Pin Names	Description
D ₀ -D ₇	Data Inputs
CP	Clock Pulse Input (Active Rising Edge)
OE	3-STATE Output Enable Input (Active LOW)
O ₀ -O ₇	3-STATE Outputs

Ordering Code:

FAIRCHILD

74ABT374

SEMICONDUCTOR

General Description

Order Number	Package Number	Package Description
74ABT374CSC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide Body
74ABT374CSJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74ABT374CMSA	MSA20	20-Lead Shrink Small Outline Package (SSOP), EIAJ TYPE II, 5.3mm Wide
74ABT374CMTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74ABT374CPC	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Device also avai able in Tape and Reel. Specify by appending

Connection Diagram

Pin Descriptions

mber	Package Number	Package Description
CSC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide Bod
CSJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
CMSA	MSA20	20-Lead Shrink Small Outline Package (SSOP), EIAJ TYPE II, 5.3mm Wide
CMTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wid
CPC	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
vailable ir	Tape and Reel. Specify I	by appending suffix letter "X" to the ordering code.

The ABT374 is an octal D-type flip-flop featuring separate Edge-triggered D-type inputs D-type inputs for each flip-flop and 3-STATE outputs for Buffered positive edge-triggered clock bus-oriented applications. A buffered Clock (CP) and Out-■ 3-STATE outputs for bus-oriented applications put Enable (\overline{OE}) are common to all flip-flops. ■ Output sink capability of 64 mA, source capability of 32 mA

Octal D-Type Flip-Flop with 3-STATE Outputs

Features

- Guaranteed output skew
- Guaranteed multiple output switching specifications
- Output switching specified for both 50 pF and 250 pF loads

November 1992

Revised November 1999

- Guaranteed simultaneous switching, noise level and dynamic threshold performance
- Guaranteed latchup protection
- High impedance glitch free bus loading during entire power up and power down cycle
- Non-destructive hot insertion capability

Functional Description

The ABT374 consists of eight edge-triggered flip-flops with individual D-type inputs and 3-STATE true outputs. The buffered clock and buffered Output Enable are common to all flip-flops. The eight flip-flops will store the state of their individual D inputs that meet the setup and hold time requirements on the LOW-to-HIGH Clock (CP) transition. With the Output Enable (\overline{OE}) LOW, the contents of the eight flip-flops are available at the outputs. When $\overline{\text{OE}}$ is HIGH, the outputs are in a high impedance state. Opera-tion of the OE input does not affect the state of the flipflops.

Function Table

I	Inputs		Internal	Outputs	Function
OE	СР	D	Q	0	
Н	Н	L	NC	Z	Hold
н	Н	н	NC	Z	Hold
н	~	L	L	Z	Load
н	~	н	н	Z	Load
L	~	L	L	L	Data Available
L	~	н	н	н	Data Available
L	н	L	NC	NC	No Change in Data
L	Н	н	NC	NC	No Change in Data

H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial

Z = High Impedance $\checkmark =$ LOW-to-HIGH Transition

NC = No Change

www.fairchildsemi.com

Absolute Maximum Ratings(Note 1)

	J J (i i i)	
Storage Temperature	-65°C to +150°C	Со
Ambient Temperature under Bias	-55°C to +125°C	Free
Junction Temperature under Bias	-55°C to +150°C	Sup
V _{CC} Pin Potential to		Mini
Ground Pin	-0.5V to +7.0V	Da
Input Voltage (Note 2)	-0.5V to +7.0V	Er
Input Current (Note 2)	-30 mA to +5.0 mA	CI
Voltage Applied to Any Output		
in the Disabled or		
Power-Off State	-0.5V to 5.5V	
in the HIGH State	-0.5V to V _{CC}	
Current Applied to Output		
in LOW State (Max)	twice the rated $\rm I_{OL}$ (mA)	
DC Latchup Source Current:		
OE Pin	–150 mA	
(Across Comm Operating Range)		Note 1
Other Pins	–500 mA	may be under t
Over Voltage Latchup (I/O)	10V	Note 2

