Octal latched transceiver with dual enable, inverting (3-State)

74ABT544

FEATURES

- Combines 74ABT245 and 74ABT373 type functions in one device
- 8-bit octal transceiver with D-type latch
- Back-to-back registers for storage
- Separate controls for data flow in each direction
- Output capability: +64mA/-32mA
- Live insertion/extraction permitted
- Power-up 3-State
- Power-up reset
- Latch-up protection exceeds 500 mA per Jedec JC40.2 Std 17
- ESD protection exceeds 2000 V per MIL STD 883 Method 3015 and 200 V per Machine Model

DESCRIPTION

The 74ABT544 high-performance BiCMOS device combines low static and dynamic power dissipation with high speed and high output drive.

The 74ABT544 Octal Registered Transceiver contains two sets of D-type latches for temporary storage of data flowing in either direction. Separate Latch Enable (LEAB, LEBA) and Output Enable ($\overline{O E A B}, \overline{O E B A}$) inputs are provided for each register to permit independent control of data transfer in either direction. The outputs are guaranteed to sink 64mA.

FUNCTIONAL DESCRIPTION

The 'ABT544 contains two sets of eight D-type latches, with separate control pins for each set. Using data flow from A to B as an example, when the A-to-B Enable (EAB) input and the A-to-B Latch Enable (LEAB) input are Low the A-to-B path is transparent. A subsequent Low-to-High transition of the LEAB signal puts the A data into the latches where it is stored and the B outputs no longer change with the A inputs. With EAB and OEAB both Low, the 3 -State B output buffers are active and invert the data present at the outputs of the A latches.

Control of data flow from B to A is similar, but using the EBA, $\overline{L E B A}$, and $\overline{O E B A}$ inputs.

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	ORDER CODE	DRAWING NUMBER
24-pin plastic DIP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$74 \mathrm{ABT544N}$	0410 N
24-pin plastic SOL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$74 \mathrm{ABT544D}$	0173 D
24-pin plastic SSOP Type II	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$74 \mathrm{ABT544DB}$	1641 A

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

Octal latched transceiver with dual enable, inverting (3-State)

PIN DESCRIPTION

PIN NUMBER	SYMBOL	FUNCTION
14,1	$\overline{\mathrm{EEAB}} / \overline{\mathrm{LEBA}}$	A to B / B to A Latch Enable input (active-Low)
11,23	$\mathrm{EAB} / \mathrm{EBA}$	A to B / B to A Enable input (active-Low)
13,2	$\overline{\mathrm{OEAB}} / \overline{\mathrm{OEBA}}$	A to B / B to A Output Enable input (active-Low)
$3,4,5,6$, $7,8,9,10$	$\overline{\mathrm{~A} 0}-\overline{\mathrm{A} 7}$	Port A, 3-State outputs
$22,21,20,19$, $18,17,16,15$	$\overline{\mathrm{~B} 0}-\mathrm{B} 7$	Port B, 3-State outputs
12	GND	Ground (0V)
24	$\mathrm{~V}_{\mathrm{CC}}$	Positive supply voltage

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{GND}=0 \mathrm{~V}$	TYPICAL	UNIT
$\begin{aligned} & \mathrm{t}_{\mathrm{tPLH}} \\ & \mathrm{t}_{\text {PHL }} \end{aligned}$	Propagation delay An to Bn or Bn to $\overline{\mathrm{An}}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	3.9	ns
$\mathrm{C}_{\text {IN }}$	Input capacitance	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	4	pF
$\mathrm{C}_{1 / \mathrm{O}}$	I/O capacitance	Outputs disabled; $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ or V_{CC}	7	pF
ICCz	Total supply current	Outputs disabled; $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	110	$\mu \mathrm{A}$

Octal latched transceiver with dual enable, inverting (3-State)

LOGIC DIAGRAM

FUNCTION TABLE

INPUTS				OUTPUTS	STATUS
סEXX	EXX	LEXX	An or Bn	An or Bn	
H	X	X	X	Z	Disabled
X	H	X	X	Z	Disabled
L	\uparrow	L	h	Z	Disabled + Latch
L	\uparrow	L	l	Z	
L	L	\uparrow	h	L	Latch + Display
L	L	\uparrow	l	H	
L	L	L	H	L	Transparent
L	L	L	L	H	
L	L	H	X	NC	Hold

[^0]Octal latched transceiver with dual enable, inverting (3-State)

