

Functional Description

In the transceiver mode, data present at the HIGH impedance port may be stored in either the A or B register or both.
The select $\left(\mathrm{SAB}_{\mathrm{n}}, \mathrm{SBA}_{\mathrm{n}}\right)$ controls can multiplex stored and real-time.
The examples in Figure 1 demonstrate the four fundamental bus-management functions that can be performed with the ABT16652.

ote B: Real-Time

Data on the A or B data bus, or both can be stored in the internal D flip-flop by LOW to HIGH transitions at the appropriate Clock Inputs $\left(\mathrm{CPAB}_{n}, \mathrm{CPBA}_{n}\right)$ regardless of the Select or Output Enable Inputs. When SAB and SBA are in the real time transfer mode, it is also possible to store data without using the internal D flip-flops by simultaneously enabling $O E A B_{n}$ and $\overline{\mathrm{OEBA}}_{n}$. In this configuration each Output reinforces its Input. Thus when all other data sources to the two sets of bus lines are in a HIGH impedance state, each set of bus lines will remain at its last state.

FIGURE 1.

Function Table

Inputs						Inputs/Outputs (Note 1)		Operating Mode
OEAB_{1}	OEBA_{1}	CPAB_{1}	CPBA_{1}	SAB_{1}	SBA_{1}	A_{0} thru A_{7}	B_{0} thru B_{7}	
L	H	H or L	H or L	X	X	Input	Input	Isolation
L	H	\sim	\sim	X	X			Store A and B Data
X	H	\sim	H or L	X	X	Input	Not Specified	Store A, Hold B
H	H	\sim	\sim	X	X	Input	Output	Store A in Both Registers
L	X	H or L	\sim	X	X	Not Specified	Input	Hold A, Store B
L	L	\sim	\sim	X	X	Output	Input	Store B in Both Registers
L	L	X	X	X	L	Output	Input	Real-Time B Data to A Bus
L	L	X	H or L	X	H			Store B Data to A Bus
H	H	X	X	L	X			Real-Time A Data to B Bus
H	H	H or L	X	H	X	Input	Output	Stored A Data to B Bus
H	L	H or L	H or L	H	H	Output	Output	Stored A Data to B Bus and Stored B Data to A Bus

H = HIGH Voltage Level
L = LOW Voltage Level
X = Immaterial
$\mathcal{\sim}=$ LOW to HIGH Clock Transition
Note 1: The data output functions may be enabled or disabled by various signals at OEAB or $\overline{O E B A}$ inputs. Data input functions are always enabled, i.e.,
data at the bus pins will be stored on every LOW to HIGH transition on the clock inputs. This also applies to data I/O (A and B: 8-15) and \#2 control pins.

Logic Diagrams

Please note that these diagrams are provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings(Note 2)

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias
V_{CC} Pin Potential to
Ground Pin
Input Voltage (Note 3)
Input Current (Note 3)
Voltage Applied to Any Output
in the Disable or Power-Off State
in the HIGH State
Current Applied to Output
in LOW State (Max)
DC Latchup Source Current

Over Voltage Latchup (I/O)

$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	Recommended Operating
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Conditions
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Condit	
	Free Air Ambient Temperature $\quad-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
-0.5 V to +7.0 V	Supply Voltage +4.5 V to +5.5 V
-0.5 V to +7.0 V	Minimum Input Edge Rate ($\Delta \mathrm{V} / \Delta \mathrm{t}$)
-30 mA to +5.0 mA	Data Input $50 \mathrm{mV} / \mathrm{ns}$
	Enable Input $\quad 20 \mathrm{mV} / \mathrm{ns}$
-0.5 V to +5.5 V	Clock Input $100 \mathrm{mV} / \mathrm{ns}$
-0.5 V to V_{CC}	Note 2: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
wice the rated $\mathrm{I}_{\mathrm{OL}}(\mathrm{mA})$	Note 3: Either voltage limit or current limit is sufficient to protect inputs.
$-500 \mathrm{~mA}$	