Recommended Operating Conditions

Free Air Ambient Temperature	$-40^{\circ}C$ to $+85^{\circ}C$
Supply Voltage	+4.5V to +5.5V
Minimum Input Edge Rate ($\Delta V/\Delta t$)	
Data Input	50 mV/ns
Enable Input	20 mV/ns
Clock Input	100mV/ns

74ABT374

 Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
 Note 2: Either voltage limit or current limit is sufficient to protect inputs

DC Electrical Characteristics

Symbol	Param	neter	Min	Тур	Max	Units	V _{cc}	Conditions
VIH	Input HIGH Voltage		2.0			V		Recognized HIGH Signal
V _{IL}	Input LOW Voltage				0.8	V		Recognized LOW Signal
V _{CD}	Input Clamp Diode Vo	oltage			-1.2	V	Min	I _{IN} = -18 mA
V _{OH}	Output HIGH Voltage		2.5			V	Min	I _{OH} = -3 mA
			2.0			V	Min	I _{OH} = -32 mA
V _{OL}	Output LOW Voltage				0.55	V	Min	I _{OL} = 64 mA
IIH	Input HIGH Current				1	A	Max	V _{IN} = 2.7V (Note 4)
					1	μA	IVIAX	$V_{IN} = V_{CC}$
I _{BVI}	Input HIGH Current Breakdown Test				7	μΑ	Max	V _{IN} = 7.0V
IIL	Input LOW Current				-1	μA	Max	V _{IN} = 0.5V (Note 4)
					-1	μΛ	IVIAA	$V_{IN} = 0.0V$
V _{ID}	Input Leakage Test		4.75			V	0.0	I_{ID} = 1.9 μ A, All Other Pins Grounded
I _{OZH}	Output Leakage Curre	ent			10	μΑ	0-5.5V	V _{OUT} = 2.7V; OE = 2.0V
I _{OZL}	Output Leakage Curre	ent			-10	μΑ	0-5.5V	$V_{OUT} = 0.5V; \overline{OE} = 2.0V$
I _{OS}	Output Short-Circuit C	Current	-100		-275	mA	Max	V _{OUT} = 0.0V
ICEX	Output High Leakage	Current			50	μΑ	Max	$V_{OUT} = V_{CC}$
I _{ZZ}	Bus Drainage Test				100	μΑ	0.0	$V_{OUT} = 5.5V$; All Others V_{CC} or GND
I _{CCH}	Power Supply Current	t			50	μΑ	Max	All Outputs HIGH
I _{CCL}	Power Supply Current	t			30	mA	Max	All Outputs LOW
I _{CCZ}	Power Supply Current	t			50	μΑ	Max	$\overline{OE} = V_{CC}$; All Others at V_{CC} or GND
ICCT	Additional I _{CC} /Input	Outputs Enabled			2.5	mA		$V_I = V_{CC} - 2.1V$
		Outputs 3-STATE			2.5	mA	Max	Enable Input $V_I = V_{CC} - 2.1V$
		Outputs 3-STATE			2.5	mA		Data Input $V_I = V_{CC} - 2.1V$
								All Others at V_{CC} or GND
ICCD	Dynamic I _{CC}	No Load				mA/	Max	Outputs OPEN
	(Note 4)				0.30	MHz	wax	$\overline{OE} = GND$, (Note 3)
								One Bit Toggling, 50% Duty Cycle

3

Note 3: For 8-bit toggling, I_{CCD} <0.8 mA/MHz.

Note 4: Guaranteed, but not tested.

www.fairchildsemi.com

DC Electrical Characteristics

(SOIC package) Conditions Symbol Parameter Min Тур Мах Units v_{cc} $\textbf{C}_{\textbf{L}}=\textbf{50}~\textbf{pF},~\textbf{R}_{\textbf{L}}=\textbf{500}\boldsymbol{\Omega}$ V_{OLP} Quiet Output Maximum Dynamic VOL 0.5 0.8 ۷ 5.0 $T_A = 25^{\circ}C$ (Note 5) Quiet Output Minimum Dynamic VOL $T_A = 25^{\circ}C$ (Note 5) V_{OLV} -1.3 -0.9 V 5.0 $T_A = 25^{\circ}C$ (Note 6) V_{OHV} Minimum HIGH Level Dynamic Output Voltage V 5.0 2.5 3.0 V_{IHD} Minimum HIGH Level Dynamic Input Voltage 2.0 1.6 V 5.0 $T_A = 25^{\circ}C$ (Note 7) V_{ILD} Maximum LOW Level Dynamic Input Voltage 1.3 0.8 ٧ 5.0 $T_A = 25^{\circ}C$ (Note 7)