ABSOLUTE MAXIMUM RATINGS ${ }^{1,2}$

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
V_{CC}	DC supply voltage		-0.5 to +7.0	V
I_{IK}	DC input diode current	$\mathrm{V}_{\mathrm{I}}<0$	-18	mA
$\mathrm{~V}_{\mathrm{I}}$	DC input voltage ${ }^{3}$		-1.2 to +7.0	V
I_{OK}	DC output diode current	$\mathrm{V}_{\mathrm{O}}<0$	-50	mA
$\mathrm{~V}_{\text {OUT }}$	DC output voltage ${ }^{3}$	output in Off or High state	-0.5 to +5.5	V
$\mathrm{I}_{\text {OUT }}$	DC output current	output in Low state	128	mA
$\mathrm{~T}_{\text {stg }}$	Storage temperature range		-65 to 150	${ }^{\circ} \mathrm{C}$

NOTES:

1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
2. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed $150^{\circ} \mathrm{C}$.
3. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

RECOMMENDED OPERATING CONDITIONS

SYMBOL PARAMETER	LIMITS		UNIT	
		Min		
V_{CC}	DC supply voltage	4.5	5.5	V
$\mathrm{~V}_{\mathrm{I}}$	Input voltage	0	$\mathrm{~V}_{\mathrm{CC}}$	V
V_{IH}	High-level input voltage	2.0		V
$\mathrm{~V}_{\mathrm{IL}}$	Low-level Input voltage		0.8	V
I_{OH}	High-level output current		-32	mA
I_{OL}	Low-level output current		64	mA
$\Delta \mathrm{t} / \Delta \mathrm{V}$	Input transition rise or fall rate	0	10	$\mathrm{~ns} / \mathrm{V}$
$\mathrm{T}_{\mathrm{amb}}$	Operating free-air temperature range	-40	+85	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER		TEST CONDITIONS	LIMITS					UNIT	
			$\mathrm{T}_{\text {amb }}=+25^{\circ} \mathrm{C}$	$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C} \\ \text { to }+85^{\circ} \mathrm{C} \end{gathered}$						
			Min	Typ	Max	Min	Max			
V_{IK}	Input clamp vo	tage		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{K}}=-18 \mathrm{~mA}$		-0.9	-1.2		-1.2	V
V_{OH}	High-level output voltage			$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}$ or $\mathrm{V}_{\text {IH }}$	2.5	3.2		2.5		V
			$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} ; \mathrm{l}_{\mathrm{OH}}=-3 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\text {IH }}$	3.0	3.7		3.0		V	
			$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{l}_{\mathrm{OH}}=-32 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}$ or V_{IH}	2.0	2.3		2.0		V	
V_{OL}	Low-level outp	ut voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=64 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}$ or $\mathrm{V}_{\text {IH }}$		0.42	0.55		0.55	V	
$\mathrm{V}_{\mathrm{RST}}$	Power-up outp voltage ${ }^{3}$		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{l}_{\mathrm{O}}=1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or V_{CC}		0.13	0.55		0.55	V	
1	Input leakage current	Control pins	$\mathrm{V}_{C C}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or 5.5 V		± 0.01	± 1.0		± 1.0	$\mu \mathrm{A}$	
		Data pins	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or 5.5 V		± 5	± 100		± 100	$\mu \mathrm{A}$	
loff	Power-off leakage current		$\mathrm{V}_{\mathrm{CC}}=0.0 \mathrm{~V} ; \mathrm{V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$		± 5.0	± 100		± 100	$\mu \mathrm{A}$	
IPU/PD	Power-up/down 3-State output current ${ }^{4}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.1 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} ; \\ & \mathrm{V}_{\mathrm{OE}}=\text { Don't care } \end{aligned}$		± 5.0	± 50		± 50	$\mu \mathrm{A}$	
$\mathrm{IIH}^{+} \mathrm{I}_{\text {OZH }}$	3-State output High current		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}$ or V_{IH}		5.0	50		50	$\mu \mathrm{A}$	
$I_{\text {IL }}+\mathrm{I}_{\text {OZL }}$	3-State output Low current		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IL }}$ or V_{IH}		-5.0	-50		-50	$\mu \mathrm{A}$	
ICEX	Output high leakage current		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or V_{CC}		5.0	50		50	$\mu \mathrm{A}$	
10	Output current ${ }^{1}$		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$	-50	-65	-180	-50	-180	mA	
$\mathrm{I}_{\mathrm{CCH}}$	Quiescent supply current		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$; Outputs High, $\mathrm{V}_{\mathrm{I}}=$ GND or V_{CC}		110	250		250	$\mu \mathrm{A}$	
ICCL			$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$; Outputs Low, $\mathrm{V}_{1}=$ GND or $\mathrm{V}_{\text {CC }}$		20	30		30	mA	
Iccz			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \text {; Outputs 3-State; } \\ & \mathrm{V}_{\mathrm{I}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} \end{aligned}$		110	250		250	$\mu \mathrm{A}$	
$\Delta_{\text {cc }}$	Additional supply current per input pin ${ }^{2}$		$\mathrm{V}_{C C}=5.5 \mathrm{~V}$; one input at 3.4 V , other inputs at V_{CC} or GND; $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$		0.3	1.5		1.5	mA	

NOTES:

1. Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
2. This is the increase in supply current for each input at 3.4 V .
3. For valid test results, data must not be loaded into the flip-flops (or latches) after applying the power.
4. This parameter is valid for any V_{CC} between $O \mathrm{~V}$ and 2.1 V , with a transition of 10 msec . From $\mathrm{V}_{\mathrm{CC}}=2.1 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$, a transition time of up to $100 \mu \mathrm{sec}$ is permitted.