DC Electrical Characteristics

Symbol	Parameter	Min	Typ	Max	Units	V_{cc}	Conditions
V_{IH}	Input HIGH Voltage				V		Recognized HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			0.8	V		Recognized LOW Signal
$\mathrm{V}_{C D}$	Input Clamp Diode Voltage			-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$ (Non I/O Pins)
V_{OH}	Output HIGH Voltage	$\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA},\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{~B}_{\mathrm{n}}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-32 \mathrm{~mA},\left(\mathrm{~A}_{n}, \mathrm{~B}_{\mathrm{n}}\right) \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage			0.55	V	Min	$\mathrm{I}_{\mathrm{OL}}=64 \mathrm{~mA},\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right)$
$\mathrm{V}_{\text {ID }}$	Input Leakage Test				V	0.0	$\mathrm{I}_{\mathrm{ID}}=1.9 \mu \mathrm{~A}$, (Non-I/O Pins) All Other Pins Grounded
I_{H}	Input HIGH Current			$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\mu \mathrm{A}$	Max	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}(\text { (Non-I/O Pins) }(\text { Note } 4) \\ & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}(\text { Non-I/O Pins }) \end{aligned}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test			7	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$ (Non-1/O Pins)
$\mathrm{I}_{\text {BVIT }}$	Input HIGH Current Breakdown Test (I/O)			100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right)$
ILL	Input LOW Current			$\begin{aligned} & \hline-1 \\ & -1 \end{aligned}$	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$ (Non-1/O Pins) (Note 4) $\mathrm{V}_{\mathrm{IN}}=0.0 \mathrm{~V}$ (Non-I/O Pins)
$\mathrm{I}_{\mathrm{IH}+} \mathrm{I}_{\text {OZH }}$	Output Leakage Current			10	$\mu \mathrm{A}$	0V-5.5V	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}\left(\mathrm{~A}_{n}, \mathrm{~B}_{n}\right) ; \\ & \mathrm{OEAB}_{\mathrm{n}}=\mathrm{GND} \text { and } \overline{\mathrm{OEBA}}_{\mathrm{n}}=2.0 \mathrm{~V} \end{aligned}$
$\mathrm{I}_{\text {IL }}+\mathrm{I}_{\text {OZL }}$	Output Leakage Current			-10	$\mu \mathrm{A}$	0V-5.5V	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}\left(\mathrm{~A}_{n}, \mathrm{~B}_{n}\right) ; \\ & \mathrm{OEAB}_{\mathrm{n}}=\mathrm{GND} \text { and } \overline{\mathrm{OEBA}}_{\mathrm{n}}=2.0 \mathrm{~V} \end{aligned}$
Ios	Output Short-Circuit Current			-275	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right)$
$\mathrm{I}_{\text {CEX }}$	Output HIGH Leakage Current			50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}\left(\mathrm{A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right)$
Izz	Bus Drainage Test			100	$\mu \mathrm{A}$	0.0V	$\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right)$; All Others GND
$\mathrm{I}_{\text {CCH }}$	Power Supply Current			1.0	mA	Max	All Outputs HIGH
$\mathrm{I}_{\text {CCL }}$	Power Supply Current			60	mA	Max	All Outputs LOW
$\mathrm{I}_{\text {CCZ }}$	Power Supply Current			1.0	mA	Max	Outputs 3-STATE; All Others at V_{CC} or GND
$I_{\text {CCT }}$	Additional $\mathrm{I}_{\text {cc }} / \mathrm{ln}$ put			2.5	mA	Max	$\begin{array}{\|l\|} \hline \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V} \\ \text { All Others at } \mathrm{V}_{\mathrm{CC}} \text { or GND } \\ \hline \end{array}$
${ }^{\text {CCD }}$	Dynamic ICC (Note 4) No Load			0.23	mA/MHz	Max	Outputs Open $\mathrm{OEAB}_{\mathrm{n}}, \mathrm{OEBA}_{\mathrm{n}}$ and SEL = GND Non-I/O = GND or V_{CC} One bit toggling, 50% duty cycle