Note 5: Max number of outputs defined as (n). n - 1 data inputs are driven 0V to 3V. One output at Low. Guaranteed, but not tested. Note 6: Max number of outputs defined as (n). n - 1 data inputs are driven 0V to 3V. One output HIGH. Guaranteed, but not tested.

Note 7: Max number of data inputs (n) switching. n – 1 inputs switching 0V to 3V. Input-under-test switching: 3V to threshold (V_{ILD}), 0V to threshold (V_{ILD}). Guaranteed, but not tested.

AC Electrical Characteristics

Symbol		T _A = +25°C				T _A = −55°C to +125°C		$\textbf{T}_{\textbf{A}}=-40^{\circ}\textbf{C} \text{ to }+85^{\circ}\textbf{C}$	
	Parameter	,	$V_{CC} = +5.0V$ $C_L = 50 \text{ pF}$			$V_{CC} = 4.5V \text{ to } 5.5V$ $C_L = 50 \text{ pF}$		$V_{CC} = 4.5V$ to 5.5V $C_L = 50 \text{ pF}$	
		Min	Тур	Max	Min	Max	Min	Max	
f _{MAX}	Maximum Clock Frequency	150	200		150		150		MHz
t _{PLH}	Propagation Delay	2.0	3.2	5.0	1.4	6.6	2.0	5.0	
t _{PHL}	CP to O _n	2.0	3.3	5.0	2.0	7.6	2.0	5.0	ns
t _{PZH}	Output Enable Time	1.5	3.1	5.3	0.8	5.7	1.5	5.3	
t _{PZL}		1.5	3.1	5.3	1.5	7.2	1.5	5.3	ns
t _{PHZ}	Output Disable Time	1.5	3.6	5.4	1.3	7.2	1.5	5.4	ns
t _{PLZ}		1.5	3.4	5.4	1.0	7.0	1.5	5.4	115

AC Operating Requirements

Symbol	Parameter	$T_{A} = +25^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$		$T_{A} = -55^{\circ}C \text{ to } +125^{\circ}C$ $V_{CC} = 4.5V \text{ to } 5.5V$ $C_{L} = 50 \text{ pF}$		$T_{A} = -40^{\circ}C \text{ to } +85^{\circ}C$ $V_{CC} = 4.5V \text{ to } 5.5V$ $C_{L} = 50 \text{ pF}$		Units
		Min	Max	Min	Max	Min	Max	
t _S (H)	Setup Time, HIGH	1.5		2.5		1.0		ns
t _S (L)	or LOW D _n to CP	1.5		2.5		1.5		115
t _H (H)	Hold Time, HIGH	1.0		2.5		1.0		
t _H (L)	or LOW D _n to CP	1.0		2.5		1.0		ns
t _W (H)	Pulse Width, CP	3.0		3.3		3.0		
t _W (L)	HIGH or LOW	3.0		3.3		3.0		ns

