.3 \end{aligned}$		$\begin{aligned} & \hline 6.0 \\ & 6.0 \end{aligned}$	ns
$\begin{array}{\|l\|} \hline t_{\text {PZH }} \\ t_{\text {PZL }} \end{array}$	Enable Time DIR to A_{n} or B_{n}	$\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$		$\begin{aligned} & \hline 6.3 \\ & 6.3 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 2.2 \end{aligned}$	$\begin{aligned} & 7.7 \\ & 9.5 \end{aligned}$		$\begin{aligned} & 6.3 \\ & 6.3 \end{aligned}$	ns
$\begin{array}{\|l\|l\|} \hline \mathrm{t}_{\mathrm{PHZ}} \\ \mathrm{t}_{\mathrm{PLLZ}} \end{array}$	Disable Time DIR to A_{n} or B_{n}	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	3.8 3.2	$\begin{aligned} & \hline 6.0 \\ & 6.0 \end{aligned}$		$\begin{aligned} & \hline 8.7 \\ & 9.2 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 6.0 \\ & 6.0 \end{aligned}$	ns

AC Operating Requirements

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \hline \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}-5.5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}-5.5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
		Min	Max	Min	Max	Min	Max	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup Time, HIGH or LOW Bus to Clock	1.5		1.5	3.0	1.5		ns
$\begin{aligned} & \hline t_{\mathrm{H}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{H}}(\mathrm{~L}) \end{aligned}$	Hold Time, HIGH or LOW Bus to Clock	1.0		1.0	1.0	1.0		ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{W}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	Pulse Width, HIGH or LOW	3.0		3.0	4.0	3.0		ns

Extended AC Electrical Characteristics

(SOIC Pa								
Symbol	Parameter	$\begin{array}{r} \mathrm{T}_{\mathrm{A}}=-1 \\ \mathrm{~V}_{\mathrm{CC}} \\ \mathrm{C} \\ 8 \text { Outp } \end{array}$	$0+85^{\circ} \mathrm{C}$ $-5.5 \mathrm{~V}$ pF witching	$\begin{array}{r} \mathrm{T}_{\mathrm{A}}=-4 \mathrm{l} \\ \mathrm{v}_{\mathrm{CC}}= \\ \mathrm{C}_{\mathrm{L}} \\ 1 \text { Outpl } \\ (\mathrm{N} \end{array}$	$+85^{\circ} \mathrm{C}$ $-5.5 \mathrm{~V}$ pF itching 0)	$\begin{array}{r} \mathrm{T}_{\mathrm{A}}=-1 \\ \mathrm{~V}_{\mathrm{CC}} \\ \mathrm{C}_{\mathrm{L}} \\ 8 \text { Outp } \end{array}$	$+85^{\circ} \mathrm{C}$ $-5.5 \mathrm{~V}$ pF witching 1)	Units
		Min	Max	Min	Max	Min	Max	
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay Clock to Bus	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.0 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Propagation Delay Bus to Bus	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$		$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Propagation Delay SBA or SAB to A_{n} or B_{n}	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \hline 7.5 \\ & 7.5 \end{aligned}$	2.5 2.5	$\begin{aligned} & \hline 10.0 \\ & 10.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\text {PZH }} \\ & \mathrm{t}_{\text {PZL }} \end{aligned}$	Output Enable Time $\overline{\mathrm{OE}}_{\mathrm{n}}$ or DIR to A_{n} or B_{n}	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$		$\begin{aligned} & \hline 10.5 \\ & 10.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLLZ}} \end{aligned}$	Output Disable Time $\overline{\mathrm{OE}}_{\mathrm{n}}$ or DIR to A_{n} or B_{n}	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 6.0 \\ & 6.0 \end{aligned}$	(Note 12)		(Note 12)		ns

Note 9: This specification is guaranteed but not tested. The limits apply to propagation delays for all paths described switching in phase
(i.e., all LOW-to-HIGH, HIGH-to-LOW, etc.).

Note 10: This specification is guaranteed but not tested. The limits represent propagation delay with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load. This specification pertains to single output switching only.
Note 11: This specification is guaranteed but not tested. The limits represent propagation delays for all paths described switching in phase (i.e., all LOW-to-HIGH, HIGH-to-LOW, etc.) with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load Note 12: The 3-STATE delays are dominated by the RC network ($500 \Omega, 250 \mathrm{pF}$) on the output and has been excluded from the datasheet.

Skew

(SOIC Package)				
Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}-5.5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$ 8 Outputs Switching (Note 13)	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}-5.5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=250 \mathrm{pF} \end{gathered}$ 8 Outputs Switching (Note 14)	Units
		Max	Max	
toshl (Note 15)	Pin to Pin Skew, HL Transitions	1.3	2.5	ns
tosth (Note 15)	Pin to Pin Skew, LH Transitions	1.0	2.0	ns
$\mathrm{t}_{\text {PS }}$ (Note 16)	Duty Cycle, LH-HL Skew	2.0	4.0	ns
$\mathrm{t}_{\text {OST (}}$ (Note 15)	Pin to Pin Skew, LH/HL Transitions	2.0	4.0	ns
tpV (Note 17)	Device to Device Skew, LH/HL Transitions	2.5	4.5	ns

Note 13: This specification is guaranteed but not tested. The limits apply to propagation delays for all paths described switching in phase (i.e., all LOW-to-HIGH, HIGH-to-LOW, etc.).

Note 14: This specification is guaranteed but not tested. The limits represent propagation delays with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load.

Note 15: Skew is defined as the absolute value of the difference between the actual propagation delays for any two separate outputs of the same device. The specification applies to any outputs switching HIGH-to-LOW (tOSHL), LOW-to-HIGH (tosLh), or any combination switching LOW-to-HIGH and/or HIGH-to-LOW ($\mathrm{t}_{\mathrm{OST}}$). This specification is guaranteed but not tested.

Note 16: This describes the difference between the delay of the LOW-to-HIGH and the HIGH-to-LOW transition on the same pin. It is measured across al the outputs (drivers) on the same chip, the worst (largest delta) number is the guaranteed specification. This specification is guaranteed but not tested.
Note 17: Propagation delay variation for a given set of conditions (i.e., temperature and $V_{C C}$) from device to device. This specification is guaranteed but not tested.

Capacitance

Symbol	Parameter	Typ	Units	Conditions $\mathbf{T}_{\mathbf{A}}=\mathbf{2 5}{ }^{\circ} \mathbf{C}$
C_{IN}	Input Capacitance	5	pF	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}(\mathrm{non} \mathrm{I} / \mathrm{O}$ pins $)$
$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$ (Note 18)	Output Capacitance	11	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right)$

Note 18: $\mathrm{C}_{/ / \mathrm{O}}$ is measured at frequency, $\mathrm{f}=1 \mathrm{MHz}$, per MIL-STD-883, Method 3012.

AC Loading

FIGURE 5. Standard AC Test Load

$$
V_{M}=1.5 \mathrm{~V}
$$

FIGURE 6. Test Input Signal Levels Input Pulse Requirements

Amplitude	Rep. Rate	$\mathbf{t}_{\mathbf{w}}$	$\mathbf{t}_{\mathbf{r}}$	$\mathbf{t}_{\mathbf{f}}$
3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

FIGURE 7. Test Input Signal Requirements

AC Waveforms

FIGURE 8. Propagation Delay Waveforms for Inverting and Non-Inverting Functions

FIGURE 9. Propagation Delay, Pulse Width Waveforms

FIGURE 10. 3-STATE Output HIGH and LOW Enable and Disable Times

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