[^0]www.fairchildsemi.com

DC Electrical Characteristics

(SSOP Package)

Symbol	Parameter	Min	Typ	Max	Units	V_{cc}	Conditions $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$
$\mathrm{V}_{\text {OLP }}$	Quiet Output Maximum Dynamic $\mathrm{V}_{\text {OL }}$		0.7	1.2	V	5.0	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 5)
$\mathrm{V}_{\text {OLV }}$	Quiet Output Minimum Dynamic $\mathrm{V}_{\text {OL }}$	-1.4	-1.0		V	5.0	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 5)
$\mathrm{V}_{\text {OHV }}$	Minimum HIGH Level Dynamic Output Voltage	2.5	3.0		V	5.0	$\mathrm{T}_{\mathrm{A}}=25^{\circ}$ (Note 6)
$\mathrm{V}_{\text {IHD }}$	Minimum HIGH Level Dynamic Input Voltage	2.0	1.6		V	5.0	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 7)
$\mathrm{V}_{\text {ILD }}$	Maximum LOW Level Dynamic Input Voltage		1.2	0.8	V	5.0	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 7)

Note 5: Max number of outputs defined as (n). $\mathrm{n}-1$ data inputs are driven OV to 3 V . One output at LOW. Guaranteed, but not tested.
Note 6: Max number of outputs defined as (n). $\mathrm{n}-1$ data inputs are driven 0 V to 3 V . One output HIGH. Guaranteed, but not tested
Note 7: Max number of data inputs (n) switching. $n-1$ inputs switching 0 V to 3 V . Input-under-test switching: 3 V to threshold ($\mathrm{V}_{\text {ILD }}$), 0 V to threshold ($\mathrm{V}_{\text {IHD }}$). Guaranteed, but not tested.

AC Electrical Characteristics

(SSOP Package)							
Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}-5.5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
		Min	Typ	Max	Min	Max	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLL}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Propagation Delay Clock to Bus	$\begin{aligned} & \hline 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 3.0 \\ & 3.4 \end{aligned}$	$\begin{aligned} & \hline 4.9 \\ & 4.9 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 4.9 \\ & 4.9 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay Bus to Bus	$\begin{aligned} & \hline 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 2.6 \\ & 3.0 \end{aligned}$	$\begin{aligned} & \hline 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & \hline 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	$\begin{aligned} & \text { Propagation Delay } \\ & \text { SBA }_{n} \text { or } S A B_{n} \\ & \text { to } A_{n} \text { to } B_{n} \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$		$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\text {PZH }} \\ & \mathrm{t}_{\text {PZL }} \end{aligned}$	Enable Time $\overline{\mathrm{OEBA}}_{n}$ or OEAB_{n} to A_{n} or B_{n}			$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLLZ}} \end{aligned}$	$\begin{aligned} & \text { Disable Time } \\ & \overline{O E B A}_{n} \text { or } O E A B_{n} \\ & \text { to } A_{n} \text { or } B_{n} \end{aligned}$	1.5 1.5	3.9 3.3	$\begin{aligned} & \hline 5.9 \\ & 5.9 \end{aligned}$	1.5 1.5	$\begin{aligned} & \hline 5.9 \\ & 5.9 \end{aligned}$	ns

AC Operating Requirements

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}-5.5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
		Min	Typ	Max	Min	Max	
$\mathrm{f}_{\text {max }}$	Max Clock Frequency		200				MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup Time, HIGH or LOW Bus to Clock	2.0			2.0		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{H}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{H}}(\mathrm{~L}) \end{aligned}$	Hold Time, HIGH or LOW Bus to Clock	1.0			1.0		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	Pulse Width, HIGH or LOW	3.0			3.0		ns