www.fairchildsemi.com

Extended AC Electrical Characteristics

Symbol	Parameter	$T_{A} = -40^{\circ}C \text{ to } +85^{\circ}C$ $V_{CC} = 4.5V \text{ to } 5.5V$ $C_{L} = 50 \text{ pF}$ 8 Outputs Switching (Note 8)		$T_{A} = -40^{\circ}C \text{ to } +85^{\circ}C$ $V_{CC} = 4.5V \text{ to } 5.5V$ $C_{L} = 250 \text{ pF}$ (Note 9)		$T_{A} = -40^{\circ}C \text{ to } +85^{\circ}C$ $V_{CC} = 4.5V \text{ to } 5.5V$ $C_{L} = 250 \text{ pF}$ 8 Outputs Switching (Note 10)		Units
		Min	Max	Min	Max	Min	Max	1
t _{PLH}	Propagation Delay	1.5	5.7	2.0	7.8	2.0	10.0	
t _{PHL}	CP to On	1.5	5.7	2.0	7.8	2.0	10.0	ns
t _{PZH}	Output Enable Time	1.5	6.2	2.0	8.0	2.0	10.5	
t _{PZL}		1.5	6.2	2.0	8.0	2.0	10.5	ns
t _{PHZ}	Output Disable Time	1.0	1.0 5.5 ()[-((4)]		() [- (- 44)		o 11)	
t _{PZL}		1.0	5.5	(Note 11)		(Note 11)		ns

(i.e., all LOW-to-HIGH, HIGH-to-LOW, etc.).

Note 9: This specification is guaranteed but not tested. The limits represent propagation delay with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load. This specification pertains to single output switching only.

Note 10: This specification is guaranteed but not tested. The limits represent propagation delays for all paths described switching in phase

(i.e., all LOW-to-HIGH, HIGH-to-LOW, etc.) with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load. **Note 11:** The 3-STATE delay Time is dominated by the RC network (500Ω, 250 pF) on the output and has been excluded from the datasheet.

Skew (Note 16)

kage)

Symbol	Parameter	$T_{A} = -40^{\circ}\text{C to } +85^{\circ}\text{C}$ $V_{CC} = 4.5V - 5.5V$ $C_{L} = 50 \text{ pF}$ 8 Outputs Switching (Note 12) Max	$T_{A} = -40^{\circ}C \text{ to } +85^{\circ}C$ $V_{CC} = 4.5V - 5.5V$ $C_{L} = 250 \text{ pF}$ 8 Outputs Switching (Note 13) Max	Units
t _{OSHL} (Note 14)	Pin to Pin Skew HL Transitions	1.0	1.8	ns
t _{OSLH} (Note 14)	Pin to Pin Skew LH Transitions	1.0	1.8	ns
t _{PS} (Note 13)	Duty Cycle LH–HL Skew	1.8	4.3	ns
t _{OST} (Note 14)	Pin to Pin Skew LH/HL Transitions	2.0	4.3	ns
t _{PV} (Note 15)	Device to Device Skew LH/HL Transitions	2.5	4.6	ns

Note 12: This specification is guaranteed but not tested. The limits represent propagation delays with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load.

Note 13: This describes the difference between the delay of the LOW-to-HIGH and the HIGH-to-LOW transition on the same pin. It is measured across all the outputs (drivers) on the same chip, the worst (largest delta) number is the guaranteed specification. This specification is guaranteed but not tested.

Note 14: Skew is defined as the absolute value of the difference between the actual propagation delays for any two separate outputs of the same device. The specification applies to any outputs switching HIGH-to-LOW (t_{OSHL}), LOW-to-HIGH (t_{OSLH}), or any combination switching LOW-to-HIGH and/or HIGH-to-LOW (t_{OST}). This specification is guaranteed but not tested.

Note 15: Propagation delay variation for a given set of conditions (i.e., temperature and V_{CC}) from device to device. This specification is guaranteed but not tested.

Note 16: This specification is guaranteed but not tested. The limits apply to propagation delays for all paths described switching in phase (i.e., all LOW-to-HIGH, HIGH-to-LOW, etc.).

Capacitance

Symbol	Parameter	Тур	Units	Conditions (T _A = 25°C)
CIN	Input Capacitance	5.0	pF	$V_{CC} = 0V$
C _{OUT} (Note 17)	Output Capacitance	9.0	pF	$V_{CC} = 5.0V$

Note 17: C_{OUT} is measured at frequency f = 1 MHz, per MIL-STD-883, Method 3012.

www.fairchildsemi.com

74ABT374

www.fairchildsemi.com

www.fairchildsemi.com

Downloaded from <u>Elcodis.com</u> electronic components distributor