Octal latched transceiver with dual enable, inverting (3-State)

AC CHARACTERISTICS

$\mathrm{GND}=0 \mathrm{~V}, \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$

SYMBOL	PARAMETER	WAVEFORM	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=-40 \text { to } \\ +85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 0.5 \mathrm{~V} \end{gathered}$		
			Min	Typ	Max	Min	Max	
$\begin{gathered} \mathrm{t}_{\mathrm{tLH}} \\ \mathrm{t}_{\mathrm{PHL}} \end{gathered}$	Propagation delay An to Bn, Bn to An	2	$\begin{aligned} & 1.1 \\ & 1.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.6 \\ & 3.9 \end{aligned}$	$\begin{aligned} & 5.1 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.1 \\ & 6.4 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{t} L \mathrm{H}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay LEBA to An, LEAB to Bn	1, 2	$\begin{aligned} & 1.6 \\ & 2.1 \end{aligned}$	$\begin{aligned} & 4.1 \\ & 4.6 \end{aligned}$	$\begin{aligned} & 5.6 \\ & 6.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.6 \\ & 2.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.6 \\ & 7.1 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\text {PZH }} \\ & \mathrm{t}_{\mathrm{PZLL}} \\ & \hline \end{aligned}$	Output enable time OEBA to An, OEAB to Bn	$\begin{aligned} & 4 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.4 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 3.9 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 5.4 \\ & 6.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.4 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.4 \\ & 7.5 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{pHz}} \\ & \mathrm{t}_{\mathrm{pLL}} \\ & \hline \end{aligned}$	Output disable time OEBA to An, OEAB to Bn	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 5.9 \\ 5.5 \\ \hline \end{array}$	$\begin{aligned} & 7.4 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3.4 \\ & 3.0 \end{aligned}$	$\begin{aligned} & \hline 8.4 \\ & 8.0 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{pZH}} \\ & \mathrm{t}_{\mathrm{PZLL}} \\ & \hline \end{aligned}$	Output enable time EBA to An, EAB to Bn	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & 1.4 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 3.9 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 5.4 \\ & 6.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.4 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 6.4 \\ & 7.5 \end{aligned}$	ns
$\begin{array}{r} \mathrm{t}_{\mathrm{PHZ}} \\ \mathrm{t} \mathrm{PLZ} \\ \hline \end{array}$	Output disable time EBA to An, EAB to Bn	$\begin{aligned} & 4 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.9 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.4 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.4 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 8.4 \\ & 8.0 \end{aligned}$	ns

AC SETUP REQUIREMENTS

$G N D=0 V, t_{R}=t_{F}=2.5 n s, C_{L}=50 p F, R_{L}=500 \Omega$

SYMBOL	PARAMETER	WAVEFORM	LIMITS			UNIT
			$\begin{aligned} \mathrm{T}_{\mathrm{amb}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{cc}} & =+5.0 \mathrm{~V} \end{aligned}$		$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=-40 \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 0.5 \mathrm{~V} \end{gathered}$	
			Min	Typ	Min	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time An to LEAB, Bn to LEBA	3	$\begin{aligned} & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.5 \\ & 0.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time An to LEAB, Bn to LEBA	3	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & -0.3 \\ & -1.3 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time An to EAB, Bn to EBA	3	$\begin{aligned} & \hline 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 0.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time An to EAB, Bn to EBA	3	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & -0.2 \\ & -1.3 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{L})$	Latch enable pulse width, Low	3	3.5	1.8	3.5	ns

Octal latched transceiver with dual enable, inverting (3-State)

AC WAVEFORMS

$\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{GND}$ to 3.0 V

Octal latched transceiver with dual enable, inverting (3-State)

TEST CIRCUIT AND WAVEFORM

[^0]: $\mathrm{H}=$ High voltage level
 $\mathrm{h}=$ High voltage level one set-up time prior to the Low-to-High clock transition
 L = Low voltage level
 I = Low voltage level one set-up time prior to the Low-to-High clock transition
 $X=$ Don't care
 $\uparrow=$ Low-to-High clock transition
 $\mathrm{NC}=$ No change
 $Z=$ High impedance or "off" state