Extended AC Electrical Characteristics (SSOP Package)								
Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}-5.5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$ 16 Outputs Switching (Note 8)		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}-5.5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=250 \mathrm{pF} \\ 1 \text { Output Switching } \\ \text { (Note 9) } \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}-5.5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=250 \mathrm{pF} \end{gathered}$ 16 Outputs Switching (Note 10)		Units
		Min	Max	Min	Max	Min	Max	
$t_{\text {pLH }}$ tphL	Progagation Delay Clock to Bus	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 5.8 \\ & 5.8 \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & \hline 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \hline 10.0 \\ & 10.0 \end{aligned}$	ns
$\mathrm{t}_{\mathrm{PLH}}$ $\mathrm{t}_{\mathrm{PHL}}$	Progagation Delay Bus to Bus	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \hline 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & \hline 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Progagation Delay SBA or SAB to A_{n} or B_{n}	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & \hline 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \hline 10.0 \\ & 10.0 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\text {PZH }} \\ & \mathrm{t}_{\text {PZLL }} \end{aligned}$	$\begin{aligned} & \text { Output Enable Time } \\ & \overline{O E B A}_{n} \text { or } O E A B_{n} \text { to } \\ & A_{n} \text { or } B_{n} \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \hline 8.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & \hline 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \hline 10.5 \\ & 10.5 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\text {PHZ }} \\ & \mathrm{t}_{\mathrm{PLLZ}} \end{aligned}$	Output Disable Time OEBA or OEAB to A_{n} or B_{n}	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 6.0 \\ & 6.0 \end{aligned}$	(Note 11)		(Note 11)		ns
Note 8: This specification is guaranteed but not tested. The limits apply to propagation delays for all paths described switching in phase (i.e., all LOW-to-HIGH, HIGH-to-LOW, etc.). Note 9: This specification is guaranteed but not tested. The limits represent propagation delay with 250 pF load capacitors in place of the 50 pF capacitors in the standard AC load. This specification pertains to single output switching only. Note 10: This specification is guaranteed but not tested. The limits represent propagation delays for all paths described switching in phase (i.e., all LOW-to-HIGH, HIGH-to-LOW, etc.) with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load. Note 11: The 3-STATE delay times are dominated by the RC network ($500 \Omega, 250 \mathrm{pF}$) on the output and has been excluded from the datasheet. Skew (Note 12) (SSOP Package)								
Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}-5.5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$ 16 Outputs Switching (Note 12)			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}-5.5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=250 \mathrm{pF} \end{gathered}$ 16 Outputs Switching (Note 13)			Units
toshL (Note 14)	Pin to Pin Skew HL Transitions				Max			ns
$\begin{aligned} & \hline \mathrm{t}_{\text {OSLLH }} \\ & \text { (Note 14) } \end{aligned}$	Pin to Pin Skew LH Transitions	2.0			2.5			ns
tps (Note 15)	Duty Cycle LH-HL Skew	2.0			2.5			ns
tost (Note 14)	Pin to Pin Skew LH/HL Transitions	2.8			3.0			
tpV (Note 16)	Device to Device Skew LH/HL Transitions	3.5			4.0			ns
Note 12: This specification is guaranteed but not tested. The limits apply to propagation delays for all paths described switching in phase (i.e., all LOW-to-HIGH, HIGH-to-LOW, etc.). Note 13: This specification is guaranteed but not tested. The limits represent propagation delays with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load. Note 14: Skew is defined as the absolute value of the difference between the actual propagation delays for any two separate outputs of the same device. The specification applies to any outputs switching HIGH to LOW (toshL), LOW to HIGH (tosLH), or any combination switching LOW to HIGH and/or HIGH to LOW ($\mathrm{t}_{\mathrm{OST}}$). This specification is guaranteed but not tested. Note 15: This describes the difference between the delay of the LOW-to-HIGH and the HIGH-to-LOW transition on the same pin. It is measured across all the outputs (drivers) on the same chip, the worst (largest delta) number is the guaranteed specification. This specification is guaranteed but not tested. Note 16: Propagation delay variation for a given set of conditions (i.e., temperature and $V_{C C}$) from device to device. This specification is guaranteed but not tested.								

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com

Fairchild does not assume ary responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at ary time without notice to change said circuitry and specifications.

[^0]: Note 4: Guaranteed but not tested

